Common Geometry Primitives (Unified Solids)

Marek Gayer, CERN PH/SFT

1st AlDA Annual Meeting, Hamburg

Motivations for a common solids library

- Optimize and guarantee better long-term maintenance of Root and Gean4 solids libraries
 - A rough estimation indicates that about 70-80% of code investment for the geometry modeler concerns solids, to guarantee the required precision and efficiency in a huge variety of combinations
- Create a single library of high quality implementations
 - Starting from what exists today in Geant4 and Root
 - Adopt a single type for each shape
 - Create a new Multi-Union solid
 - o Aims to replace solid libraries in Geant4 and Root
 - Allowing to reach complete conformance to GDML solids schema
- Optimize, extend and rationalize the testing suite

Strategy and current status

- Stage ONE: Startup (completed)
- ✓ Types and USolid interface are defined
- ✓ Bridge classes defined and implemented for both Geant4 and Root
- ✓ First solid (box) implemented and tested
- ✓ Testing suite defined and deployed
- ✓ Implementation of "Multi-Union" solid completed and performance optimized

-

- Stage TWO: Migration (current)
- Evaluate weaknesses of solids for priority
- Implement migration of each solid according to priority
- ✓ Started implementation of primitives:
 - ✓ First implementation of Orb (simple full sphere) and Trd (simple trapezoid)
 - ✓ Testing suite extended with Data Analysis and Performance tests with direct comparisons with Geant4 and Root implementations

Current resources

Contributions from:

- John Apostolakis (PH/SFT)
- Gabriele Cosmo (PH/SFT)
- Marek Gayer (PH/SFT, Fellow from 1/7/2011)
- Andrei Gheata (ALICE)
- Jean-Marie Guyader (CERN Summer Student until 31/8/2011)
- o Tatiana Nikitina (PH/SFT)
- Current resources sums up to ~1.4 FTE

Testing Suite

- Solid Batch Test
- Optical Escape
- Data analysis and performance (SBT DAP)
- Specialized tests (e.g. quick performance scalability test for multi-union)

Optical Escape Test

- Optical photons are generated inside a solid
- Repeatedly bounce on the reflecting inner surface
- Particles must not escape the solid

Solids Batch Test (SBT)

- Points and vectors test
 - Generating groups of inside, outside and surface points
 - Testing all distance methods with numerous checks
 - E.g. for each inside random point p, SafetyFromInside(p) must be > 0
- Voxels tests
 - Randomly sized voxels with random inside points
- Scriptable application, creates logs
- Extendible C++ framework
 - Allowing easy addition of new tests

Data Analysis and Performance (DAP)

DAP features

- Extension of the SBT framework
- Centred around testing USolids together with existing Geant4 and Root solids
- Values and their differences from different codes can be compared
- Constrain: similar or better performance required for each method
- The core part of USolids testing
- Portable: Windows, Linux, Mac
- Two phases
 - Sampling phase (generation of data sets, implemented as C++ app.)
 - Analysis phase (data post-processing, implemented as MATLAB scripts)

DAP - Sampling phase

- Tests with solids from three libraries: Geant4, Root and USolids
- Tests with pre-calculated, randomly generated sets of points and vectors
- Storing of results data sets to disk
- Measurement of performance
- Support for batch scripting
 - o Detailed configuration of conditions in the tests
 - Invoking several tests sequentially
- Rich debugging possibilities in Visual Studio

DAP - Analysis phase

- Visualization of scalar and vector data sets and shapes
- Visual analysis of differences
- Graphs with comparison of performance and scalability
- Inspection of values and differences of data sets

Visualization of scalar and vector data sets

3D plots allowing to overview data sets

3D visualization of investigated shapes

Support for regions of data, focusing on sub-parts

Visual analysis of differences

Visual analysis of differences in 3D

Graphs with comparison of performance

Visualization of scalability performance for specific solids

Inspection of values and differences of scalar and vector data sets

New Multi-Union solid

Boolean Union solids

- Existing CSG Boolean solids (Root and Geant4) represented as binary trees
 - To solve navigation requests, most of the solids composing a complex one have to be checked
 - Scalability is typically linear => low performance for solids of many parts

[Images source: wikipedia.org]

Boolean Union solid:

is composite of two solids, either primitive or Boolean

Multi-Union solid

- We implemented a new solid as a union of many solids using voxelization techniques to optimize the speed
 - 3D space partition for fast localization of components
 - Aiming for a log(n) scalability
- Useful also for several complex composites made of many solids with regular patterns

1. Create voxel space (2D simplification)

2. Usage of bit masks for storing voxels

Scaling of Multi-Union vs. Boolean solid

Test union solids for scalability measurements

Test union solids for scalability measurements

Test union solids for scalability measurements

The most performance critical methods

Future work

- Systematically analyze and implement remaining solids in the new library
- Give priority to the most critical solids and those where room for improvement can be easily identified

Thank you for your attention.

Do you have any questions?