QFT and the EWV Standard Model

Much left underneath...

Based on lecture notes written with M.A.Vazquez-Mozo

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012
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Apologies

Never underestimate the pleasure people get
when they listen to something they already know

E. Fermi
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Outline

» Why Quantum Field Theory?

» Quantisation

» Kinematical symmetries

» Global symmetries

» Local symmetries

» Discrete symmetries

» Broken symmetries

» Scale symmetries, renormalisation

p Standard Model symmetries

» Amusing examples throughout time permitting
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Do we really need it?

The Schrodinger equation, plus many body physics constructions are
very successful in atomic, molecular and solid state physics. The
theory of bands, electrical conductivity, atomic bonding, orbitals...
are adequately explained in this scheme

0 i — €A,
iaqj<r17r27"'7rN7t) = (2; ( 2?; ) +€;®; +V(I’z‘)> U(r;, 1)
N
P(I']_,I'z,...,I'N,t) — |\IJ<I']_,I'2,...,I'N,t>|2, /H d3ri P(rJ7t) =1Vt
i=1
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A note on conventions

1
h=c=1, 1., =diag(+1,-1,-1,-1) F = E%r a= -2 e~ .303
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Einstein and Heisenberg complicate our lives

Useful basic formulae. A reminder. Just this
once, we reintroduce h and ¢

2
E
p? = (_) —p? = m22
&
p?
E = +£p?2+m2ct~+t(mé® + =—+..))
2m
A When the uncertainly in momentum is
AxAp > 2 bigger than mc, the uncertainty in energy is
larger than mc?2, hence there is enough
= A energy to produce another particle of the
o A= — Compton wavelength same type. In Relativity mass and energy are
i me interchangeable. Hence we cannot localise a
S 9 particle below its Compton wavelength. If
S mc mv : : )
o E = p = we do, we will not find a single particle, but
E V1—v2/c? V1—v2/c? rather a fairly complicated quantum state
= with no well-defined number of particles.
E Ap > mc AE > mc?
- Particle production by physical processes
§ 1/ h should be a central part of the theory.
g (AZ)min > 5 (&)
<

¢
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Another way to see the same problem is to consider a
particle in a potential barrier in the simplest relativistic
generalisation of the Schrodinger equation, the Klein-Gordon
equation

2 Pr(t,x) = e TP 4 Re

2 2 t,x — Te—iEt-szX’
(ﬁ—v +m>lp(t,X)=0 IPII( )

Yi(2,0) =y (2,0)
Oxypr (1,0) = Oxyr (2,0)

P1=V EZ_m27

p2 =\/(E—V0)2—m2

Klein paradoxes...

—iEt—ipx
)
V(x)
Transmited
—
Reflected
—
Incoming o
—
)

Y

T — 2pi | R PL—P
P1+ P2 P11+ p2
Three cases to consider
1)E—m>V() 2)E—m<VO 3)V0>2m

energy
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Vo—2m < E—m <V

In the third case we have the strange situation that we have transmitted wave with negative kinetic

Tuesday, 16 October, 2012



In the equation that bears his name, Dirac also found the problem with negative energy
states. In his case however he found a rather ingenious way to solve the problem. Since
he was describing electrons, he decided to simply fill all the negative energy states, this
way Pauli’s principle would guarantee stability. His equation also predicted the existence
of anti-particles, although at the beginning he was reluctant to accept it. With the Dirac
sea we have a simple way to understand anti-electrons = positrons (more later)

Energy
Energy

A

photon e particle

\ _________________________________

i h¥

¢ We still have a multi-particle theory after all

7S .
*%* This does not work for bosons...
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** We should give up the wave equation approach

.... Dirac seas

An energetic photon can
make a hole. The absence
of a negative energy state
with negative charge
manifests itself as a particle
of positive energy and
positive charge:

the positron
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Beating a dead horse...

If we still insist against all odds, and decide to violate locality, but to eliminate
once and for all the negative energy states by choosing our free Hamiltonian
as follows:

H = \/—V2 +m?2

Y (0,x) = 8(x)
3
—itA/ —V2 +m? d’k ik-x—itn/k?+m?
Y(t,x) =e ! T 5(x):f(2n)3e ! tme A\l
1 e | e ¢
J kdkelk|X| e—ll‘ k2_|_m2. . .
— a0

P(t,x) = 2J'L'Z|X|

(=

~

OO S” we have violated causality! For any t>0 and any [x],
Y Y Y
this wave function does not vanish!...
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*The world is Quantum
*Particle Wave Duality
*Special Relativity

*Microscopic Causality

Relativistic causality

Microscopic causality, Locality in Special Relativity

imposes important constraints into what are observables.
The light-cone decrees the causal structure of space-time.
Physical measurements should be compatible with it

== LQFT
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From classical to quantum fields

In scattering experiments we observe asymptotic free particles characterised by their energy-momentum charge
and other quantum numbers. Consider just Ep. In the NR-case we describe the one-particle states by kets

carrying a unitary rep. of the rotation group.
pyeA,  plp)=5(p-p’) stp pXpl=1  ZR)p)=|Rp) P'= Jd3p [p) P’ <p|

To deal with multi-particle states it is convenient to introduce creation and annihilation operators, this leads to
the Fock space of states, built out of the vacuum by acting with creation operators:

p) =d'(p)[0), a(p)|0) =0 0|0y = 1
[a(p),a’(p")] = 6(p—p"). [a(p),a(p")] = [a"(p).a"(p")] = 0.
We need relativistic invariance, hence we need to find ways to count states in an invariant way. This is necessary also

when we deal with decay rates and cross sections. We need to count final states in a way consistent with Lorentz
invariance.We can easily construct such an invariant phase space volume:

d4
J (2;; 27)8 (p* —m*) 6(p") f(p) to integrate over p0, we use a nice identity:

~—0(x—x;) S(p*—m*)==—=9 (pO_sz_,_mz) —|—21F6 (po—l—\/p2—|—m2)

xj=zeros of g

d’p 1
J (2751)?3 2E, with Ep = \/m and (2Ep)6(p — p’) are invariant
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...continued

Now proceed by imitation of the NR case, with the non-trivial result that we
have a unitary representation of the Lorentz group

Py = (2m)2 \/2Ey |p) {plp"y = (27)*(2Ep)8(p—p’) Pt — f (f 7 22 1Py p*{p| U (A)|py = |AY p"y=|Ap)
005 = 1
a(P)E(Zn)%«/ZEpa(P) [a(p),a’(p’)] = (27)°(2Ep)d(p—p’), - f dp 1 o ()[0
o' (p) = (27)? \/2Epa’ (p) [a(p),a(p")] = [@"(p),a’(p")] = 0. ERTRA

Let us construct some observable in this theory. It will be an operator depending on space time,
and satisfying some simple conditions:

o % Hermiticity d)(x)T = qb(x)
S . . 2 We have obtained from
z *®* Microcausality [o(x),0(y)] =0, (x—y)" <0 first principles the
3 , o = 5 quantisation of the Klein-
g % Translational invariance e’ “P(x)e e = ¢(x—a) Gordon field. There are
E . . 1 more straightforward
= % Lorentz invariance %(A)T(P(x)%(/‘) = ¢(A™ x) ways, but the procedure
jg . PE 1 shows how to implement
£ %* Linearity ¢ (x) = J > p3 > [f(p,x)a(p) —I—g(p,x)(xT(p)] . the basis principles of the
£ (27)° 2Ep theory, Lorentz
3 invariance, locality and
s 73 { positivity of the
E P(x) = J (2;;3 o [e—iEpt—l—ip-Xa(p) 4 eiEpt—ip-XaT(p)] spectrum

P X

+ve energy -ve energy
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Some important properties

[¢ (t,X), 0t(l)(t,y)] = l(s (X — y) x y _ImJ 276 . 2Ep —zEp(t—t’)—i—ip-(x—xl)

9. ¢(x)] = iA (x—x) - [samaur -

Alr—y) =0 for (x —y)* <0

0

(040" +m*)¢(x)

The construction is free of paradoxes. It satisfies the KG equation
because the +ve and -ve energy plane waves satisfy it. Of course
with a free field we do not go very far...

We should design more powerful techniques leading to similar
properties by for more general theories where interactions can
take place.

There are two general approaches: the canonical-formalism, and the
Feynman path integral. We will briefly introduce the first, just as a
reminder.
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Canonical quantisation

Remember: PHYSICS is where the ACTION is!

Proceed by analogy with ordinary QM

L = %mzxf — V(x)
Xq, Xa & ¢(%,0), ¢(x,0) «
d oL oL e , -9
@oL _ oL S i
dt 0% Ox =
0. 0. £ _ 02 0¢
aag| "m0 = @m0 F =g
H=) pi'-L HEJd3x 220 =1Jd3x[n2+(v¢)2—|—mz]
i ’ Ot 2 '
[¢',p;] = ih [0(2,%),0,9(t,y)] = id(x—y).

Expanding in solutions to the KG equations and performing the canonical quantisation,
we recover the algebra of creation and annihilation operator we had before, but we get a
surprise
13
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Casimir effect

Writing the products of creation and ann. operators in NORMAL ORDERING i,e, annihilation operators to the right, we get
rid of the sum of the zero point energy of the infinite number of oscillators in the field. In infinite space we subtract it, or
simply normal order. When we do not have translational invariance, something interesting happens

=1 [ 40 (o)) + CxEpo0)

2 ) (2@)?
3

Region | Region Il Region Il

E(d)reg = E(d)vac — E(90)vyac
AN, AVATAVAVAVAVAYAVAY

The force per unit area is the derivative of this quantity
with respect to d divided by the area of the plates. The

result is finite and attractive, the Casimir force! Which has W\N\/\/\/V\/\/

been measured (of course for the electromagnetic field)
d

P

2

a- 1
P Casimir — _m ﬁ \ /

Conducting plates

~
o
N
[e)}
1
[Fp)
—
]
e}
[e]
o
Ou
(%]
9]
—
=]
=
19)
Q
—
<
=
o
=]
-
>
(i
)
£
=]
<
Q
N
3]
o
<
=
<
)
=]
3

| 4

Tuesday, 16 October, 2012



Lorentz and Poincare Groups

In trying to systematically construct viable QFTs it is useful to
understand the representations of the Lorentz (and Poincaré) groups.

The Hilbert space of states has to carry a unitary representation of
the Lorentz group, so that quantum amplitudes are consistent with
Unitarity and Relativistic Invariance. The fields themselves however,
transform under finite dimensional representations. They are much
easier to study. Just recall the usual rotation group SU(2). The
Lorentz group, also known as SO(3,1) preserves the Minkowski metric

ds® = dt* — da? — dy® — dz* = Ny dxt dz” uw,v=20,1,2,3

=AY XY nMvA“aAvﬁ = Nap
3

detA = +1 (A" =Y (ad)” =
A 1=1
: - 21: proper, orthochronous transformations with detA = 1,A00 > 1.
O VL improper, orthochronous transformations with detA = —I,AO0 > 1.
§ NV improper, non-orthochronous transformations with detA = —l,AOO < —1.
j - i}i: proper, non—orthochronous transformations with detA =1, AO < —1.
¢ PT
gl Logh gl Lgt gl Zhel
: 1 0 0 0 -1 0 0 0 -1 0 0 0
3 0 -1 0 0 0 1 0 0 0 -1 0 0

0 0 -1 0 0 0 1 0 0 0 -1 0

0 0 0 -1 0 0 0 1 0 0 0 -1

|5
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i, Jj] = igijx,

|Ji, M| = i€ ju M,
[Mi,Mj: == —iSiijk

The representations of each SU(2) are labelled by a single integer or half

Lorentz and Poincare Groups

Rotations and boosts generate Lorentz transformation,
hence six parameter and six generators of infinitesimal
transformations.  The algebra is easy to obtain and
“diagonalise”

1 .
Jki — E(Jk T le)

integer “angular” momentum s=0, 1/2, |, 3/2, ... Under parity (8+5-)
i Representation| Type of field
§ (0,0) Scalar g 5 3 J = Jt4g-
;.§ (3.0) Right-handed spinor 1\:_{ - —M Sy+s_
< J — J7 (S—|-7 S—) — Z J
E (0, %) Left-handed spinor (s1,82) — (s2,s1) j=|sy—s_
£
‘f’; (3,3) Vector
;zg (1,0) Selfdual antisymmetric 2-tensor

O -
|

Anti-selfdual antisymmetric 2-tensor

16
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Weyl spinors

The simplest representations have fundamental physical

importance, they are called Weyl spinors. Clearly they are 0 1
representations of the connected component of SO(3,1), but o1 = ( 1 0 )
not of parity, since parity interchanges the representations 0 —;
= (10
Jh = Lo, J~ =0 for (1,0 L0
l 2 1 1 29 ’ o5 = ( 0 )
1 1
fy — o~ S (ONTiB) O, e s e, Consider for .simplicity this global
- - - symmetry: fermion number
P
U, O Uy . .
ol =(1,%o0 Weyl = lth_,. (0 +t0-V)ug = mlai@uui
u oMu_

g
yL ok —1 4%_»_45 positive helicity, right handed antineutrinos
+ - |k| )
o-k &
u— . K| =—1 ‘_%4; negative helicity, left handed, neutrinos
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Charge conjugation and Majorana masses

We know that under parity, the L,R Weyl spinors are exchanged. Another way to exchange
them is via complex conjugation, later to be related to charge conjugation

i 1

My = e 297207 etk = 1 detM = eqpMa1 Mo 0 1
MR _ e 2 'O'—I—%B-a detMp = 1 detMe,, = €.qM., Mg, €Tt = -1 0

e . Vi = o9} transforms like ¥p

e o= To2002 Yy = o099y transforms like

» We can express any theory V—V_I_eyl lu+ o @Mu+ + — 5 (8abuf_L u[fi + h.C.)

fully in terms of L or R

fermions. €,p 1" ub _ ul u2 o u2 ul

» Charge conjugation and
parity exchange L and R

» A parity invariant theory
requires L,R spinors at the
same time

» We can construct a mass
for pure L spinors if we
ignore fermion number
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»bFermions are

anticommuting

Most general Majorana mass, Takagi factorisation

This
general fermion

is the most

1
5 (Mryeapu™ u™’ +hc), mass matrix!!! It
I.J=1,...Np, M;; = M;; complex lncludgs .CKM, in
fact it is more
mi ... 0 general

m,; are positive square rootsof MM
18
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DIRACOLOGY

A% A%
ity =2n"
Try#~Y = 4nH”
Trotyy®y? = dnty®? —

V5

E u(k,s)e *>

W —mu(k,s) =0
2 v(k,s)e’kx

3

b K+m)v(k,s)=0
<

3 k2 _ m2

Weyl + parity: Dirac

io0yuy =mu_

u
l/t_|_) — i(%Jr (i)u)aIﬂP:m((l)(l))w
U— iGﬂ@Mu_ = mu -

p=y'y’ =] (O 1> LDirac = W(iyuau _m) Y
Piy = .
_iyOyly23 (1 0 > Py =3(1+ys) <g>
) e

Anhont + 4ntbper

Trysy oy yy” = dier

We look for +ve and -ve energy solutions as usual

u(k,s)u(k,s) = 2m, v(k,s)v(k,s) = —2m,
u(k,s)y*u(k,s) = 2k, v(k,s)y"v(k,s) = 2k",
ua (K, s)ig(k,s) = +m)qp va (K, 5)75 (K,5) = (—m) g

I+
NI —
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Quantisation

We repeat the bosonic arguments, except for the fact that we have now anti-commutation relations
between electron and positron creation-annihilation operators

¢’k 1 * NN —iwzt+ik-T > NI iwet—ik-T
Z / 27) 32‘% k,s)b(k,s)e " + v (k,s)d (k,s)e*™F }
{Dat,x), g(t,Y)} 8(X—Y)dap
{b(k,s),b"(k',s")} = (27)° (20K) 8 (k — k') 8y, { Bk
{bllk,5),b(K/ )} = (b (k,5),b' (&', ')} =0. = f [P kb, ) — ) 3 5)
{d(k.5).d" (.5} = (27)’ Q) (k—K ) Zoyd 21

(2
{d'(k,s),d"(k’,s')} =0.

=3 / s 21 webl (k, 8)b(k, 8) + w d‘L(k,s)d(k,s)] - /d3kw~(5(

b
s=+1 k

{d(k,s),d(k’,s")}

Ol

)-

x|

We have a conserved charge and current
P, At =0 0=e|d
The two-point function or Feynman propagator is:
Sap (x1,%2) = COIT | e (1) (x2) |[0)
T 9a(Ps0) | = 006 =) () () — 00" =XV () ().

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012
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Introducing gauge fields

The canonical gauge field is the electromagnetic field. The first one that was understood as a gauge field. For some
time this symmetry sounded like a luxury. In fact the classical theory can be formulated exclusively in terms of the
E,B field that are manifestly gauge invariant. This is not so in the quantum theory, where we need to use the vector
and scalar potentials. There are new, non-local observables. They are responsible for the Bohm-Aharonov effect and
the quantisation of electric charge (if there is a single monopole in the Universe, (Dirac)).

What we have learned is that all fundamental interactions known to us are mediated by suitable generalisations of
the EM field. They are gauge theories. In fact it seems as though Nature abhors global symmetries. It appears that
all the known global symmetries are just low-energy accidents. All symmetries in the UV should be local.

We do not know why this should be so. String Theory is the only theory where this fact finds an explanation.
Unfortunately there is no evidence for it at this moment...
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E&M in Quantum Mechanics

Classical EM
V-E=0
V-B=0 ouF! =t 7= (0.)
0 N0y Foy =0, AM = (@,A)
VXE=—-——B OA
aé’t EZ ;zq;_ﬁ Fuy = auAv — avA;,L
VxB = EE Classical EM in relativistic form

Coupling to QM requires the gauge potentials and a non-trivial transformation of the wave
function, this gives subtle consequences to gauge symmetry

0 1 N
ZEW— [—%(V—zeA) —I—ecp]‘I’

P(1,x) — e 0P (1 x)

Px) = px) T e(tx),  AX) > AlX) +Ve(r.x)
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7 eiegr1 A-dxlpl(O) n eiegr2 A-dxq,z(O)

_ pieln Adx [lpl(O) + oielr A.dxlpz(O)] r
Electron - S
oures > ®

_ _ r
U =exp ie%A-dX
. T _
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Non-local observables

Screen

This is the Aharonov-Bohm effect. The phase factor, and its non-abelian generalisation are
known as “Wilson loops” or holonomies of the gauge field. Note that classically there would
be no effect. The Lorentz force equation only involves E,B hence the electrons would not see
the solenoid at all!!

du*
m— =eF"Vu,
dt

23
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Magnetic monopoles:
Dirac and charge quantisation

V-E=0
V-B=0
. i0 .
VXE——%B E—iB—¢"(E—iB)
0 For angle = 90 E and B get exchanged
VxB=—E g
ot
A
The symmetry extend to matter if we have magnetic sources: O
Dirac string

p—ipm— € (p—ipm),

Consider a magnetic pole:

V-B=gd(x).
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J—ijm— O —ijm)

1 g
" 4x |x|? p— 70
I g 6
Ap = — = tan — A, =Ag =0.
YT anx] T2 6

The Dirac string can be changed by gauge transformations, in doing QM it has to be
unobservable. Then we can do a “A-B” like argument (Dirac did it 20 years earlier). Ve should

not forget the fact that there is a factor of -

es =1 eg=2mn

q182 — q281 = 27tn.
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Electromagnetic Fields and Photons

lgnoring sources, the E&M field is a “free field” E=-Vgp— @_A
ot The electric field is the
1 w Lo oo B =VxA. momentum p and the
LMaxwell = 1 wrk "= 5 (E°—B7) vector potential the

“coordinate” q

OuF™ =0 0= 0u,0"AY =0y (0uA") = 0yt AY

e \

: As usual, we look for plane wave solutions
To be able to invert, we need to fix the gauge:  J,A" =0. P

Residual gauge transformation used to fully
£ (k, A)e—i|k|t+ik-x fix the gauge

k“g‘u(k’)\‘) — O 6#(k7>‘) %eﬂ(kv)‘)—l_k,uX(k)v k=0
k? =k k" = (KY)? —k* =0

Now, as usual we expand the field in oscillator and apply CCR. After fully fixing the gauge there are only two physical
polarisations. Gauge invariance seems more a redundancy rather than a symmetry in the description of the theory

[ak,1),a (k' A" = 27)*(2[k])d(k —k')8; s

3
Au(t,x) =) @ik 1 [g (k,A)a(k,A)e klit+kx
o 4 ) 2r)P 2k LE |

If we keep all four polarisation by partial gauge fixing,
then we get negative probabilities (Gupta-Bleuler, BRST)
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+ e (k,A)* aT(k,A)eilklf—ik'X] .

IAN — =N
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Coupling matter

We imitate the coupling in the Schrodinger equation, this is what used to be called minimal coupling. We make
derivatives covariant with respect to space-time dependent changes of phases in the wave-function

iQIP=[ : (V—ieA)2+e€0]‘I’ D, [eieg(x)tp] = eieg(x)DMw.

2m

P(t,x) — e NP (1 x) B :
D, =0, —ieA,.

The rigid phase rotation invariance of the Dirac Lagrangian for electrons is transformed into local phase rotations, a
physically more satisfactory concept. This defines the coupling of the electron to the E&M field:

1 . in -
Lo = —~Fuy FYY +9(iD—m)y, Loy = —eA Pry.

4
P —> e EW . Ay — Ay +0ue(x).
This is QED, the best tested theory in the history of science, an g8i[fy“,’yy] F,.
m

example is the gyromagnetic ratio of the electron,

e

g/2 = 1.00115965218085(76) ch

A=gu: g, g, =2(1+a,)
a~! = 137.035999070(98) "2mye "V"f) |
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Group Theory reminder

For the SM all group we will need are:
G U(1), SU(2), SU(3) [T%,T% = ifebeTe
Gsy = SU(3) x SU(2) x U(1)
geG g=e< 1" tr(TT%) = Th(R) 6%
detg=1=trT=0 (for SU(2), SU(3) not for U(1) of course)

U(1) is of course the simplest, just phase multiplication, i.e. as in QED

SU(2): angular momentum, isospin, and also weak isospin

- 79 TP = jgobere. 7t = L(pt a2 T3

S 5T = A ET) (7r, 77 1=T"

5; Ta—laa F in Y tra—aa—a—l(Sab a,b=1,2,3

§ — 2 or spin /2 5 9 = 9 , g Ly

00 0 00 —1 010

p J'=loo0 1|, J=|000 |, JF=[|-100 For spin |

:§_ 0-10 100 0 00

§ For SU(3) the generators are the eight Gell-Mann 3x3 traceless hermitean matrices chosen to satisfy:
G 1,

2 tr77=§5 ;a,bzl,...,S

1 SU(3) of color, an exact gauge symmetry, also flavor SU(3), which is global (see later)
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There are very few representations we will need

for color SU(3):

3,

quarks

For flavor SU(3) more needed: mesons,

baryons

3,3, 8, 10, 10, 27. .. ;

1
V6
1

V2

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012

uud)s =

=1 |uud)y, =

(|uud>— |udu>).

w
Q0

antiquarks
gluons

[ATTss: = 3) = [un) @ | 111) = |ul,ul,ut).

(|uud> + |uduy — 2|duu>),

More about SU(3)

A

K ° (498 MeV) | K" (494 MeV)
71~/ (140 MeV) nt° (135 MeV) 7T (140 MeV)
-1 1 (548 MeV) | 11’958 MeV) 1 15

K ~(494 MeV) K ° (498 MeV)
A remarkable fact about the SM and QCD in particular is
the fact that once we write the most general Lagrangian pseudo-scalar meson octet
compatible with color gauge symmetry, flavor appears as
an approximate global symmetry of the problem, although B1S
it was theorised earlier. Q=5+ 5

1
i(lm>+|m>—2lm>) p1) = (qud>s®|ﬂ>A+qud>A®|ﬂ>s),

NG V2
1 1
(I -1um). P> = 5 (luud)s @143+l @] U)s).

28
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Gauge theories and their quantisation

Imagine we have a theory with a global symmetry

v g Y=g L= P

Imitating electromagnetism:
Op = Dyt = (0 +1eAST*) o = (9 +ieAy )y D, — gD,

We can read off the gauge field transformations

1 B B
Ay = —9g0ug L4 gA, g7

1
g~1+e A, —A,+—D,e D e+ ie|A,, €
ie

Dy, Dy| = 1eT*F},,

a a a abc Ab jc
F,,=0,4, — 0,4, —ef"°A A
Fu =TF}, = gF, 97"

Nonabelian gauge fields have self-couplings unlike photons. This is responsible for
confinement, among other things

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012

el
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General Gauge Theory

General gauge theory Lagrangian:

1
¥ = —__F¢ F“va+lw¢q)—|—(D‘u(p)TDMq§ We need to provide the gauge

1%
4 4 group and the matter
representations for bosons and

— w [Ml (q§) + lY5M2(¢)] Y — V(¢) fermions and off we go

Quantising a gauge theory is no joke. There are plenty of subtleties.We give you just a taste

We can define chromoelectric and magnetic fields as in QED

F& = (9014(; — 82148 — Z'efabcAgA,f = E? The canonical variables are
F{;- — EijkBlgp F& — 80A8 — DZAS Aa, E“

1
L=E*9hA" — 5(E2 +B?) - A2 (D -E)“

a : :
A() implements a constraint
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We can read off the Hamiltonian density
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General Gauge Theory

H = / d°x ( 24 Bz) + A (D - E)“ ) We can fix the gauge A_0=0 so that we only

have time-independent gauge
transformations in the Hamiltonian theory,

a b .5 sab but we are missing one of the equations of
[Az' (Xv O)? Ej (Y7 O)] = 7 62] 0 5(X o Y) motion, Gauss’ law that has to be
implemented as a constraint.

Cannot be implemented at the operator level. It generates gauge
transformations

(D-E)* =0

Q.41 = i(D)" U =expli [ doc(x)(D-BY),  UHUT =B

Gauss’ law becomes a condition on the physical states:

Each gauge configuration sits in an orbit and we need choose only
Ul(e)lphvs) = |phvs one element, this is done by “fixing” the gauge for the t-
( )|p Y > |p Y > independent gauge transf.

D - E |phys) =0

WE HAVE 2-DIM G PHYSICAL DEGREES OF FREEDOM
31
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Some remarks

** Gauge symmetry is more a redundant description of the d.o.f.

** Gauss’ law implements gauge invariance under gauge t. connected to the identity.
Consider finite-E configurations

g(x) =™ 5 1 x| — o0
a(x) = 0 x| = o0

There are others, and Gauss’ law cannot impose invariance
g(x):8%° = @G, g(oo)=1 m3(G) = Z the integers
g:8' —U(1), g(x) =™

a2mx) = a(0)+2mxn

3€g<x>—1dg<x> — 2
sl
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1
2472

n L3 a’3x SijkTr [ (g—léyig) (g_lﬁig) (g—laig) ] You cannot comb a sphere

32
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A surprise: CP violation

** Gauge invariance only requires that under non-trivial transformations, a phase is generated. This is a
vacuum angle! In fact it violates CP.

+* It can be measured by looking for an edm of the neutron. So far no result:

** The strong CP problem, axions, invisible axions, axion cosmology, dark matter...

g1 € G/Gy the generator

% (g1)|phys) = ¢’ |phys).

1 4 982 4 ~
S = —ZJd xFy F*Ye— 2= Jd xFy, Fe

ﬁﬁv ) MVGAFG)M F¢ F*¥Ve — 4RE*. B¢

82 4 ~
YM a puva
ey fd xFy F

1
 24x2
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d’x e Tr [(g&-g‘l)(g+ 0ig g+ ﬁkg_l)] -
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Computational tools

o : : :
%* There are two general procedures to obtain computational rules in

QFT: The canonical formalism and the Path Integral formulation.

** You may recall that one used the Interaction Representation, Wick’s
theorem, T-products, Gaussian integrations...

** In the end we get a collection of well-defined rules that allow us to
compute the probability amplitude associates to a given scattering process,
out of which we can evaluate the decay width, differential and total cross
section and many other quantities that can be observed for instance in
collider experiments. The next few pages provide simply a reminder
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Incoming fermion:

Incoming antifermion:

Outgoing fermion:

Outgoing antifermion:

Incoming photon:
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Outgoing photon:

i
) _
— _in“,v
p+ice
— —iey;;a(2n)46(4) (p1+p2+p3).

QED Feynman rules

Integrate over loop momenta

a‘p

(27)*

A minus sign has to be included for every
fermion loop and for every positron line that
goes from the initial to the final state. With
some extra effort we can derive the Feynman
rules for QCD-like theories. They appear in
the next page. The quark and anti-quark
factors are similar to the electron positron
ones, except that we need to include color
quantum numbers. The real difference comes
with the gluon or non-abelian vector bosons
interactions, the are quite involved and
contain a large amount of interesting physics
perturbatively and specially non-
perturbatively.
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Standard Model Feynman rules

0,1 > B,.j = ( — ) 0ij

pomtie) g, Although the rules seem to be those for

. QCD, notice that we could always include in
—iMuv <4 Aa fii :

4,4 \QQQQQQQ V.b = pz_:’L“igab the group theory factors t"a-{ij} chiral

projectors and make the group not simple but

B, semi-simple as in the case of the SM: SU(3)

xSU(2)xU(I). If we work in nice

renormalizable gauges, the only difference is

that we have to include the Feynman rules for

the couplings of the scalar sector. Something

we will do later.

w,a  — —ig}/gallqj

?;{m‘ wa = gf"bc[n’“‘v(p‘f—p‘z’)permutationS]

a a 1

—ig2 [fabefcde (nuanvk _ nuknvcr)
—
+ Pel‘mutatiOHS] With this simple trick the hard part, which is

u,a v.b the coupling of the W,Z, and photons can be
read simply from the rules in the LHS
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One example: Thomson Scattering

We work in the NR approximation for

y(k 8)—|—€ (p) ) }/(k )_|_e (p,,S’) simplicity but keeping exp.lici.tly the

dependence on the photon polarisations. We

can guess that the answer has to be a pure
. \2— +K+m
— Gepup’ ) () P (s

number times the classical electron radius

(p+k)?—m2
2 P +m,
+ (ie)*u(p’,s")¢(k) , 2¢ (k") *u(p,s)
(p—K)*—
pzzmgzplz |p|7|k|7|p/|7|k’| K me ¢5=—5¢—|—2(a-b)1
2= 0= k2 (p+k)*> —m?> ~2m, K|, (p—k)? —m> ~ —2m,|K’|

K—m)u(k,s) =0.
ulk,s)y*u(k,s) = 2k"
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ISy = iy + (2m)*6 <Z pi— 2, pj> LM f

final initial

| M|

do =
4E1E2|V1 —V2|

n
(2m)* 6™ (Pl +p2—
j=

Square the amplitude, sum over final electron polarisations, and sum
over the initial ones. We will consider unpolarised incoming photons

Thomson Scattering, continued

P1

E, E>
= 4|Eyp) — E1p2| = 4<E2|P1| +E1|p2|)

= 4/ (p1- p2)? — mimi.

Feot = 4E\Ex |V —Vo| = 4EE

1

o (K, s)ig (k,s) = (+m)qp,

and study how the outgoing photons can gain some degree of 1
polarisation Sl
do 3 -

S 4o N » So = orfe() (k)
; = idlingP = () |ek)-e'c)ys| AL 8w
: dQ  64m’m> 4d7tm,
S T I Y (A
g O = = —7 = ek,a)-e =—|0;——= ) ¢€; E;
" 6amz 34 2 2\~ g ) e
2 e a=1,2
Ir .
= |1 -k @)

even when the incoming ones are not polarised

We want to monitor the polarisation of the outgoing photons
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Thomson and CMB Polarisation

k

Yk
How we can get polarised light An isotropic incoming distribution of A incoming light with a quadrupole
light does not generate polarisation  perturbation generates net polarisation

Stokes parameters:

s o)~ f dQ(k) f(k. )| |e(k.a)- oo — [e(k,a)- & _1 ) £ (k. ) (k&) z] ~~~~~~~~~~~
2 | ] [ a9 fli.m)[(k-20)? - (k-2
(o) |
o 1 By,
8 U~ )] fdﬂ(k)f(k,u)[le(k,a)-éf |2—|e(k,a)-é\|2] = —EJdQ(k)f(k,ﬁ)[(k-é/.)z—(k-é\‘ )2]
Y] a=12
: e
£ v~ fd@(li)f(ﬁ,u)[w(k,a)-é+|2—|e<k,a)-é_\2] =fdg(ﬁ)f(ﬁ,u)[|ﬁ-é+|2—|f<-é|2] =0 % o
O a=1,2
%
_I: A\ _ 1 VaN °« A

] ei__ﬁ(e?if%)
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Quadrupole distribution

Finally we reach the punch line. No circular polarisation is generated by Thomson
scattering, and we can write the combination:

Q(h) £iU(h) ~ _JdQ(Q’,CP’)f(@ @'10) sin” 0’ ¢ 27

5
Y;52(0',¢") =3 S _~_in? 6'eT2®

One of the obvious generators of quadrupole anisotropies are gravitational waves.
Inflation predicts primordial gravitation waves, the measurement of polarisation in
the CMB offers an amazing window to obtain this information. The simple
computation of Thomson scattering has unexpected consequences
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Quantum mechanical realisation of Symmetries (Wigner’s theorem). In a QM
theory physical symmetries are maps among states that preserve probability
amplitudes (their modulus). They can be unitary or anti-unitary

o) — |a’),

{a|B) = Ko'|B5].

MOTION you can show that:
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B)— 1B

(W a|B) =<
(W a|uB) =

For continuous symmetries we have Noether’s celebrated theorem:
infinitesimal transformations, AND WITHOUT USING THE EQUATIONS OF

5. = 0 K"

then there is a conserved current in the theory

B)
)7

If under

Noether’s Theorem

unitary

anti-unitary T-reversal, CPT

S[¢] = / 2z £(6,0,0)

4]
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In formulas:
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0 = stxfo(t,x)

0p =il¢,0|.

Noether’s Theorem

o) o () o

dQ
dt

With a conserved charge that generates the symmetry:

= | dPrao® (. x) = J P (1.x) =0,

Space-time translations -- Energy-Momentum
Lorentz transformation-- Angular momentum and CM motion
Phase rotation -- abelian and non-abelian charges
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Useful examples

Massive Dirac fermions:

Y — ZJIIJ] U € U(N) Nthe number of fermions
L =iy ;0 —my yp; |
U=exp(ia’T?), (T =1
=T Y, Ouj* =0 "= f & xy] Ty,

0% H]=0. %(a)=e*?

When U is the identity, we have fermion number, or charge

In the m=0 we have more symmetry: CHIRAL SYMMETRY, rotate L,R fermions independently

L = i PYr; + Wjr P Ur;

Yr.r > UL RVL R UN)L xU(N)rg
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Wignher-Weyl mode

Imagine we have a symmetry that is a symmetry of the ground state
[0°.H]=0. #(a)|0)=]0)  Q%0) =0

Then the states of the theory fall into multiplets of the symmetry group

%(a)d)i%(a)_l = Uij(oc)gbj‘
i) = ¢:]0)
U (a)|iy = U ()% ()~ U (@)]0) = Uij(a)9;10) = Uij(a)] j

The spectrum of the theory is classified in terms of multiplets of the symmetry group. This is the case of the
Hydrogen atom. The Hamiltonian is rotational invariant, the ground state is an s-wave state, hence all excited states
fall into degenerate representations of the rotation group: Is, 2s, 2p, 2s, 3p, 3d,... In QM (finite number of d.o.f.) this
is always the case (tunnelling, band theory in solids)

Yo
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Nambu-Goldstone mode

Sometimes also called hidden symmetry. The symmetry is
spontaneously broken by the vacuum

(0%, H]=0. Q0y#0.

Consider a collection of N scalar fields with a global symmetry group G

1 ] ' ] i a/ra\i ..j
L = Eaufplﬁufpl—v(fpl) o' =e*(T )j‘PJ

8 o T |

; H[n' ¢'] = Jd3x [En’n” + Ve Vo' + V(fp’)]

g 1

§ 7/[§0i] = Jd3x [qu)i Vo' + V(mi)] The minima satisfy

E | | oV

o : V(") =0. V=0 ~— =0
(¢ (g =0. Ve T

S T = {H*, K} (H*)' g’y =0 (K*)Kg!y #0.
3 unbroken broken
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Nambu-Goldstone mode

The masses are given by the second derivatives of the potential (assuming canonical normalisation)

W 0V
T 09097 (g
Invariance
a OV 0?V oV
oV = T¢ =0 Vi) 4 (T =
(%) é’cp ( ) Cp aqpiaqpk(T )Jcp + @q)i(T )i =0 For every broken
generator there is a
L AN /i massless scalar field
M (T*)@’) = 0. M (K Ke’) =0
2 Simplest example:
2 The argument works at the full 1
E quantum level L = — M¢ ot ¢
> 2
E The fields acquiring a VEV need not ¢ — ¢ +c
< be elementary
S
‘f’; Its own NG-boson
=

el
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Phonons are NG bosons

— 9

Dy
= A liquid is translationally invariant
P The crystal after solidification has discrete translational symmetry ,
o
S The low energy excitation of the lattice contain acoustic phonons
P Their dispersion relation is as for NG bosons
o
% -x'u Q wa
" They propagate at the speed of sound K
S
v
; w(k) = 2w|sin(ka/2)|

&

>
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Order parameters

¢ The notion of symmetry breaking is intimately connected with the theory of phase
transitions in CMP

** It is quite frequent that in going from one phase to another the symmetry of the
ground state (vacuum) changes

¢ In real physical systems this is what we see with magnetic domains in magnetic
material below the Curie point

** In going from one phase to the other, some parameters change in a noticeable way.
These are the order parameters.

+%* In liquid-solid transition it is the density

+3* In magnetic materials it is the magnetisation

+* In the Ginsburg-Landau theory of superconductivity, the Cooper pairs acquire a VEV.
This breaks U(1) inside the superconductor and thus explains among other things the
Meissner effect. The Cooper pairs are pairs of electrons bound by the lattice vibrations.

In ordinary superconductors their size is several hundred Angstroms.

% The order parameters need not be elementary fields...
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Misconceptions, vacuum degeneracy

By abuse of language we often hear, or say that in theories with SSB there is vacuum degeneracy. This is fact is not the
case, at least in LQFT. In understanding this we will also understand why there are massless states in theories with SSB. N
is the volume in the example. The Heisenberg model of magnetism. H is rotational invariant above the critical

temperature, and magnetised below it

TTTTTT>T NN

By making the transitions very slowly we
can manage to make this configuration to
have as small an energy as we wish.
Hence we have a continuum spectrum
above zero. This is the sign of a massless
particle, the NG-boson

o
o
o~
[e)}
1
[Fp)
o
(O]
0
(¢}
]
OU
(%]
[
~
=)
=)
19)
Q
-
«
=
[¢]
>
-
>
(T8
(0]
S
3
[+]
Q
N
[}
o
[
=
<
2
=)
-

O

o

49

Tuesday, 16 October, 2012



No Goldstone bosons in finite volume

This simple example contains the ingredients of the general case. Consider a theory in a
box of side L and PBCs, the plane waves solutions are easy to write down

1 1 .
o = xX) = — x) +igr(x)] = ——= [a + h(x)] 7™,
(61, P2) ¢0) = = [p1 (@) +iga(x)] = [+ o)
1 A 2
S Calkagy 2 _ 2
L= 8,0 040 -7 (2 a)
2y 2 2
=3ﬂc*a“c—k(lc|2—-“2-) = 5 96040+ -, 0,0"0 =0 0, 0" =0
1 o o
1 ; . 2 — —i Kr+ikx i i kr—ikx
_ = ilk|r+ikex _“r w(t, X) = @o + mot + Z a(k)e +a (K)e .
t,X) = , k= AU
(01(( X) ﬁe L n o 2V|k| [ ]
) [o(t,x0), 6t 3)) = i8(x; —X) = & + = 3 &)
o k£0
“ [0, 2o] = —. = — ((po + iv%no) Cat=L ((p[) - iv%m,), Hi= ~72 + > kla' ®a(k).
3 4 V2 V2 2 K#0
o
§ [a,a]=V"3 Q= /d3x8()¢ =Vm = 4 (a - aé). e “Pp(x)e"? = p(x) + &,
%, a,d _ l\/i
% ISZV%
w “ — —
% " _Leviat-a —
&) ~ 20y = vi*V T Y. (0l§) = e 4 (0]0).
<

>
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http://carlossicoli.free.fr/A/Alvarez-Gaume_L., Vazquez-Mozo_M.A.-An_Invitation_to_Quantum_Field_Theory_-Springer(2011).pdf
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In HEP they provide the only observed NG bosons
The order parameter is not an elementary field
To find other NG bosons in the SM we have to go to the Higgs

sector, and there they are “eaten” to provide masses for the W and Z
vector bosons

In QCD there are no fundamental scalars. Consider just two flavors u,d. We have chiral symmetry

} LR gy e [ YER G:§U(2)L><SU(2)RJ><U(1)B><U(1)A
2 dr r T\ dLR ~~

; SU(2)v

¢, f=ud a=1,23

%‘ . / - 3 / . / - 3 it®o?® f'zr
P @) = Mg dl i gl = Ny e
:

v

b These are the pions.

< This is an IR property of QCD, not accessible to Pert.Th.

3 Low-E pion theorems, chiral Lagrangians....
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The BEH mechanism

Notice we say the mechanism, not necessary the particle! In gauge
theories one cannot just add a mass for the gauge bosons. This
badly destroys the gauge symmetry and the theory is inconsistent.

BEH showed that in gauge theories with SSB the NG bosons are
“eaten” by the gauge bosons to become massive but preserving the
basic properties of the gauge symmetry. Ex. Abelian Higgs model

1 y A 2 :
L =~ FuF" +(Du9)' (D" 9) — 7 (970 — 1) p —> W, Ay — Ay +0ua(x)
_ o L 1 .
(@) = ue'® —s yetiow) p(x) = [,u — %G(x)] ') Take the unitary gauge

1 I !
L = = FuF" + EuPA A + 50,000 — Shpto? 2 _2e2y?
m, =2e"u

\<

A
— Auo’ — ZG4 —I—ez,uAMA“G + ezAMA“az.

The simplest example is the GL and BCS theory of superconductivity, in this case the
“Higgs” particle is composite, it is an object of charge made of two bound electrons
that get a “VEV” (Cooper pairs) that get a VEV in the superconducting state. The
photon is massive in this state. This explains among other things the Meissner effect.
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Gauge couplings: colour

There are three gauge groups in the theory, the colour group SU(3) and the electroweak group SU
(2)xU(1) of weak isospin and hypercharge. Y and T3 mix to generate electric charge and the photon

SU3). xSU2)xU(l)y — SU3) xU(1)g

QCD by itself is a perfect theory in many ways

6

! . |

oo = —7F P+ 3 00 (ip —mp)ol. ol —U(g)0f,  with geSUG)
f=1

Isospin as an approximate symmetry:

_ (ip —mutma 0 u my—my = (10 u
g:(u,d)< 02 ilp_mu;md)<d> 5 (”’d)<0—1><d>

Once the electroweak sector is included the story of the masses is far more complicated (see
later)
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The Standard Model

The physics that led to the SM is the combined results of many people over more
than a hundred years, some of the them were awarded the Nobel Prize in Physics.
They appear in the pages that follow. We can think of the beginning of the SM
Odyssey with the discovery of the electron by Thomson in 1897.

Try putting names to the faces as well as the associated contributions.

This is an amusing exercise in HEP history
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Who is who in the Standard Model

If you do it more carefully (Werner Riegler), what you find is:

87 Nobel Prices related to the Development of the Standard Model

31 for Standard Model Experiments

13 for Standard Model Instrumentation and Experiments
3 for Standard Model Instrumentation

21 for Standard Model Theory

9 for Quantum Mechanics Theory

9 for Quantum Mechanics Experiments

1 for Relativity

See at the end of the lectures, the list prepared by Werner last year.
Unfortunately this year we could not add Englert, Higgs,...

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012
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Fermion quantum numbers

The fundamental fermions come in three families with the same
quantum numbers with respect to the gauge group

Leptons
i (generation) 1 2 3 7> Y
g 4, L G @) ()]
¢ JL “eJr ) —2
| B - - In principle one could add
(R ‘R Mg TR 0 -1 sterile neutrinos, right
handed neutrinos who
o are singlets under the
A Quarks gauge group. They would
B i (generation) ! 2 3 r r generate Dirac masses for
g ) . t 1 the known neutrinos
o @] 0] 6 ]
&g“ U;? UR CR IR 0 %
=
: Di d s b 0 1
C?,, R R R R 3
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The EW group has four generators

Gauge couplings: EWV sector

+ + 33 0=T"+Y.
W, =W"'T"+W T W= T B, =8B,Y.
R o [0.T*] = +T*, [0,7°]=[Q,Y] =0
Ay = By cos b, —I—Wﬁ sin O,,,,
Zy = —By sinHw—l—WﬁcosQw

= 0y —igW, Ty —igW, Tg —igW, T — ig'BuYx.

e =gsin6,, = g'cos 6,

D, = 0, —igW, Ty —igW, Tg" —iA,(gsin 6,,T7 + g’ cos 6, Yz)

— iZ,(gTR cos 0, — g'Yrsin6,,).

Z‘uv = aMZv - a\/ZM
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cos 6,

1 _
ZuveyH vy, (—5 + sin® 6W> ZlryH e,

2cos 0,

1 I 1 ig )
ggauge = _EW‘;VW MY — Z MVZMV — Z MVFMV + 5 COS QWW;WV zm
. 2
ie _ g o e
- S E = 7[(W;W+“)(WM W) — (WEWH) ]

gmatter = Z (ifijj + lzlj?ﬂ 61{?
i=1

+iQ'PQ/ +iULPUI + il_){gpz){;)

3

Wik, = 0uWiE — oW Tie(WEA, — WA, ) Tigeoso, Wiz, — Wiz,
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Higgs couplings

The Higgs couplings responsible for the masses of the leptons and the current
algebra masses of the quarks are:

+ ~ 0% A 2
H = (Zo ) = io’H* = ( g+> Litiges = (D) D'H-V(HH")  v(EHH') =7 (HH-u?)
Y(H) = 5
¢ : 0) i 0) 5 i
i i .
"%ﬁgul)(awa - = Z (Ci(j)L H€IJ€ +CJ('i)*€RHTLJ)
i,j=1 The most general Lagrangian compatible with the
; gauge symmetry and up to dimension 4, so that the
gégl)(awa _ Z (Cigq)GZHD£+C§?)*5}HTQj) theory is renormalisable. One H gets its VEV. the
e masses are generated from the Yukawa couplings.
3 Use unitary gauge. The gauge fields get masses from
-y (Cvi(]fl) QHU] +5§?)*U;e il QJ). the kinetic term
ij=1

o
o
N
[e)}
1
[Fp)
o
(O]
0
(¢}
s}
OU
(%]
[
~
=)
=)
19)
Q
-
«
=
[¢]
>
-
>
L
(0]
S
3
v}
Q
N
[}
o
[
=
<
2
=)
-

Tuesday, 16 October, 2012



CMS

for the CMS COLLABORATION

J. Incandela

iggs Search

4

The Status of the H

4" 2012

Ju u'y
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o(pp = H+X) [pb]
o %

—

—
©

—_
O
N

250 300
M, [GeV]

100 150 200

= /s=8TeV: 25-30% higher ¢ than \/s=7TeV at low m,,

= All production modes to be exploited

= ggVBF VH ttH
= Latter 3 have smaller cross sections but better S/B in many cases

Courtesy J. Incancella

U TUTOTT ™~

t T fusion
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W
| N

= Very
(1%):

July 4" 2012 The Status of the Higgs Search J. Incandela for the CMS COLLABORATION
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5 decay modes exploited
* High mass: WW, ZZ
= Low mass: bb, tt, WW, ZZ, vy

*= Low mass region is very rich but
also very challenging:
main decay modes (bb, tt) are hard

to identify in the huge background

ood mass resolution

H-2>vyy

and

H>ZZ> 4l

Branching ratios

{1

LHC HIGGS XS WG 2010

M, [GeV]

300 500 1000

Courtesy J. Incancella
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Alvarez

Luis

Branching ratios

Higgs decays at m«=125GeV
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CKM matrix

€R dr UR
og/ﬂrr(lg)ss — _<EL7HL7%L) M(g) UR +h.c. o%n(lqags — _(EL,EL,EL) M(q) SR | — (ﬁlnzLafL) M(Q) CR +h.c.
TR br IR
(La) — ,c69) (@) — @)
M = ney; M;j" = uG;”
me 0 0 mg 0 0 S m, 0 0
v OOy — | 0 m, 0 VL(Q)TM(‘])VIg‘J) | 0m 0 VOTRH@OVD = [ 0 me 0
0O O me O O my, 0O O nmy

In the quark sector going from to mass eigenstates leaves a matrix of phases in the charged
currents, the CKM matrix. Not for neutral currents GIM

= @iy | s | = @.e sy @ty @ (o v =y
br b
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Discrete symmetries

*%* In the classical world, we have invariance uncer PC,T. All we
had was E&M and gravity.

¢ In QFT they are not guaranteed in fact PC,T, CP are broken
symmetries. The only one that survives so far is CPT. It has
several important consequences. CP violation is fundamental in
the generation of matter. In the SM we need at least three
families

+** The existence of antiparticles with the same mass and decay
rate

+* The connection between spin and statistics

T
**T-reversal and CPT are the only ones implemented by anti- qgo,Po —> o, —Po
unitary operators l T
t t
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Anomalous Symmetries

Sometimes symmetries of the classical Lagrangian do not survive quantisation. There are three examples we
can cite:

**Global chiral symmetries, responsible for the electromagnetic decay of the neutral pion

**Gauged chiral symmetries. This happens when left and right multiplets have different representations of the
gauge group. At the one-loop level we find a non-trivial conditions among the quantum numbers necessary to
maintain gauge invariance. It suffices to satisfy this condition at the one-loop level

+¥*Scale invariance. The behaviour of the theory under scale transformation. Rather how physics depends on
scales is far more interesting that just dimensional analysis.

- W

S . : : a b c

5 O [ @7 )7 O] 0= | @, X £ tr [ti,i{ri,iari,i}]

; I 7

% - - symmetric

S

K N4 N_ Anomaly cancellation condition, it has
g a b c a b c . . g . . .

g Ztr |:’Ui’+{’5i,+7'['i’+}:| — Z tr |:Tj7_{’v.,_”vj7_}:| = 0. hlghly non-trivial implications for the
- i=1 =1 family structure

S

v

:
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quarks:

leptons:

left right
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R,—1
e 1 ’
L~}
L
(1’2)—% Anomalies cancel generation by generation.

Anomalous Symmetries

In fact the

hypercharge assighments is completely determined if we also

g oens (1) v () o (2)

() - ()6

impose the traceless-ness of any U(1)

SU(3)°
SU(3)>SU(2)
SU(3)*U(1)
SU3)SU(2)°
SU(3)SU(2) U(1)

SUB)U(1)?

SU2)?
SU2)U(1)

SUR)U(1)?

u(1)?
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Deriving quantum numbers

SU(N). x SU(2) x U(1) S.M. anomaly

(N,2) @ (1,2)F

qr L . .
<« Single family
(N1, @ (N, D, @ (1,1)7

Anomaly conditions, we will normalize e_R=-1 as in the SM

U1)SU((2)? 2Nqr +21, =0

U(1)SU(N)?  2qr — (urp+dgr) =0

U(1)> 2Ngq; +213 —Nus —Nds —eh =0
U(1) 2qr,+2l, — N(ug+dgr) —egr =0

A simple computation now yields a (nearly) unique solution:

1 1

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012

QLZQ— ZL:—§ GR:—l
N +1
ur +drp = 1/N “ROT O TON
1 1 N —1
L

For N=3 we obtain the hypercharges of the SM!!
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Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012
>
[\e]
S

¢

A

Scale invariance, renormalisation

Renormalisation deals with the scale dependence of the the physics even
if the original theory is scale invariant.

Virtual phenomena can get more complicated or simplify as we move to
larger and shorter distances

X — Axt, o(x) — A 91 ),

1
L= 300" -0, L — 27 Lg]

H-Z g 2, g %2, g

In relativistic QFT we seem to get only fixed points, no limit cycles nor
strange attractors
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Scale invariance, fractals

Why not in QFT? It would be rather
remarkable if in a field theory we found
strange attractors at high or low energies.
Lorentz or Poincaré invariance play an
important role in determining the possible
limit structures. Only fixed points?
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Fixed points beta functions

i Wi e
- + Nap (Vey®ue) {W [1 + 12722 log (/7)]} <Vu}”3uu)

e(1)* = e(A)fure [1 * %“’g (X_z >]

dg _ €
B(g) = uzs. Blelon = 152
u ; At one loop
& (u, 2
Pl8)=—Tem \ 3N —3M )
B(e)
IR free (QED)
dg

- } N B'(g)lg >0 o, = Bla—g)+.

UV free (QCD)

5/(9)|g*<0 ; ,u£=6’(g—g*)+...
B(g*) =0. wT o, g

_ There is a dynamically generated scale
| responsible for most of the mass of the nucleons

Luis Alvarez-Gaume Fukuoka Lectures October 15-19 2012

<P2> = AcngD- Aqcp > My, my
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Farewell

» QFT is a vast and complex subject

» SMis a big achievement

» It summarises our knowledge of the fundamental laws of Nature
» But also our ignorance

» Many puzzles and unanswered questions remain

» We may be at the end of a cycle. Perhaps the symmetry paradigm has
been exhausted.

» Naturalness, a red herring? Higgs or not Higgs

» Gravity into the picture finally? Than I( )/OU

» Hopefully we are entering a golden decade
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