Applied (High Temperature) Superconductivity

Academic Training Lecture 3

Justin Schwartz

Department of Materials Science and Engineering

North Carolina State University

CERN/Geneva June 25-29, 2012

Outline for the week of training

- Lectures 1& 2: Introduction & "Just enough" physics
 - Brief introduction ... what is superconductivity and why is it useful?
 - Basic physics of superconductivity and the superconducting state
 - Applications-relevant physics of superconductivity & superconducting state
- Lecture 3: Technical superconductors
 - What a magnet wants
 - A brief summary of NbTi and Nb₃Sn
 - HTS conductor options: Bi2212 & YBCO
- Lecture 4: Electromechanical behavior
 - A brief summary of NbTi and Nb₃Sn
 - HTS conductor options: Bi2212 & YBCO
- Lecture 5: Quench behavior and high field magnets
 - What is quench protection?

What a magnet wants... magnet engineering issues

- Conductor ... the bridge from phenomenon to magnets
 - Availability & Cost
 - Processing & manufacturing (nano→ macro)
 - J_c at field, temperature, field orientation ... application driven
 - Uniformity
 - Chemical compatibility with reinforcement and insulation
 - Conductor size and scalability
 - Multifilamentary
 - Cable-able
- Stability & quench protection
- Magnet fabrication
- Electromechanical behavior
- AC losses
- Turn-to-turn insulation
- Cooling
- Joints

Desirable Conductor Properties

- $J_c(B)$ 1st & foremost; but other properties can be limiting
- Mechanical properties
 - High strength and modulus (strain tolerant)
 - Workability during processing (ductility)
 - Effect of strain on superconducting properties
- Environmental properties
 - atmosphere (H₂O, other components to magnet)
 - thermal contraction effects ($\Delta L/L$)
 - radiation effects (fusion and accelerator applications)
- Costs
 - much of cost is in processing, handling
 - NbTi $\sim 100 /lb, Nb₃Sn $\sim 1000 /lb, Ag/Bi2212 $\sim 20 /meter, YBCO conductor $\sim 50 /meter

Two (or three) types of Type II superconductors

- "Low-T_c superconductors" (LTS)
 - NbTi and Nb₃Sn
 - Commercially available
 - In most operating superconducting magnets
 - Conductors are predominantly Cu
- "High-T_c superconductors" (HTS)
 - Discovered from 1986-1993 with much fanfare
 - Bi₂Sr₂CaCu₂O_{8+y} & YBa₂Cu₃O_{7-x} are most technically interesting
 - more complicated than LTS in almost every way
 - flux motion is thermally activated ... now T-window is wider
 - complex multicomponent oxide
 - very small $\xi \rightarrow$ grain boundaries are weak-links
 - highly anisotropic structure & properties
- MgB₂ not quite LTS or HTS. Might become useful too.

Upper critical field versus temperature

Critical current density versus magnetic field

"best in class" Current Density Across Entire Cross-Section

LTS conductors are highly engineered, complex

composites

Typical SSC Nb-47wt.%Ti strand (OST)

Typical reacted ITER Nb₃Sn strand (IGC)

Conductors for magnets – strand and cable

- Magnets can be from strand (wire) or cable
- Decision driven by the demand of the application
- Cables vary greatly depending on what is required

Length scales (this example is Nb₃Sn)

NbTi Alloys as Superconductors

- First discovered in early 1960s that Nb formed continuous solution alloy with Zr, other elements
- Technologically/commercially matured by the Tevatron
- Became "stock" material by medical MRI

ve-	3	4	5	6	7
3d	Sc	Ti 🔪	V	Cr	Mn
3d 4d	Y	Zr⊷	Nb	Mo	Tc
5d	La	Hf	Ta	W	Re

4-5 transition elements

Lecture 3

11

NbTi wires

- Nb and Ti are soluble & at high temperature form a ductile alloy: β phase
- Cold work & heat treatment determines the formation of other phases
- α phase is used for flux pinning
- Easily processed by extrusion and drawing
- J_c depends on the microstructure
- Mature product: ~3 Ton per day for MRI, ~60,000 km/year
- Cost \sim \$1/kA·m (Cu \sim \$20/kA·m)

BCC crystal structure

Department of Materials Science and Engineering

Lecture 3

NbTi: H_{c2} and T_c vary with composition

Commercial material not at either peak

Upper critical field of Nb-Ti alloys at 4.2 K.

Fabrication of NbTi wire

Stage I: Stacking & Hexagonal Nb-Ti/Cu Rod monofilament composite

Stage II: Multifilamentary composite

Stage III: Twisting and spooling

Nb₃Sn: the 1st "high field" conductor

- Nb₃Sn is an intermetallic compound with an "A15" structure
- A brittle composite that cannot be drawn after formation
- T_C & H_{C2} depend on Sn content: optimal is 20-25 weight%
- J_c depends on the microstructure (grain structure)
- $Cost < $10/kA \cdot m$
- A number of processes have been developed for wires
- Nb (6/cube) Sn (2/cube): Nb₃Sn

Sn on BCC lattice Nb on orthogonal chains across faces

Nb₃Sn phase diagram – more complex than NbTi

 Reacting at 925 °C to 1050 °C was typically required to form Nb₃Sn from Nb and Sn – making it difficult to apply to the fabrication of multifilamentary strand.

Lecture 3

Department of Materials Science and Engineering

Breakthrough . . . the Bronze Process ... wires

A15 compound layers (Nb₃Sn and V₃Ga) could be formed at the interface of Nb(V) and Cu-Sn(Ga) [bronze] without forming undesirable compounds *and* at less elevated temperatures, e. g., 700 °C, from composites of Nb(or V) and bronze mechanically co-reduced in size.

- Breakthrough made simultaneously by three groups '69-70:
- K. Tachikawa at the National Research Institute for Metals in Japan
- A. R. Kaufman at the Whittaker Corporation in the USA
- E.W. Howlett at the Atomic Energy Research Establishment at Harwell in Great Britain

Bronze Process – historical breakthrough for wires

- Start with Nb filaments in a bronze matrix
- Diffusion of Sn into Nb
- Typical parameters: 700°C, 1-10 days (max. diff. 5-10 μm)
- Cu: prevents Nb₆Sn₅ from forming; a catalyst
- Temperature: good stoichiometry vs. small grains
- Bronze: 16wt.%Sn max.; >13% makes drawing difficult
- Maximum Nb₃Sn:~25wt.%
- Small filament size

Internal Sn (Single Barrier)

Internal Sn (Distributed Barrier)

Powder-in-tube

19

...gineering

HTS v Nb₃Sn for large, high field magnets

- Conductor J_c(B,T), n-value, homogeneity
- Conductor I_c- strain
- Conductor scale-up
- Packaging (insulation & reinforcement)
- Coil manufacturing
- Stability, quench detection, quench protection
- Application specific issues field profile, homogeneity, heat & radiation resistance
- Overall materials complexity
- Costs; systems pull not firmly established
- Bi2212 & YBCO have conductor-specific challenges

HTS is enabling technology, not replacement technology

HTS crystal structures – anistropy dominates

• Each has highly anisotropic electro-magnetic behavior

Lecture 3

Bi-axial texture required for transport Not AS anisotropic as Bi2212 (relatively) good flux pinning

c-axis texture required VERY anisotropic very weak flux pinning

Emerging conductor: Bi₂Sr₂CaCu₂O_x

- Formed by powder-in-tube process
- Requires Ag/AgX matrix
- Only HTS round wire option
- Only HTS conductor w/isotropic EM behavior, despite crystalline anisotropy

If Bi2212 wasn't the only material capable of generating >25 T in a round wire, one would never try to develop it

Bi2212 dogma ... or why it is the way it is

- To form a multifilamentary wire, a ductile matrix is required
 - Powder-in-tube
- For grain-to-grain connectivity in a wire, the powder/grains must be well-bonded via heat treatment after wire-drawing
 - Connectivity only results if significant liquid phase is created during the heat treatment (due to small coherence length)
 - Bi2212 melts incongruently through a peritectic reaction
 - Solid (Bi2212) → liquid + solid (neither of which are Bi2212)
- Oxygen content in Bi2212 evolves during heat treatment and is important for final properties
 - Matrix must allow oxygen diffusion, not oxidize, and be chemically compatible with Bi2212
 - Therefore Ag is used → very limiting (and mechanically weak)
 - Ag used next to filaments, AgMg for "outer sheath"

Bi2212 challenges & the partial-melt process

- To date, "partial-melt process" and its variants are that standard heat-treatments for Bi2212 wire
 - like Churchill's description of democracy it's the worst possible option except for all of the others
- And while we now (somewhat) understand why it works, it is still rather surprising
- We start with:

We process above the peritectic melt

and we end up with ... a complicated, inhomogeneous microstructure

Bi2212 microstructure

Why does it carry current?

- \blacksquare How does microstructure evolve to produce high J_c ?
- \square Why is there high J_c with poor texture?
- Do the interfilamentary bridges play a key role in transport?
- Which bridges? ... microstructure is a statistical mess!
- What about the significant porosity that remains?
- Let's look at different length scales

Bi2212 lattice planes change direction

- The tilt angle between two grains is 45°
- Lattice planes bend to connect to the adjacent grain, reducing the tilt angle to 17°

F. Kametani, FSU

Transverse TEM of "small" bridge

- The second in th
- ™ Misorientation (not pure tilt) angle ~ 23°
- Train boundary is clean but *should not* support transport ... but does it?

"Connectivity" and the role of bridges

- Grain flexibility overcomes lack of texture
- For connectivity, consider two-dimensional treatment based upon YBCO thin film grain-to-grain connectivity
- Bi2212 case is 3D, highly inhomogeneous extension
- Macroscopic approach?

$$C = \frac{b}{2s+h}. \qquad J_c^I = \frac{b}{2s+h}J_c$$

Muller, Andrikidis, Du, Leslie and Foley, PRB 60(1) 1999 659

Develop quantitative image analysis

Do bridges correlate with properties?

Photoshop + Image J

Matlab

Ag-alloy Oxide filaments

Oxide bridges

White, all

Black $> 4 \mu m$

Oxide bridges $4 \mu m > Blue > 3 \mu m$

Oxide bridges $3 \mu m > Green > 2 \mu m$

Oxide bridges $2 \mu m > \text{Yellow} > 1 \mu m$

Red $< 1 \mu m$

32 Lecture 3

Vary the processing, vary the microstructure

Do bridges correlate with J_c?

Lecture 3

34

Grain orientation mapping agrees!

- LAGBs in some bridges; current can cross the bridge to the adjacent grain
- MAGBs are more typical than LAGBs in bridges; minimal current flow

F. Kametani, FSU 35

Why are there two types of bridges? Samples quenched as Bi2212 nucleates

- Type-A bridges
 - Large, thick single Bi2212 grain/colony
 - Supercurrent crosses type-A bridges from one filament to another

Filament-filament bonding

Isolated filaments

Type-B bridges

- Result from Bi2212 outgrowths
- High angle grain boundaries
- Low transport

Lecture 3

36

Interconnected 3-D current flow path ... "walking in Venice" or "drunken electrons"

So can Bi2112 improve significantly?

- Remarkable that Bi2212 microstructure carries high transport current
- Two primary obstacles to improvements (or, if you're an optimist – why it can get a lot better)
 - \blacksquare Porosity is significant; removing porosity in short samples shows significant increase in J_c
 - Reconversion to Bi2212 "nucleation site saturation limited" (split-melt processing shows that additional nucleation sites can be formed)
- Other unexplored opportunities
 - Varying Bi2212 composition ... so many variables!

YBCO coated conductors & Dimos experiment

Transport across a grain boundary in a bi-crystal

39

Weak-linked YBCO ... the need for bi-axial texture

- J_b across the grain boundary drops exponentially below that of the grains, $J_b = J_0 \exp(-\theta/\theta_c)$, as a function of the misorientation angle θ , where $\theta_c \sim 2-5^\circ$
- This extreme sensitivity to misorientation, coupled with the intrinsic anisotropy, demands bi-axial texture in YBCO to minimize grain-boundary misorientation
- The "weak-link" behavior of grain boundaries is in effect a combination of this anisotropy and small coherence length

Emerging conductor: (RE)BCO coated conductor

- **ANY** method of making a conductor requires biaxial texturing; three approaches have emerged
- Rolling Assisted Bi-axial Textured Substrates (RABiTS)
 - Textured metallic substrate (NiW) serves as template
 - Requires buffer layers to separate Ni from YBCO chemically while "transmitting" texture information
- Ion Beam Assisted Deposition (IBAD)
 - Randomly oriented substrate (Hastelloy)
 - IBAD to deposit textured buffer layers which provide the template for YBCO growth
- Inclined Substrate Deposition (ISD)
 - Texture induced in buffer layers

What do (RE)BCO CCs share?

- \blacksquare Wide, thin tapes with very high $J_c(B)$
 - E.g., SuperPower IBAD is 12 mm wide, then slit to 4 mm
- **1-2%** "fill factor" (%conductor that is superconductor)
- Specialized buffer layers
 - Transmit/provide textured template
 - Chemical barrier between YBCO and Ni
 - \blacksquare Y₂O₃, YSZ, MgO, CeO₂, STO, are common buffer layers
- **■** A strong Ni-alloy substrate
- A thin Ag cap-layer atop the (RE)BCO for environmental protection
- Cu enclosure
- \blacksquare Very anisotropic $J_c(B)$
- "Engineerable" microstructure: flux pinning optimization

SuperPower IBAD (RE)BCO

Cu is electroplated

American Superconductor (RE)BCO Coated Conductor

Recall J_c(B) plot ... two YBCO curves

45

Thickness dependence of J_e

Attempts to increase fill factor have diminishing return

Two-dimensional flux pinning

2D Collective Pinning Theory shows that weak flux pinning & thermal fluctuations can lead to thickness dependence

$$J_c \cong \frac{\pi^{1/2} f_p r_p}{\phi_0 d^{3/2} t^{1/2}} \approx \frac{J_d r_p \xi}{d^{3/2} t^{1/2}} \propto t^{-1/2}$$

What can be done?

Gurevich; Kim
6/26/12
CHWARTZ GROUP

Lecture 3

47

Three-dimensional flux pinning with nanoinclusions

- Flux pinning inclusions reduce thickness dependence ... but not totally
- Multiple mechanisms in concert

Kim et al., APL 90 2007

Flux pinning nanoinclusions

Columnar BaZrO₃ Wee et al., SuST 20 2007

 $(Y,Sm) O_3$ Song et al., APL 88 2006

Y211Kim et al., APL 2007

 YBCO CC chemistry facilitates wide variety of nanoinclusions for flux pinning... can high field conductor be engineered? An isotropic conductor?

Inhomogeneous porosity

Transport in YBCO CCs

- Three factors can destroy transport in YBCO CCs
 - Grain boundaries & other connectivity blockers
 - Can be improved with Ca, Nd, ..., other dopants
 - Flux pinning
 - Can be improved/engineered by plethora of nanoinclusions
 - Porosity
 - Can be improved via better processing
- Solving these simultaneously may
 - Reduce anisotropic electromagnetic behavior
 - Provide flexibility in operating current
 - Improve J_e
 - Result in a conductor that can be engineered

What about cables made from wide, thin tape?

Roebel cable

N J Long, R Badcock, P Beck, M Mulholland, N Ross, M Staines, H Sun, J Hamilton, R G Buckley, Journal of Physics: Conference Series 97 (2008) 012280

Twisted stacked tape cable

M. Takayasu et al., "Cabling Method for High Current Conductors Made of HTS Tapes", ASC 2010

Compact cable

2.8 kA at 76 K

Summary of potential magnet conductors

	Conductor manufacture	MF?	Shape	Isotropic	n- value	Coil manu facture	Material class
Bi2212 ~80 K >50 T	Powder-in-tube	Pseudo	Tape & Round 300 m	Yes or no	Low	R&W or W&R	Oxide
Bi2223 ~110 K >50 T	Powder-in-tube	Pseudo/ yes	Tape 1.4-2 km	No	Mid	R&W	Oxide
YBCO ~90 K >50 T	Deposition processing	No	Tape 1 km	No	High	R&W	Oxide
MgB ₂ ~39 K 12-40 T	Powder-in-tube	Yes	Round 1 km	Yes	High	R&W or W&R	Boride

Lecture 3 Justin Schwartz

"YBCO, Bi2212, ... what needs to be improved?"

- Bi2212 (>22 yrs of PIT)
 YBCO (>15 yrs of CCs)
 - Is porosity intrinsic to PIT?
 - Are non-Bi2212 phases avoidable with peritectic melting?
 - Narrow temperature window challenge in large systems
 - Lack of strain tolerance
 - Are 100%-dense, 100%-phase pure filaments the answer?
 - AgX needs a better "X"

- Can we manage the high J_c ?
 - Very different J(x,y)
 - Particularly in light of dropouts
- High J_e cable? What price?
- Can high current cable bend?
- Joining (conductors & cables)

