

The principal idea of ARA

1) Detection of Radio waves, emitted by neutrino induced cascades in ice

2) Achievement of O(100km³) detection volume using widely spaced antenna clusters, which detect "discrete" Cherenkov cones

3) Use timing + polarization information for neutrino reconstruction

2

Why exactly at the South Pole?

Why exactly at the South Pole?

Biggest volume of radio-transparent matter on earth (3 km thick, area virtually unlimited)
 Radio-quiet zone

Detector setup

One station:

- Measurement system:
 - 4 holes, 20 m spacing
 - 16 antennas, 150 MHz 800 MHz
 (8 horizontally polarized., 8 vertically pol.)
- Calibration system:
 - 2 holes, ~40 m distant
 - 4 pulsing antennas (2 h-pol., 2 v-pol.)

Each station is an autonomous detector!

- 37 stations
- 200m below surface
- ~200km² coverage

Detector setup

Station spacing

6

Detector setup

Deployment depth - Ray bending in SP ice

The antennas

Filters - Amplifiers

The DAQ system

The DAQ system

Power - Communication

The ARA collaboration

The ARA collaboration:

AUSTRALIA, BELGIUM, GERMANY, ISRAEL, JAPAN, TAIWAN, UK, USA

Proposal: arXiv:1105.2854v2

Time line:

2010/2011: ARA prototype: "testbed", to measure: attenuation

length, noise, timing precision

2011/2012: deployment: ARA station 1

2012/2013: station 2 - 4 2013/2014: station 5 - 13 2014/2015: station 14 - 25

2015/2016: station 26 – 37, detector finished

Different goals:

Reconstruction

Attenuation length

Pulsers installed with last IceCube strings:

- Depth: 1500m, 2500m
- Taken risk: Upper pulsers saturate the testbed
 →useful for stations at higher distances
- Lower pulsers could already be used for measurement

Expected sensitivity

1) GZK detection threshold: ~5*10¹⁶eV,

- Sensitivity improving by >factor 10 compared to existing experiments,
- 3) Even in worst case expected to see neutrinos.

Future plans – work in progress

Present achievements in the ARA collaboration:

- First results from ARA prototype
- First station deployment in winter 2011/2012

Future plans:

- Data are currently being analyzed to produce first neutrino limit
- Deployment of two more stations in winter 2012/2013
- Start neutrino search!

BACKUP

Measuring the refraction index?

Using deep pulsers in IceCube:

- Depth: 2500m
- Calculating arrival times: direct, reflected wave
- Taking ray bending into account

Detector simulation

Calculation of Volumetric acceptance in km³sr

- Assuming cylinder: r=10km, h=2km
- Neutrinos from below are shielded by the

earth

 \rightarrow 4000 km³sr

Non signal influences

The performance

In real numbers

Model & references $N_{\rm V}$:	ANITA-II,	ARA,
	(2008 flight)	3 years
Baseline cosmogenic models:		
Protheroe & Johnson 1996 [27]	0.6	59
Engel, Seckel, Stanev 2001 [28]	0.33	47
Kotera, Allard, & Olinto 2010 [29]	0.5	59
Strong source evolution models:		
Engel, Seckel, Stanev 2001 [28]	1.0	148
Kalashev et al. 2002 [30]	5.8	146
Barger, Huber, & Marfatia 2006 [32]	3.5	154
Yuksel & Kistler 2007 [33]	1.7	221
Mixed-Iron-Composition:		
Ave et al. 2005 [34]	0.01	6.6
Stanev 2008 [35]	0.0002	1.5
Kotera, Allard, & Olinto 2010 [29] upper	0.08	11.3
Kotera, Allard, & Olinto 2010 [29] lower	0.005	4.1
Models constrained by Fermi cascade bound:		
Ahlers et al. 2010 [36]	0.09	20.7
Waxman-Bahcall (WB) fluxes:		
WB 1999, evolved sources [37]	1.5	76
WB 1999, standard [37]	0.5	27

Event reconstruction

After Fraunhofer interference:

Signal is Gaussian distributed over angle
 Δθ around opening angle of the cone

$$E(\omega, R, \theta) = E(\omega, R, \theta_C) e^{-\ln 2 \left[\frac{\theta - \theta_C}{\Delta \theta}\right]^2}$$

$$\Delta \theta \simeq \begin{cases} 2.7^{\circ} \frac{\nu_0}{\nu} E_0^{-0.03} \text{ for } E_0 < 1 \text{ } PeV \\ 2.7^{\circ} \frac{\nu_0}{\nu} \left[\frac{E_{LPM}}{0.14 E_0 + E_{LPM}}\right]^{0.3} \text{ otherwise} \end{cases}$$

$$E(\omega, R, \theta_C) \propto \frac{E_0}{R}$$

Values to be reconstructed:

- 1) Direction
- Distance to vertex
- 3) Polarization

1), 2): Reconstruction via grid search:

$$\chi^2 = \sum_i \frac{\left[\Delta \, t_i^{\text{obs}} - \Delta \, t_i^{\text{hyp}}(x_{\text{sh}}^{\text{hyp}})\right]^2}{\sigma_t^2}$$

 Δt = time difference between antenna triggers

3): with differently polarized antennas

Reconstruction precision

