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QFT and the EW Standard Model

Much left underneath...
Based on lecture notes written with M.A. Vázquez-Mozo

Tuesday, 16 October, 2012
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Never underestimate the pleasure people get 
when they listen to something they already know

E. Fermi

Apologies

Tuesday, 16 October, 2012
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Outline

‣Why Quantum Field Theory?

‣Quantisation

‣Kinematical symmetries

‣Global symmetries

‣Local symmetries

‣Discrete symmetries

‣Broken symmetries

‣Scale symmetries, renormalisation

‣Standard Model symmetries

‣Amusing examples throughout time permitting

All this in four lectures...

Tuesday, 16 October, 2012
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Do we really need it?

i
∂

∂t
Ψ(r1, r2, ..., rN, t) =

�
�

i

(pi − eiAi)

2mi
+ eiΦi + V (ri)

�
Ψ(rj , t)

P (r1, r2, ..., rN, t) = |Ψ(r1, r2, ..., rN, t)|2,
� N�

i=1

d3ri P (rj, t) = 1 ∀ t

The Schrödinger equation, plus many body physics constructions are 
very successful in atomic, molecular and solid state physics.  The 
theory of bands, electrical conductivity, atomic bonding, orbitals...  
are adequately explained in this scheme

A note on  conventions

� = c = 1, ηµν = diag(+1,−1,−1,−1) F =
1

4π

qq�

r3
r α =

e2

4π�c e ≈ .303

Tuesday, 16 October, 2012
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Einstein and Heisenberg complicate our lives

Useful basic formulae.  A reminder.  Just this 
once, we reintroduce h and c

p2 =

�
E

c

�2

− p2 = m2c2

E = ±
�

p2c2 +m2c4 ≈ ±(mc2 +
p2

2m
+ . . .)

∆x∆ p ≥ �
2

λ =
h

mc
Compton wavelength

E =
mc2�

1− v2/c2
p =

mv�
1− v2/c2

∆ p ≥ mc ∆E ≥ mc2

(∆x)min ≥ 1

2

�
�
mc

�

When the uncertainly in momentum is 
bigger than mc, the uncertainty in energy is 
larger than mc^2, hence there is enough 
energy to produce another particle of the 
same type.  In Relativity mass and energy are 
interchangeable.  Hence we cannot localise a 
particle below its Compton wavelength.  If 
we do, we will not find a single particle, but 
rather a fairly complicated quantum state 
with no well-defined number of particles.

Particle production by physical processes 
should be a central part of the theory.

Tuesday, 16 October, 2012
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1.2 The Klein Paradox 5
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V0Incoming

Reflected

Transmited

Fig. 1.3 Illustration of the Klein paradox.

where the mass-shell condition implies that

p1 E2 m2, p2 E V0 2 m2. (1.14)

The constants R and T are computed by matching the two solutions across the
boundary x 0. The conditions !I t,0 !II t,0 and x!I t,0 x!II t,0 im-
ply that

T
2p1

p1 p2
, R

p1 p2
p1 p2

. (1.15)

At first sight one would expect a behavior similar to the one encountered in the
nonrelativistic case. If the kinetic energy is bigger than V0 both a transmitted and
reflected wave are expected, whereas when the kinetic energy is smaller than V0
one only expect to find a reflected wave, the transmitted wave being exponentially
damped within a distance of a Compton wavelength inside the barrier.
Indeed this is what happens if E m V0. In this case both p1 and p2 are real

and we have a partly reflected, and a partly transmitted wave. In the same way, if
E m V0 and E m V0 2m then p2 is imaginary and there is total reflection.
However, in the case when V0 2m and the energy is in the range V0 2m

E m V0 a completely different situation arises. In this case one finds that both
p1 and p2 are real and therefore the incoming wave function is partially reflected
and partially transmitted across the barrier. This is a shocking result, since it implies
that there is a nonvanishing probability of finding the particle at any point across the
barrier with negative kinetic energy (E m V0 0)! This weird result is known as
Klein’s paradox.
As with the negative energy states, the Klein paradox results from our insistence

in giving a single-particle interpretation to the relativistic wave function. Actually,
a multiparticle analysis of the paradox [3] shows that what happens when E m
V0 2m is that the reflection of the incoming particle by the barrier is accompanied

6

Klein paradoxes...

Another way to see the same problem is to consider a 
particle in a potential barrier in the simplest relativistic 
generalisation of the Schrödinger equation, the Klein-Gordon 
equation
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Chapter 1
Why Do We Need Quantum Field Theory After
All?

Quantum field theory is the basic tool to understand the physics of the elementary
constituents of matter (see [1] for an incomplete list of textbooks in the subject).
It is both a very powerful and a very precise framework: using it we can describe
physical processes in a range of energies going from the few millions electrovolts
typical of nuclear physics to the thousands of billions of the Large Hadron Collider
(LHC). And all this with astonishing precision.
In this first chapter our aim is to explain why quantum mechanics is not enough

and how quantum field theory is forced upon us by special relativity. We will review
a number of riddles that appear in the attempt to extend the results of quantum
mechanics to systems where relativistic effects cannot be ignored. Their resolution
requires giving up the quantum mechanical description of a single particle to allow
for the creation and annihilation particles. As we will see, quantum fields provide
the right tool to handle this.

1.1 Relativistic Quantum Mechanics

In spite of the impressive success of Quantum Mechanics in describing atomic
physics, it was immediately clear after its formulation that its relativistic exten-
sion was not free of difficulties. These problems were clear already to Schrödinger,
whose first guess for a wave equation of a free relativistic particle was the Klein-
Gordon equation

2

t2
!2 m2 " t,x 0. (1.1)

This equation follows directly from the relativistic “mass-shell” identity E2 p2
m2 using the correspondence principle

1
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problem by pointing out that now the particles are fermions and therefore they are
subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be oc-
cupied by at most one particle, so the states with E m can be made stable if we
assume that all the negative energy states are filled.

Energy

m

−m

particle

antiparticle (hole)

photon

Dirac Sea

Fig. 1.2 Creation of a particle-antiparticle pair in the Dirac see picture

If Dirac’s idea restores the stability of the spectrum by introducing a stable vac-
uum where all negative energy states are occupied, the so-called Dirac sea, it also
leads directly to the conclusion that a single-particle interpretation of the Dirac equa-
tion is not possible. Indeed, a photon with enough energy (E 2m) can excite one
of the electrons filling the negative energy states, leaving behind a “hole” in the
Dirac see (see Fig. 1.2). This hole behaves as a particle with equal mass and oppo-
site charge that is interpreted as a positron, so there is no escape to the conclusion
that interactions will produce pairs particle-antiparticle out of the vacuum.

1.2 The Klein Paradox

In spite of the success of the heuristic interpretation of negative energy states in the
Dirac equation this is not the end of the story. In 1929 Oskar Klein stumbled into
an apparent paradox when trying to describe the scattering of a relativistic electron
by a square potential using Dirac’s wave equation [2] (for pedagogical reviews see
[3, 4]). In order to capture the essence of the problemwithout entering into unneces-
sary complication we will study Klein’s paradox in the context of the Klein-Gordon
equation.
Let us consider a square potential with height V0 0 of the type showed in Fig.

1.3. A solution to the wave equation in regions I and II is given by

!I t,x e iEt ip1x Re iEt ip1x,

!II t,x Te iEt p2x, (1.13)
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However, in the case when V0 2m and the energy is in the range V0 2m
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in giving a single-particle interpretation to the relativistic wave function. Actually,
a multiparticle analysis of the paradox [3] shows that what happens when E m
V0 2m is that the reflection of the incoming particle by the barrier is accompanied
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Three cases to consider

1)E −m > V0 2)E −m < V0 3)V0 > 2m V0 − 2m < E −m < V0

In the third case we have the strange situation that we have transmitted wave with negative kinetic 
energy 

E −m− V0

Tuesday, 16 October, 2012
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.... Dirac seas
In the equation that bears his name, Dirac also found the problem with negative energy 
states.  In his case however he found a rather ingenious way to solve the problem.  Since 
he was describing electrons, he decided to simply fill all the negative energy states, this 
way Pauli’s principle would guarantee stability.  His equation also predicted the existence 
of anti-particles, although at the beginning he was reluctant to accept it.  With the Dirac 
sea we have a simple way to understand anti-electrons = positrons (more later)

1.1 Relativistic Quantum Mechanics 3

Energy

m

0

−m

Fig. 1.1 Spectrum of the Klein-Gordon wave equation

Therefore the energy spectrum of the theory satisfies E m and is unbounded from
below (see Fig. 1.1). Although in a case of a free theory the absence of a ground state
is not necessarily a fatal problem, once the theory is coupled to the electromagnetic
field this is the source of all kinds of disasters, since nothing can prevent the decay
of any state by emission of electromagnetic radiation.
The problem of the instability of the “first-quantized” relativistic wave equation

can be heuristically tackled in the case of spin- 12 particles, described by the Dirac
equation

i!
t

" # m $ t,x 0, (1.10)

where " and ! are 4 4 matrices

" i
0 i% i
i% i 0 , !

0 1
1 0 , (1.11)

with % i the Pauli matrices, and the wave function $ t,x has four components. The
wave equation (1.10) can be thought of as a kind of “square root” of the Klein-
Gordon equation (1.1), since the latter can be obtained as

i!
t

" # m i!
t

" # m $ t,x

2

t2
#2 m2 $ t,x . (1.12)

An analysis of Eq. (1.10) along the lines of the one presented above for the Klein-
Gordon equation leads again to the existence of negative energy states and a spec-
trum unbounded from below as in Fig. 1.1. Dirac, however, solved the instability

4 1 Why Do We Need Quantum Field Theory After All?

problem by pointing out that now the particles are fermions and therefore they are
subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be oc-
cupied by at most one particle, so the states with E m can be made stable if we
assume that all the negative energy states are filled.
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If Dirac’s idea restores the stability of the spectrum by introducing a stable vac-
uum where all negative energy states are occupied, the so-called Dirac sea, it also
leads directly to the conclusion that a single-particle interpretation of the Dirac equa-
tion is not possible. Indeed, a photon with enough energy (E 2m) can excite one
of the electrons filling the negative energy states, leaving behind a “hole” in the
Dirac see (see Fig. 1.2). This hole behaves as a particle with equal mass and oppo-
site charge that is interpreted as a positron, so there is no escape to the conclusion
that interactions will produce pairs particle-antiparticle out of the vacuum.

1.2 The Klein Paradox

In spite of the success of the heuristic interpretation of negative energy states in the
Dirac equation this is not the end of the story. In 1929 Oskar Klein stumbled into
an apparent paradox when trying to describe the scattering of a relativistic electron
by a square potential using Dirac’s wave equation [2] (for pedagogical reviews see
[3, 4]). In order to capture the essence of the problemwithout entering into unneces-
sary complication we will study Klein’s paradox in the context of the Klein-Gordon
equation.
Let us consider a square potential with height V0 0 of the type showed in Fig.

1.3. A solution to the wave equation in regions I and II is given by

!I t,x e iEt ip1x Re iEt ip1x,

!II t,x Te iEt p2x, (1.13)

An energetic photon can 
make a hole.  The absence 
of a negative energy state 
w i th nega t i ve cha r ge 
manifests itself as a particle 
of positive energy and 
positive charge: 

            the positron
❖  We still have a multi-particle theory after all

❖  This does not work for bosons… 

❖  We should give up the wave equation approach

Tuesday, 16 October, 2012
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Beating a dead horse...

If we still insist against all odds, and decide to violate locality, but to eliminate 
once and for all the negative energy states by choosing our free Hamiltonian 
as follows:

1.3 From Wave Functions to Quantum Fields 7

R1 R2

x

t

Fig. 1.4 Two regions R1, R2 that are causally disconnected.

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must
depend on the space-time position xµ . Unlike the case in non-relativistic quantum
mechanics, here the position x is not an observable, but just a label, similarly to the
case of time in ordinary quantum mechanics. Causality is then imposed microscop-
ically by requiring

O x ,O y 0, if x y 2 0. (1.18)

A smeared operator OR over a space-time region R can then be defined as

OR d4xO x fR x (1.19)

where fR x is the characteristic function associated with R,

fR x 1 x R
0 x R . (1.20)

Eq. (1.17) follows now from the microcausality condition (1.18).
Therefore, relativistic invariance forces the introduction of quantum fields. It is

only when we insist in keeping a single-particle interpretation that we crash against
causality violations. To illustrate the point, let us consider a single particle wave
function ! t,x that initially is localized in the position x 0

! 0,x " x . (1.21)

Evolving this wave function using the Hamiltonian H #2 m2 we find that
the wave function can be written as
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k

mi

C

Fig. 1.5 Complex contour C for the computation of the integral in Eq. (1.23).

! t,x e it "2 m2# x d3k
2$ 3 e

ik x it k2 m2 . (1.22)

Integrating over the angular variables, the wave function can be recast in the form

! t,x
1

2$2 x
kdkeik x e it k2 m2 . (1.23)

The resulting integral can be evaluated using the complex integration contour C
shown in Fig. 1.5. The result is that, for any t 0, one finds that ! t,x 0 for any
x. If we insist in interpreting the wave function ! t,x as the probability density of
finding the particle at the location x in the time t we find that the probability leaks
out of the light cone, thus violating causality.
The bottomline of the analysis of this chapter is clear: a fully relativistic quantum

theory must give up the idea of describing the system in terms of the wave function
of a single particle. As a matter of fact, relativistic quantum mechanics is, at best, a
narrow boundary area. It might be a useful tool to compute the first relativistic cor-
rections in certain quantum systems. However it runs into serious trouble as soon
as one tries to use it for a full-fledged relativistic description of the quantum phe-
nomena. Next we will see how quantum field theory provides the right framework
to handle this type of problems.
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of a single particle. As a matter of fact, relativistic quantum mechanics is, at best, a
narrow boundary area. It might be a useful tool to compute the first relativistic cor-
rections in certain quantum systems. However it runs into serious trouble as soon
as one tries to use it for a full-fledged relativistic description of the quantum phe-
nomena. Next we will see how quantum field theory provides the right framework
to handle this type of problems.
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Relativistic causality

1.3 From Wave Functions to Quantum Fields 7
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Fig. 1.4 Two regions R1, R2 that are causally disconnected.

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must
depend on the space-time position xµ . Unlike the case in non-relativistic quantum
mechanics, here the position x is not an observable, but just a label, similarly to the
case of time in ordinary quantum mechanics. Causality is then imposed microscop-
ically by requiring

O x ,O y 0, if x y 2 0. (1.18)

A smeared operator OR over a space-time region R can then be defined as

OR d4xO x fR x (1.19)

where fR x is the characteristic function associated with R,

fR x 1 x R
0 x R . (1.20)

Eq. (1.17) follows now from the microcausality condition (1.18).
Therefore, relativistic invariance forces the introduction of quantum fields. It is

only when we insist in keeping a single-particle interpretation that we crash against
causality violations. To illustrate the point, let us consider a single particle wave
function ! t,x that initially is localized in the position x 0

! 0,x " x . (1.21)

Evolving this wave function using the Hamiltonian H #2 m2 we find that
the wave function can be written as
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Microscopic causality,  Locality in Special Relativity
imposes important constraints into what are observables.  
The light-cone decrees the causal structure of space-time.  
Physical measurements should be compatible with it

•The world is Quantum

•Particle Wave Duality

•Special Relativity

•Microscopic Causality

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

10

From classical to quantum fields
In scattering experiments we observe asymptotic free particles characterised by their energy-momentum charge 
and other quantum numbers.  Consider just E,p.  In the NR-case we describe the one-particle states by kets 
carrying a unitary rep. of the rotation group.

Chapter 2
From Classical to Quantum Fields

We have learned how the consistency of quantum mechanics with special relativity
forces us to abandon the single-particle interpretation of the wave function. Instead
we have to consider quantum fields whose elementary excitations are associated
with particle states, as we will see below. In this chapter we study the basics of field
quantization using both the canonical formalism and the path integral method.

2.1 Particles and Quantum Fields

In any scattering experiment, the only information available to us is the set of quan-
tum number associated with the set of free particles in the initial and final states.
Ignoring for the moment other quantum numbers like spin and flavor, one-particle
states are labelled by the three-momentum p and span the single-particle Hilbert
spaceH1

p H1, p p ! p p . (2.1)

The states p form a basis ofH1 and therefore satisfy the closure relation

d3p p p 1. (2.2)

The group of spatial rotations acts unitarily on the states p . This means that for
every rotation R SO 3 there is a unitary operatorU R such that

U R p Rp (2.3)

where Rp represents the action of the rotation on the vector k, Rp i Ri jk j . Using
a spectral decomposition, the momentum operator Pi can be written as

11

Chapter 2
From Classical to Quantum Fields

We have learned how the consistency of quantum mechanics with special relativity
forces us to abandon the single-particle interpretation of the wave function. Instead
we have to consider quantum fields whose elementary excitations are associated
with particle states, as we will see below. In this chapter we study the basics of field
quantization using both the canonical formalism and the path integral method.

2.1 Particles and Quantum Fields

In any scattering experiment, the only information available to us is the set of quan-
tum number associated with the set of free particles in the initial and final states.
Ignoring for the moment other quantum numbers like spin and flavor, one-particle
states are labelled by the three-momentum p and span the single-particle Hilbert
spaceH1

p H1, p p ! p p . (2.1)

The states p form a basis ofH1 and therefore satisfy the closure relation

d3p p p 1. (2.2)

The group of spatial rotations acts unitarily on the states p . This means that for
every rotation R SO 3 there is a unitary operatorU R such that

U R p Rp (2.3)

where Rp represents the action of the rotation on the vector k, Rp i Ri jk j . Using
a spectral decomposition, the momentum operator Pi can be written as

11

Chapter 2
From Classical to Quantum Fields

We have learned how the consistency of quantum mechanics with special relativity
forces us to abandon the single-particle interpretation of the wave function. Instead
we have to consider quantum fields whose elementary excitations are associated
with particle states, as we will see below. In this chapter we study the basics of field
quantization using both the canonical formalism and the path integral method.

2.1 Particles and Quantum Fields

In any scattering experiment, the only information available to us is the set of quan-
tum number associated with the set of free particles in the initial and final states.
Ignoring for the moment other quantum numbers like spin and flavor, one-particle
states are labelled by the three-momentum p and span the single-particle Hilbert
spaceH1

p H1, p p ! p p . (2.1)

The states p form a basis ofH1 and therefore satisfy the closure relation

d3p p p 1. (2.2)

The group of spatial rotations acts unitarily on the states p . This means that for
every rotation R SO 3 there is a unitary operatorU R such that

U R p Rp (2.3)

where Rp represents the action of the rotation on the vector k, Rp i Ri jk j . Using
a spectral decomposition, the momentum operator Pi can be written as

11

12 2 From Classical to Quantum Fields

Pi d3p p pi p (2.4)

With the help of Eq. (2.3) it is straightforward to check that the momentum operator
transforms as a vector under rotations:

U R 1PiU R d3p R 1p pi R 1p Ri jP j, (2.5)

where we have used that the integration measure is invariant under SO 3 .
Since, as we argued above, we are forced to deal with multiparticle states, it

is convenient to introduce creation-annihilation operators associated with a single-
particle state of momentum p

a p ,a p ! p p , a p ,a p a p ,a p 0, (2.6)

such that the state p is created out of the Fock space vacuum 0 (normalized such
that 0 0 1) by the action of a creation operator a p

p a p 0 , a p 0 0 for all p. (2.7)

Covariance under spatial rotations is all we need if we are interested in a nonrela-
tivistic theory. However in a relativistic quantum field theory we must preservemore
that SO 3 , actually we need the expressions to be covariant under the full Poincaré
group ISO 1,3 consisting in spatial rotations, boosts and space-time translations.
Therefore, in order to build the Fock space of the theory we need two key ingredi-
ents: first an invariant normalization for the states, since we want a normalized state
in one reference frame to be normalized in any other inertial frame. And secondly
a relativistic invariant integration measure in momentum space, so the spectral de-
composition of operators is covariant under the full Poincaré group.
Let us begin with the invariant measure. Given an invariant function f p of the

four-momentum pµ of a particle of mass m with positive energy p0 0, there is an
integration measure which is invariant under proper Lorentz transformations1

d4p
2" 4 2" ! p2 m2 # p0 f p , (2.8)

where # x represent the Heaviside step function. The integration over p0 can be
easily done using the ! -function identity

! g x
xi zeros of g

1
g xi

! x xi , (2.9)

valid for any function g x with simple zeroes. In our case this implies that

1 The factors of 2" are introduced for later convenience.

To deal with multi-particle states it is convenient to introduce creation and annihilation operators, this leads to 
the Fock space of states, built out of the vacuum by acting with creation operators:
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We need relativistic invariance, hence we need to find ways to count states in an invariant way.  This is necessary also 
when we deal with decay rates and cross sections.  We need to count final states in a way consistent with Lorentz 
invariance. We can easily construct such an invariant phase space volume:
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to integrate over p0, we use a nice identity:
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! p2 m2
1
2p0

! p0 p2 m2
1
2p0

! p0 p2 m2 . (2.10)

The second term in the previous expression correspond to states with negative en-
ergy and therefore does not contribute to the integral. We can write then

d4p
2" 4 2" ! p2 m2 # p0 f p

d3p
2" 3

1
2 p2 m2

f p2 m2,p . (2.11)

Hence, the relativistic invariant measure is given by

d3p
2" 3

1
2Ep

with Ep p2 m2. (2.12)

Once we have an invariant measure the next step is to find an invariant normaliza-
tion for the states. We work with a basis p of eigenstates of the four-momentum
operator Pµ

P0 p Ep p , Pi p p i p . (2.13)

Since the states p are eigenstates of the three-momentum operator we can express
them in terms of the non-relativistic states p that we introduced in Eq. (2.1)

p N p p (2.14)

with N p a normalization to be determined now. The states p form a complete
basis, so they should satisfy the Lorentz invariant closure relation

d4p
2" 4 2" ! p2 m2 # p0 p p 1. (2.15)

At the same time, this closure relation can be expressed, using Eq. (2.14), in terms
of the nonrelativistic basis of states p as

d4p
2" 4 2" ! p2 m2 # p0 p p

d3p
2" 3

1
2Ep

N p 2 p p . (2.16)

Using nowEq. (2.4) for the nonrelativistic states, expression (2.15) follows provided

N p 2 2" 3 2Ep . (2.17)

Taking the overall phase in Eq. (2.14) so that N p is real, we define the Lorentz
invariant states p as

2.1 Particles and Quantum Fields 13

! p2 m2
1
2p0

! p0 p2 m2
1
2p0

! p0 p2 m2 . (2.10)

The second term in the previous expression correspond to states with negative en-
ergy and therefore does not contribute to the integral. We can write then

d4p
2" 4 2" ! p2 m2 # p0 f p

d3p
2" 3

1
2 p2 m2

f p2 m2,p . (2.11)

Hence, the relativistic invariant measure is given by

d3p
2" 3

1
2Ep

with Ep p2 m2. (2.12)

Once we have an invariant measure the next step is to find an invariant normaliza-
tion for the states. We work with a basis p of eigenstates of the four-momentum
operator Pµ

P0 p Ep p , Pi p p i p . (2.13)

Since the states p are eigenstates of the three-momentum operator we can express
them in terms of the non-relativistic states p that we introduced in Eq. (2.1)

p N p p (2.14)

with N p a normalization to be determined now. The states p form a complete
basis, so they should satisfy the Lorentz invariant closure relation

d4p
2" 4 2" ! p2 m2 # p0 p p 1. (2.15)

At the same time, this closure relation can be expressed, using Eq. (2.14), in terms
of the nonrelativistic basis of states p as

d4p
2" 4 2" ! p2 m2 # p0 p p

d3p
2" 3

1
2Ep

N p 2 p p . (2.16)

Using nowEq. (2.4) for the nonrelativistic states, expression (2.15) follows provided

N p 2 2" 3 2Ep . (2.17)

Taking the overall phase in Eq. (2.14) so that N p is real, we define the Lorentz
invariant states p as

with

2.1 Particles and Quantum Fields 13

! p2 m2
1
2p0

! p0 p2 m2
1
2p0

! p0 p2 m2 . (2.10)

The second term in the previous expression correspond to states with negative en-
ergy and therefore does not contribute to the integral. We can write then

d4p
2" 4 2" ! p2 m2 # p0 f p

d3p
2" 3

1
2 p2 m2

f p2 m2,p . (2.11)

Hence, the relativistic invariant measure is given by

d3p
2" 3

1
2Ep

with Ep p2 m2. (2.12)

Once we have an invariant measure the next step is to find an invariant normaliza-
tion for the states. We work with a basis p of eigenstates of the four-momentum
operator Pµ

P0 p Ep p , Pi p p i p . (2.13)

Since the states p are eigenstates of the three-momentum operator we can express
them in terms of the non-relativistic states p that we introduced in Eq. (2.1)

p N p p (2.14)

with N p a normalization to be determined now. The states p form a complete
basis, so they should satisfy the Lorentz invariant closure relation

d4p
2" 4 2" ! p2 m2 # p0 p p 1. (2.15)

At the same time, this closure relation can be expressed, using Eq. (2.14), in terms
of the nonrelativistic basis of states p as

d4p
2" 4 2" ! p2 m2 # p0 p p

d3p
2" 3

1
2Ep

N p 2 p p . (2.16)

Using nowEq. (2.4) for the nonrelativistic states, expression (2.15) follows provided

N p 2 2" 3 2Ep . (2.17)

Taking the overall phase in Eq. (2.14) so that N p is real, we define the Lorentz
invariant states p as

and

14 2 From Classical to Quantum Fields

p 2!
3
2 2Ep p , (2.18)

and given the normalization of p we find the normalization of the relativistic states
to be

p p 2! 3 2Ep " p p . (2.19)

It might not be obvious at first sight, but the previous normalization is Lorentz
invariant. Although it is not difficult to show this in general, here we consider the
simpler case of 1+1 dimensions where the two components p0, p1 of the on-shell
momentum can be parametrized in terms of a single hyperbolic angle # as

p0 mcosh# , p1 msinh# . (2.20)

Now, the combination 2Ep" p1 p1 can be written as

2Ep" p1 p1 2mcosh# " msinh# msinh# 2" # # , (2.21)

where we have made use of the property (2.9) of the " -function. Lorentz trans-
formations in 1 1 dimensions are labelled by a parameter $ R and act on the
momentum by shifting the hyperbolic angle # # $ . However, Eq. (2.21) is in-
variant under a common shift of # and # , so the whole expression is obviously
invariant under Lorentz transformations.
To summarize what we did so far, we have succeed in constructing a Lorentz

covariant basis of states for the one-particle Hilbert spaceH1. The generators of the
Poincaré group act on the states p of the basis as

Pµ p pµ p ,

U % p % µ
& p& % p with % SO 1,3 . (2.22)

This transformation is compatible with the Lorentz invariance of the normalization
that we have checked above

p p p U % 1U % p % p % p . (2.23)

OnH1 the operator Pµ admits the following spectral representation

Pµ
d3p
2! 3

1
2Ep

p pµ p . (2.24)

Using (2.23) and the fact that the measure is invariant under Lorentz transformation,
one can easily show that Pµ transform covariantly under SO 1,3

U % 1PµU %
d3p
2! 3

1
2Ep

% 1p pµ % 1p % µ
&P& . (2.25)

are invariant 
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...continued
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simpler case of 1+1 dimensions where the two components p0, p1 of the on-shell
momentum can be parametrized in terms of a single hyperbolic angle # as

p0 mcosh# , p1 msinh# . (2.20)

Now, the combination 2Ep" p1 p1 can be written as

2Ep" p1 p1 2mcosh# " msinh# msinh# 2" # # , (2.21)

where we have made use of the property (2.9) of the " -function. Lorentz trans-
formations in 1 1 dimensions are labelled by a parameter $ R and act on the
momentum by shifting the hyperbolic angle # # $ . However, Eq. (2.21) is in-
variant under a common shift of # and # , so the whole expression is obviously
invariant under Lorentz transformations.
To summarize what we did so far, we have succeed in constructing a Lorentz

covariant basis of states for the one-particle Hilbert spaceH1. The generators of the
Poincaré group act on the states p of the basis as

Pµ p pµ p ,

U % p % µ
& p& % p with % SO 1,3 . (2.22)

This transformation is compatible with the Lorentz invariance of the normalization
that we have checked above

p p p U % 1U % p % p % p . (2.23)

OnH1 the operator Pµ admits the following spectral representation

Pµ
d3p
2! 3

1
2Ep

p pµ p . (2.24)

Using (2.23) and the fact that the measure is invariant under Lorentz transformation,
one can easily show that Pµ transform covariantly under SO 1,3

U % 1PµU %
d3p
2! 3

1
2Ep

% 1p pµ % 1p % µ
&P& . (2.25)

14 2 From Classical to Quantum Fields

p 2!
3
2 2Ep p , (2.18)

and given the normalization of p we find the normalization of the relativistic states
to be

p p 2! 3 2Ep " p p . (2.19)

It might not be obvious at first sight, but the previous normalization is Lorentz
invariant. Although it is not difficult to show this in general, here we consider the
simpler case of 1+1 dimensions where the two components p0, p1 of the on-shell
momentum can be parametrized in terms of a single hyperbolic angle # as

p0 mcosh# , p1 msinh# . (2.20)

Now, the combination 2Ep" p1 p1 can be written as

2Ep" p1 p1 2mcosh# " msinh# msinh# 2" # # , (2.21)

where we have made use of the property (2.9) of the " -function. Lorentz trans-
formations in 1 1 dimensions are labelled by a parameter $ R and act on the
momentum by shifting the hyperbolic angle # # $ . However, Eq. (2.21) is in-
variant under a common shift of # and # , so the whole expression is obviously
invariant under Lorentz transformations.
To summarize what we did so far, we have succeed in constructing a Lorentz

covariant basis of states for the one-particle Hilbert spaceH1. The generators of the
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Now proceed by imitation of the NR case, with the non-trivial result that we 
have a unitary representation of the Lorentz group
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2.1 Particles and Quantum Fields 15

A set of covariant creation-annihilation operators can be constructed now in
terms of the operators a p , a p introduced above

! p 2"
3
2 2Epa p , ! p 2"

3
2 2Epa p (2.26)

with the Lorentz invariant commutation relations

! p ,! p 2" 3 2Ep # p p ,

! p ,! p ! p ,! p 0. (2.27)

Particle states are created by acting with any number of creation operators ! p on
the Poincaré invariant vacuum state 0 satisfying

0 0 1,
Pµ 0 0, (2.28)

U $ 0 0 , for all $ SO 1,3 .

A general one-particle state f H1 can be then written as

f
d3p
2" 3

1
2Ep

f p ! p 0 , (2.29)

while a n-particle state f H n
1 can be expressed as

f
n

i 1

d3pi
2" 3

1
2%pi

f p1, . . . ,pn ! p1 . . .! pn 0 . (2.30)

That these states are Lorentz invariant can be checked by noticing that from the
definition of the creation-annihilation operators follows the transformation

U $ ! p U $ ! $p (2.31)

and the corresponding one for creation operators.
As we have argued above, the very fact that measurements have to be localized

implies the necessity of introducing quantum fields. Here we will consider the sim-
plest case of a scalar quantum field & x satisfying the following properties:

- Hermiticity.

& x & x . (2.32)

- Microcausality. Since measurements cannot interfere with each other when per-
formed in causally disconnected points of space-time, the commutator of two
fields have to vanish outside the relative ligth-cone

& x ,& y 0, x y 2 0. (2.33)
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Let us construct some observable in this theory.  It will be an operator depending on space time, 
and satisfying some simple conditions:

❖  Hermiticity

❖  Microcausality

❖  Translational invariance

❖  Lorentz invariance

❖  Linearity
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- Translation invariance.

eiP a! x e iP a ! x a . (2.34)

- Lorentz invariance.

U " ! x U " ! " 1x . (2.35)

- Linearity. To simplify matters we will also assume that ! x is linear in the
creation-annihilation operators # p , # p

! x
d3p
2$ 3

1
2Ep

f p,x # p g p,x # p . (2.36)

Since ! x should be hermitian we are forced to take g p,x f p,x . More-
over, ! x satisfies the equations of motion of a free scalar field, µ

µ m2 ! x
0, only if f p,x is a complete basis of solutions of the Klein-Gordon equation.
These considerations leads to the expansion

! x
d3p
2$ 3

1
2Ep

e iEpt ip x# p eiEpt ip x# p . (2.37)

Given the expansion of the scalar field in terms of the creation-annihilation oper-
ators it can be checked that ! x and t! x satisfy the equal-time canonical com-
mutation relations

! t,x , t! t,y i% x y . (2.38)

The general (non-equal time) commutator

! x ,! x i& x x (2.39)

can also be computed using Eq. (2.37). The function & x y is given by

i& x y Im
d3p
2$ 3

1
2Ep

e iEp t t ip x x

d4p
2$ 4 2$ % p2 m2 ' p0 e ip x x , (2.40)

where ' x is defined as

' x ( x ( x 1 x 0
1 x 0 . (2.41)

Using the last expression in Eq. (2.40) it is easy to show that i& x x vanishes
when x and x are space-like separated. Indeed, if x x 2 0 there is always
a reference frame in which both events are simultaneous, and since i& x x is
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+ve energy -ve energy+ve energy

We have obtained from 
fi r s t p r i n c i p l e s t h e 
quantisation of the Klein-
Gordon field.  There are 
more straightforward 
ways, but the procedure 
shows how to implement 
the basis principles of the 
t h e o r y , L o r e n t z 
invariance, locality and 
p o s i t i v i t y o f t h e 
spectrum
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Some important properties
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over, ! x satisfies the equations of motion of a free scalar field, µ

µ m2 ! x
0, only if f p,x is a complete basis of solutions of the Klein-Gordon equation.
These considerations leads to the expansion

! x
d3p
2$ 3

1
2Ep

e iEpt ip x# p eiEpt ip x# p . (2.37)

Given the expansion of the scalar field in terms of the creation-annihilation oper-
ators it can be checked that ! x and t! x satisfy the equal-time canonical com-
mutation relations

! t,x , t! t,y i% x y . (2.38)

The general (non-equal time) commutator

! x ,! x i& x x (2.39)

can also be computed using Eq. (2.37). The function & x y is given by

i& x y Im
d3p
2$ 3

1
2Ep

e iEp t t ip x x

d4p
2$ 4 2$ % p2 m2 ' p0 e ip x x , (2.40)

where ' x is defined as

' x ( x ( x 1 x 0
1 x 0 . (2.41)

Using the last expression in Eq. (2.40) it is easy to show that i& x x vanishes
when x and x are space-like separated. Indeed, if x x 2 0 there is always
a reference frame in which both events are simultaneous, and since i& x x is
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In the Hamiltonian formalism the physical system is described not in terms of the
generalized coordinates and their time derivatives but in terms of the generalized
coordinates and their canonically conjugated momenta. This is achieved by a Leg-
endre transformation after which the dynamics of the system is determined by the
Hamiltonian function

H d3x !
"
t

L
1
2

d3x !2 #" 2 m2 . (2.46)

The equations of motion can be written in terms of the Poisson brackets. Given
two functional A " ,! , B " ,! of the canonical variables

A " ,! d3xA " ,! , B " ,! d3xB " ,! , (2.47)

their Poisson bracket is defined by

A,B PB d3x
$A
$"

$B
$!

$A
$!

$B
$"

. (2.48)

Here $
$" denotes the functional derivative defined as

$A
$"

A
" µ

A

µ"
. (2.49)

In particular, the canonically conjugated fields satisfy the following equal time Pois-
son brackets

" t,x ," t,x PB ! t,x ,! t,x PB 0,
" t,x ,! t,x PB $ x x . (2.50)

In the case of the scalar field, a general solution of the classical field equations
(2.44) can be obtained by working with the Fourier transform

µ
µ m2 " x 0 p2 m2 " p 0, (2.51)

whose general solution can be written as2

" x
d4p
2! 4 2! $ p2 m2 % p0 & p e ip x & p eip x

d3p
2! 3

1
2Ep

& p e iEpt p x & p eiEpt p x (2.52)

2 In momentum space, the general solution to this equation is " p f p $ p2 m2 , with f p
a completely general function of pµ . The solution in position space is obtained by inverse Fourier
transform.

The construction is free of paradoxes.  It satisfies the KG equation 
because the +ve and -ve energy plane waves satisfy it.  Of course 
with a free field we do not go very far…

We should design more powerful techniques leading to similar 
properties by for more general theories where interactions can 
take place.  

There are two general approaches: the canonical-formalism, and the 
Feynman path integral.  We will briefly introduce the first, just as a 
reminder.

∆(x− y) = 0 for (x− y)2 < 0
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Canonical quantisation

Remember: PHYSICS is where the ACTION is! 

S[x, ẋ] =

�
dtL(x, ẋ)

L =
�

i

1

2
miẋ

2
i − V (x)

2.2 Canonical Quantization 17

Lorentz invariant we can compute it in this reference frame. In this case t t and
the exponential in the second line of (2.40) does not depend on p0. Therefore, the
integration over p0 gives

dp0! p0 " p2 m2

dp0
1
2Ep

! p0 " p0 Ep
1
2Ep

! p0 " p0 Ep (2.42)

1
2Ep

1
2Ep

0.

So we have concluded that i# x x 0 if x x 2 0, as required by micro-
causality. Notice that the situation is completely different when x x 2 0, since
in this case the exponential depends on p0 and the integration over this component
of the momentum does not vanish.

2.2 Canonical Quantization

So far we have contented ourselves with requiring a number of properties to the
quantum scalar field: existence of asymptotic states, locality, microcausality and
relativistic invariance. With these only ingredients we have managed to go quite far.
The previous results can also be obtained using canonical quantization. One starts
with a classical free scalar field theory in Hamiltonian formalism and obtains the
quantum theory by replacing Poisson brackets by commutators. Since this quanti-
zation procedure is based on the use of the canonical formalism, which gives time a
privileged role, it is important to check at the end of the calculation that the resulting
quantum theory is Lorentz invariant. In the following we will briefly overview the
canonical quantization of the Klein-Gordon scalar field.
The starting point is the action functional S $ x which, in the case of a free real

scalar field of mass m is given by

S $ x d4xL $ , µ$ d4x
1
2 µ$ µ$

m2

2
$2 . (2.43)

The equations of motion are obtained, as usual, from the Euler-Lagrange equations

µ
L

µ$
L
$

0 µ
µ m2 $ 0. (2.44)

The momentum canonically conjugated to the field $ x is given by

% x
L

0$
$
t
. (2.45)

Proceed by analogy with ordinary QM

xa, ẋa ←→ φ(x, 0), φ̇(x, 0)
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d

dt

∂L

∂ẋ
=

∂L

∂x
p =

∂L

∂ẋ
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i − L

18 2 From Classical to Quantum Fields

In the Hamiltonian formalism the physical system is described not in terms of the
generalized coordinates and their time derivatives but in terms of the generalized
coordinates and their canonically conjugated momenta. This is achieved by a Leg-
endre transformation after which the dynamics of the system is determined by the
Hamiltonian function

H d3x !
"
t

L
1
2

d3x !2 #" 2 m2 . (2.46)

The equations of motion can be written in terms of the Poisson brackets. Given
two functional A " ,! , B " ,! of the canonical variables

A " ,! d3xA " ,! , B " ,! d3xB " ,! , (2.47)

their Poisson bracket is defined by

A,B PB d3x
$A
$"

$B
$!

$A
$!

$B
$"

. (2.48)

Here $
$" denotes the functional derivative defined as

$A
$"

A
" µ

A

µ"
. (2.49)

In particular, the canonically conjugated fields satisfy the following equal time Pois-
son brackets

" t,x ," t,x PB ! t,x ,! t,x PB 0,
" t,x ,! t,x PB $ x x . (2.50)

In the case of the scalar field, a general solution of the classical field equations
(2.44) can be obtained by working with the Fourier transform

µ
µ m2 " x 0 p2 m2 " p 0, (2.51)

whose general solution can be written as2

" x
d4p
2! 4 2! $ p2 m2 % p0 & p e ip x & p eip x

d3p
2! 3

1
2Ep

& p e iEpt p x & p eiEpt p x (2.52)

2 In momentum space, the general solution to this equation is " p f p $ p2 m2 , with f p
a completely general function of pµ . The solution in position space is obtained by inverse Fourier
transform.

[qi, pj ] = i�

16 2 From Classical to Quantum Fields

- Translation invariance.

eiP a! x e iP a ! x a . (2.34)

- Lorentz invariance.

U " ! x U " ! " 1x . (2.35)

- Linearity. To simplify matters we will also assume that ! x is linear in the
creation-annihilation operators # p , # p

! x
d3p
2$ 3

1
2Ep

f p,x # p g p,x # p . (2.36)

Since ! x should be hermitian we are forced to take g p,x f p,x . More-
over, ! x satisfies the equations of motion of a free scalar field, µ

µ m2 ! x
0, only if f p,x is a complete basis of solutions of the Klein-Gordon equation.
These considerations leads to the expansion

! x
d3p
2$ 3

1
2Ep

e iEpt ip x# p eiEpt ip x# p . (2.37)

Given the expansion of the scalar field in terms of the creation-annihilation oper-
ators it can be checked that ! x and t! x satisfy the equal-time canonical com-
mutation relations

! t,x , t! t,y i% x y . (2.38)

The general (non-equal time) commutator

! x ,! x i& x x (2.39)

can also be computed using Eq. (2.37). The function & x y is given by

i& x y Im
d3p
2$ 3

1
2Ep

e iEp t t ip x x

d4p
2$ 4 2$ % p2 m2 ' p0 e ip x x , (2.40)

where ' x is defined as

' x ( x ( x 1 x 0
1 x 0 . (2.41)

Using the last expression in Eq. (2.40) it is easy to show that i& x x vanishes
when x and x are space-like separated. Indeed, if x x 2 0 there is always
a reference frame in which both events are simultaneous, and since i& x x is

Expanding in solutions to the KG equations and performing the  canonical quantisation, 
we recover the algebra of creation and annihilation operator we had before,  but we get a 
surprise

Tuesday, 16 October, 2012
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Casimir effect
Writing the products of creation and ann. operators in NORMAL ORDERING i,e, annihilation operators to the right, we get 
rid of the sum of the zero point energy of the infinite number of oscillators in the field.  In infinite space we subtract it, or 
simply normal order.  When we do not have translational invariance, something interesting happens

2.3 The Casimir Effect 21

Region I Region II

Conducting plates

Region III

d

Fig. 2.1 Illustration of the Casimir effect. In regions I and II the spetrum of modes of the momen-
tum p is continuous, while in the space between the plates (region II) it is quantized in units of
!
d .

the correspondingmodes of the field are effectively (2+1)-dimensional and therefore
there is only one polarization. Keeping this in mind, we can write

E d reg S
d2p‖
2! 2

1
2
p‖ 2S

d2p‖
2! 2

n 1

1
2

p2‖
n!
d

2

2Sd
d3p
2! 3

1
2
p (2.60)

where S is the area of the plates. The factors of 2 take into account the two propa-
gating degrees of freedom of the electromagnetic field, as discussed above.
The integrals and infinite sums in Eq. (2.60) are divergent. In order to make sense

out of them we can introduce an exponential damping factor3

E d reg
1
2
S

d2p
2! 2 e

1
" p‖ p‖ S

n 1

d2p‖
2! 2 e

1
" p2‖

n!
d

2

p2‖
n!
d

2

Sd
dp
2!

d2p‖
2! 2 e

1
" p2‖ p2 p2‖ p2 (2.61)

where" is an ultraviolet cutoff. It is now straightforward to see that if we define the
function

3 Actually, one could introduce any cutoff function f p2 p2‖ going to zero fast enough as p ,
p‖ . The result is independent of the particular function used in the calculation.

2.2 Canonical Quantization 19

and we have required ! x to be real. The conjugate momentum is

" x
i
2

d3p
2" 3 # p e iEpt p x # p eiEpt p x . (2.53)

Canonical quantization proceeds now by replacing classical fields with operators
and Poisson brackets with commutators according to the rule

i , PB , . (2.54)

Now ! x and " x are promoted to operators by replacing the functions # p ,
# p by the corresponding operators

# p # p , # p # p . (2.55)

Moreover, demanding ! t,x ," t,x i$ x x forces the operators # p ,
# p to have the commutation relations found in Eq. (2.27). Therefore they are
identified as a set of creation-annihilation operators creating states with well-defined
momentum p out of the vacuum 0 . In the canonical quantization formalism the
concept of particle appears as a result of the quantization of a classical field.
Knowing the expressions of ! and " in terms of the creation-annihilation opera-

tors we can proceed to evaluate the Hamiltonian operator. After a simple calculation
one arrives to the expression

H
1
2

d3p
2" 3 # p # p 2" 3Ep $ 0

d3p
2" 3

1
2Ep

Ep# p # p 1
2

d3pEp$ 0 . (2.56)

The first integral has a simple physical interpretation: the integrand is # p # p ,
the number operator of particles with momentum p, weighted by the energy Ep of
the particle and it comes integrated using the Lorentz-invariantmeasure. The second
divergent term can be eliminated if we defined the normal-ordered Hamiltonian :H:
with the vacuum energy subtracted

:H: H 0 H 0
1
2

d3p
2" 3 # p # p . (2.57)

We have to make sense of the divergent term in Eq. (2.56). It has two sources
of divergence. One is of infrared origin and it is associated with the delta function
evaluated at r 0, reflecting the fact that we work in infinite volume. The second
one comes from the integration of Ep at large values of the momentum and it is then
an ultraviolet divergence. The infrared divergence can be regularized by putting the
system in a box of finite but large volume and replacing $ 0 V . Since now the
momentum gets discretized we have

20 2 From Classical to Quantum Fields

Evac 0 H 0
p

1
2
Ep. (2.58)

Written in this way the interpretation of the vacuum energy is straightforward. A
free scalar quantum field can be seen as a infinite collection of harmonic oscillators
per unit volume, each one labelled by p. Even if those oscillators are not excited,
they contribute to the vacuum energy with their zero-point energy, given by 1

2Ep.
Because of the existence of an ultraviolet divergence this vacuum contribution to
the energy adds up to infinity even if we work at finite volume, since even then there
are modes with arbitrary high momentum contributing to the sum, pi ni!

Li , with Li
the sides of the box of volume V and ni an integer.

2.3 The Casimir Effect

The vacuum energy encountered in the quantization of the free scalar field is not
exclusive of this theory. It is also present in other field theories and in particular in
quantum electrodynamics. Although one might be tempted to discarding this infi-
nite contribution to the energy of the vacuum as unphysical, it has observable conse-
quences. In 1948 Hendrik Casimir pointed out [1] that although a formally divergent
vacuum energy would not be observable, any variation in this energy would be (see
[2] for comprehensive reviews).
To show this he devised the following experiment. Consider a couple of infi-

nite, perfectly conducting plates placed parallel to each other at a distance d (see
Fig. 2.1). Because the conducting plates fix the boundary condition of the vacuum
modes of the electromagnetic field these are discrete in between the plates (region
II), while outside there is a continuous spectrum of modes (regions I and III). In
order to calculate the force between the plates we can take the vacuum energy of the
electromagnetic field as given by the contribution of two scalar fields corresponding
to the two polarizations of the photon. Therefore we can use the formulas derived
above.
A naive calculation of the vacuum energy in this system gives a divergent result.

This infinity can be removed, however, by substracting the vacuum energy corre-
sponding to the situation where the plates are removed

E d reg E d vac E vac (2.59)

This substraction cancels the contribution of the modes outside the plates. Because
of the boundary conditions imposed by the plates the momentum of the modes per-
pendicular to the plates are quantized according to p n!

d , with n a non-negative
integer. If we consider that the size of the plates is much larger than their separa-
tion d we can take the momenta parallel to the plates p‖ as continuous. For n 0 we
have two polarizations for each vacuummode of the electromagnetic field, each con-
tributing like 1

2 p2‖ p2 to the vacuum energy. On the other hand, when p 0

The force per unit area is the derivative of this quantity 
with respect to d divided by the area of the plates.  The 
result is finite and attractive, the Casimir force!  Which has 
been measured (of course for the electromagnetic field)

22 2 From Classical to Quantum Fields

F x
1
2! 0

ydye
1
" y2 x!

d
2

y2
x!
d

2

1
4! x!

d
2
dze

z
" z (2.62)

the regularized vacuum energy can be written as

E d reg S
1
2
F 0

n 1
F n

0
dxF x . (2.63)

This expression can be evaluated using the Euler-MacLaurin formula [4]

n 1
F n

0
dxF x

1
2
F 0 F

1
12

F F 0

1
720

F F 0 . . . (2.64)

Since for our function F F F 0 and F 0 0, the value of
E d reg is determined by F 0 . Computing this term and removing the ultraviolet
cutoff, " , we find the result

E d reg
S
720

F 0
!2S
720d3

. (2.65)

Then, the force per unit area between the plates is given by

PCasimir
!2

240
1
d4

. (2.66)

The minus sign shows that the force between the plates is attractive. This is the so-
called Casimir effect. It was experimentally measured for the first time in 1958 by
Sparnaay [3] and since then the Casimir effect has been checked with better and
better precission in a variety of situations [2].

2.4 Path Integrals

The canonical quantization formalism relies in the Hamiltonian formulation of the
theory. This has the obvious disadvantage of singling out time from the spatial co-
ordinates, making Lorentz covariance nonexplicit. This could be solved if quanti-
zation could be carried out directly in the Lagrangian formalism, in which Lorentz
covariance is explicit at each step of the way. This is achieved by the path inte-
gral quantization method introduced by Feynman [5]. In addition, when applied to
the quantization of fields, path integral quantization present many advantages over
canonical quantization.
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Lorentz and Poincaré Groups
In trying to systematically construct viable QFTs it is useful to 
understand the representations of the Lorentz (and Poincaré) groups.

The Hilbert space of states has to carry a unitary representation of 
the Lorentz group, so that quantum amplitudes are consistent with 
Unitarity and Relativistic Invariance.  The fields themselves however, 
transform under finite dimensional representations.  They are much 
easier to study.  Just recall the usual rotation group SU(2).  The 
Lorentz group, also known as SO(3,1) preserves the Minkowski metric

ds2 = dt2 − dx2 − dy2 − dz2 = ηµν dx
µ dxν µ, ν = 0, 1, 2, 3

248 B A Crash Course in Group Theory

They can be found in a number of textbooks (for example [2]), as well as in reference
[4] of chapter 11.

The Lorentz Group.

The Lorentz group SO(1,3) is defined as the group of space-time transformations
that preserve the Minkowski metric, that is

x µ ! µ
"x" such that #µ"!

µ
$!

"
% #$% . (B.28)

From its very definition we find that ! µ
" satisfy that det! 1 and

!00
2

3

i 1
! i

0
2 1, (B.29)

which follows from the 00 component of the second equation in (B.28). Because
then !00

2 1 the Lorentz group can be split into the following four disconnected
components

- L : proper, orthochronous transformations with det! 1, !00 1.
- L : improper, orthochronous transformations with det! 1, !00 1.
- L : improper, non-orthochronous transformations with det! 1, !00 1.
- L : proper, non-orthochronous transformations with det! 1, !00 1.
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We focus then onL . We are going to see that transformations in this subgroup
can be written in terms of complex 2 2 matrices of unit determinant. We consider
a four-vectorV µ and construct the Hermitian matrix
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This defines a one-to-one correspondence between four-vectors and Hermitian ma-
trices, whose determinant gives the norm of the vector

detV #µ"V µV " . (B.32)

Now, the determinant is preserved by any SL(2,C) transformation acting as
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Lorentz and Poincaré Groups

Chapter 3
Theories and Lagrangians I: Matter Fields

Up to this point we have used a scalar field to illustrate our discussion of the quanti-
zation procedure. However, nature is richer than that and it is necessary to consider
other fields with more complicated behavior under Lorentz transformations. Before
considering other fields we pause and study the properties of the Lorentz group.

3.1 Representations of the Lorentz Group

The Lorentz group is the group of linear coordinate transformations that leave in-
variant the Minkowskian line element. It has a very rich mathematical structure that
we review in appendix B. Here our interest is focused on its representations.
In four dimensions the Lorentz group has six generators. Three of them corre-

spond to the generators of the group of rotations in three dimensions SO(3). In terms
of the generators Ji of the group a finite rotation of angle ! with respect to an axis
determined by a unitary vector e can be written as

R e,! e i! e J, J
J1
J2
J3

. (3.1)

The other three generators of the Lorentz group are associated with boostsMi along
the three spatial directions. A boost with rapidity " along a direction u is given by

B u," e i" u M, M
M1
M2
M3

. (3.2)

These six generators satisfy the algebra
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Ji,Jj i!i jkJk,
Ji,Mk i!i jkMk, (3.3)
Mi,Mj i!i jkJk,

The first line corresponds to the commutation relations of SO(3), while the second
one implies that the generators of the boosts transform like a vector under rotations.
In fact, the six generators of the Lorentz group can be collected into the six inde-
pendent components of an antisymmetric rank-two tensorJµ" according to

J0i Mi, Ji j !i jkJk. (3.4)

They satisfy

Jµ" ,J#$ i%µ#J"$ i%µ$J"# i%"$Jµ# i%"#Jµ$ . (3.5)

In fact, this form of the Lorentz algebra is independent of the space-time dimension.
The task of finding representations of the algebra (3.3) [or (3.5)] might seem

difficult at first sight. The problem is greatly simplified if we consider the following
combination of the generators

Jk
1
2
Jk iMk . (3.6)

Using (3.3) it is easy to prove that the new generators Jk satisfy the algebra

Ji ,Jj i!i jkJk ,

Ji ,Jj 0. (3.7)

Then the Lorentz algebra in four dimensions (3.3) is actually equivalent to two
copies of the algebra of SU 2 SO 3 . Therefore the irreducible representations
of the Lorentz group can be obtained from the well-known representations of SU(2).
Since the latter ones are labelled by the spin s k 1

2 ,k (with k N), any represen-
tation of the Lorentz algebra can be identified by specifying s ,s , the spins of
the representations of the two copies of SU(2) that made up the algebra (3.3).
To get familiar with this way of labeling the representations of the Lorentz

group we study some particular examples. Let us start with the simplest one
s ,s 0,0 . This state is a singlet under Ji and therefore also under rotations
and boosts. Therefore we have a scalar.
The next interesting cases are 1

2 ,0 and 0, 12 . They correspond respectively to a
right-handed and a left-handedWeyl spinor. Their properties will be studied in more
detail below. In the case of 1

2 ,
1
2 , since from Eq. (3.6) we see that Ji Ji Ji ,

the rules of addition of angular momentum tell us that there are two states, one of
them transforming as a vector and another one as a scalar under three-dimensional
rotations. Actually, a more detailed analysis shows that the singlet state corresponds
to the time component of a vector and the states combine to form a vector under the
Lorentz group.
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Rotations and boosts generate Lorentz transformation, 
hence six parameter and six generators of infinitesimal 
transformations.  The algebra is easy to obtain and 
“diagonalise”

The representations of each SU(2) are labelled by a single integer or half 
integer “angular” momentum s=0, 1/2, 1, 3/2, … Under parity
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Representation Type of field

0,0 Scalar

1
2 ,0 Right-handed spinor

0, 12 Left-handed spinor

1
2 ,
1
2 Vector

1,0 Selfdual antisymmetric 2-tensor

0,1 Anti-selfdual antisymmetric 2-tensor

Table 3.1 Representations of the Lorentz group in terms of the representations of SU(2) SU(2)

There are also more “exotic” representations. For example we can consider the
1,0 and 0,1 representations corresponding respectively to a selfdual and an anti-
selfdual rank-two antisymmetric tensor. In Table 3.1 we summarize the previous
discussion.
To conclude our discussion of the representations of the Lorentz group we notice

that under parity the generators of SO(1,3) transform as1

P : Ji Ji, P :Mi Mi (3.8)

this implies that P : Ji Ji and therefore a representation s1,s2 is transformed
into s2,s1 . This means that, for example, a vector 1

2 ,
1
2 is invariant under parity,

whereas a left-handed Weyl spinor 1
2 ,0 transforms into a right-handed one 0, 12

and vice versa.
It is instructive to see how the representations of the Lorentz group differ from

those of SO(4), the isometry group of four-dimensional Euclidean space. As the
Lorentz group it is generated by a set of six generatorsJµ! whose algebra can be
obtained from equation (3.5) by replacing "µ! #µ! . As a matter of fact, the Lie
algebra of SO(4) is isomorphic to that of SU(2) SU(2), as can be seen by defining
the generators

Na "aµ!J
µ! , Na " a

µ!J
µ! . (3.9)

The numerical coefficients "aµ! and "aµ! (with a 1,2,3 and µ ,! 0, . . . ,3) are
called ’t Hooft symbols and are given by

"aµ! $aµ! #aµ#!0 #a!#µ0,

" a
µ! $aµ! #aµ#!0 #a!#µ0. (3.10)

1 Parity and other discrete symmetries are studied in detail in chapter 11.

J
P→ J

M → −M

J± → J∓

(s1, s2) → (s2, s1)

J = J+ + J−

(s+, s−) =

s++s−�

j=|s+−s−|

j
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Weyl spinors

34 3 Theories and Lagrangians I: Matter Fields

Here !aµ" represents the Levi-Civita antisymmetric symbol with three indices and it
is taken to be zero whenever µ or " is equal to zero. Now it is not difficult to check
that the generators (3.9) satisfy the Lie algebra of SU(2) SU(2)

Na,Nb i!abcNc, Na
,Nb i!abcNc, Na,Nb 0. (3.11)

This shows that the representations of SO(4) can be also labelled in terms of the
irreducible representations of SU(2), pretty much in the same fashion as we did
with the Lorentz group.

3.2 Weyl Spinors

A Weyl spinor u is a complex two-component object that transforms in the rep-
resentations 1

2 ,0 and 0, 12 respectively. The generators Ji can be explicitly con-
structed using the Pauli matrices as

Ji
1
2
#i, Ji 0 for 1

2 ,0 ,

Ji 0, Ji
1
2
#i for 0, 12 . (3.12)

Going back to Ji and Ki we have that under a rotation of angle $ and axis n and a
boost of rapidity % %1,%2,%3 the spinors u transform as

u e
i
2 $n i% #u . (3.13)

To construct a free Lagrangian for the fields u we have to look for quadratic
combinations of the fields that are Lorentz scalars. Defining # µ 1, #i we can
construct the following quantities

u # µu , u # µu . (3.14)

The first thing to point out is that, since Ji Ji , the hermitian conjugated fields
u are in the 0, 12 and 1

2 ,0 representation respectively. The combinations (3.14)
actually transform as a four-vector under (3.13), due to the property

e
i
2 $n i% ## µe

i
2 $n i% # & µ

" $n,% #" , (3.15)

where & µ
" $n,% gives the transformation of the coordinates xµ .

Once the transformation properties of (3.14) are known we can start building
invariants. If, in addition, we also demand that the Lagrangian is invariance under
global phase rotations

u ei$u (3.16)
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The simplest representations have fundamental physical 
importance,  they are called Weyl spinors.  Clearly they are 
representations of the connected component of SO(3,1), but 
not of parity, since parity interchanges the representations
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we are left with just one possibility up to a sign, namely

LWeyl iu t ! " u iu ! µ
µu . (3.17)

This is the Weyl Lagrangian. In order to get a more clear idea of the physical mean-
ing of the spinors u we write the equations of motion

0 ! " u 0. (3.18)

Multiplying this equation on the left by 0 ! " and applying the algebraic prop-
erties of the Pauli matrices we conclude that u satisfies the massless Klein-Gordon
equation

µ
µ u 0, (3.19)

whose solutions are:

u x u k e ik x, with k0 k . (3.20)

Plugging these solutions back into the equations of motion (3.18) we find

k k ! u 0, (3.21)

which implies

u :
! k
k

1,

u :
! k
k

1. (3.22)

Since the spin operator is defined as s 1
2! , the previous expressions give the helic-

ity of the states with wave function u , i.e. the projection of spin along the momen-
tum of the particle. Therefore we conclude that u is a Weyl spinor of positive he-
licity # 1

2 , while u has negative helicity # 1
2 . This agrees with our assertion

in the previous section that the representation 1
2 ,0 corresponds to a right-handed

Weyl fermion (positive helicity) whereas 0, 12 is a left-handedWeyl fermion (neg-
ative helicity). For example, the standard model neutrinos are left-handed Weyl
spinors and therefore transform in the representation 0, 12 of the Lorentz group.
Nevertheless, it is possible that we were too restrictive in constructing the Weyl

Lagrangian (3.17). There we constructed the invariants from the vector bilinears
(3.14) corresponding to the product representations

1
2 ,
1
2

1
2 ,0 0, 12 and 1

2 ,
1
2 0, 12

1
2 ,0 . (3.23)

In particular our insistence in demanding the Lagrangian to be invariant under the
global symmetry u ei$u rules out the scalar term that appears in the product
representations

Consider for simplicity this global 
symmetry: fermion number
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positive helicity, right handed antineutrinos

negative helicity, left handed, neutrinos

σ1 =

�
0 1
1 0

�

σ2 =

�
0 −i
i 0

�

σ3 =

�
1 0
0 −1

�

k2 = k20 − k2 = 0
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Charge conjugation and Majorana masses

ML = e−
i
2 θ·σ−

1
2β·σ

MR = e−
i
2 θ·σ+

1
2β·σ

We know that under parity, the L,R Weyl spinors are exchanged.  Another way to exchange 
them is via complex conjugation, later to be related to charge conjugation

detML = 1

detMR = 1

detM = �abMa1 Mb2

detM�ab = �cdMca Mdb
� = iσ2 =

�
0 1
−1 0

�

Using σ∗ = −σ2 σ σ2

ψc
L = σ2 ψ∗

L transforms like ψR

ψc
R = σ2 ψ∗

R transforms like ψL

‣ We can express any theory 
fully in terms of L or R 
fermions.  

‣ Charge conjugation and 
parity exchange L and R

‣ A parity invariant theory 
requires L,R spinors at the 
same time

‣ We can construct a mass 
for pure L spinors if we 
ignore fermion number

‣F e r m i o n s a r e 
anticommuting

36 3 Theories and Lagrangians I: Matter Fields

1
2 ,0

1
2 ,0 1,0 0,0 ,

0, 12 0, 12 0,1 0,0 . (3.24)

The singlet representations corresponds to the antisymmetric combinations

!abua ub , (3.25)

where !ab is the antisymmetric symbol !12 !21 1.
At first sight it might seem that the term (3.25) vanishes identically because of

the antisymmetry of the !-symbol. However we should keep in mind that the spin-
statistic theorem (more on this later) demands that fields with half-integer spin have
to satisfy the Fermi-Dirac statistics and therefore satisfy anticommutation relations,
whereas fields of integer spin follow the statistic of Bose-Einstein and, as a conse-
quence, quantization replaces Poisson brackets by commutators. This implies that
the components of the Weyl fermions u are anticommuting Grassmann fields

ua ub ub ua 0. (3.26)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy
the Fermi-Dirac statistics) do not exist classically. The reason is that they satisfy
the Pauli exclusion principle and therefore each quantum state can be occupied, at
most, by one fermion. Therefore the naive definition of the classical limit as a limit
of large occupation numbers cannot be applied. Fermion field do not really make
sense classically.
Since the combination (3.25) does not vanish and we can construct a new La-

grangian

LWeyl iu " µ
µu

m
2

!abua ub h.c. (3.27)

This mass term, called of Majorana type, is allowed if we do not worry about break-
ing the global U(1) symmetry u ei#u . This is not the case, for example, of
charged chiral fermions, since the Majorana mass violates the conservation of elec-
tric charge or any other gauge U(1) charge. In the Standard Model, however, there is
no such a problem if we introduce Majorana masses for right-handed neutrinos,
since they are singlet under all standard model gauge groups. Such a term will
break, however, the global U(1) lepton number charge because the operator !ab$aR$bR
changes the lepton number by two units

3.3 Dirac Spinors.

We have seen that parity interchanges the representations 1
2 ,0 and 0, 12 , i.e. it

changes right-handed with left-handed fermions

�abu
a ub = u1 u2 − u2 u1

Most general Majorana mass, Takagi factorisation

1

2

�
MIJ �ab u

a,I ub,J + h.c.
�
,

I, J = 1, . . . NF , MIJ = MJI complex

M = U




m1 . . . 0

0
. . . 0

0 . . . mNF



 UT

mi are positive square roots of MM†

This is the most 
general fermion 
mass matrix!!!  It 
includes CKM, in 
fact it is more 
general
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Weyl + parity: Dirac
3.3 Dirac Spinors. 37

P : u u . (3.28)

An obvious way to build a parity invariant theory is to introduce a pair or Weyl
fermions u and u . Actually, these two fields can be combined in a single four-
component spinor

!
u
u (3.29)

transforming in the reducible representation 1
2 ,0 0, 12 .

Since now we have both u and u simultaneously at our disposal the equations
of motion for u , i" µ

µu 0 can be modified, while keeping them linear, to
introduce a mass term

i" µ
µu mu

i" µ
µu mu

i " µ 0
0 " µ µ! m 0 1

1 0 ! . (3.30)

These equations of motion can be derived from the Lagrangian density

LDirac i! " µ 0
0 " µ µ! m! 0 1

1 0 ! . (3.31)

To simplify the notation it is useful to define the Dirac #-matrices as

#µ
0 " µ

" µ 0 . (3.32)

and the Dirac conjugate spinor ! is given

! ! #0 !
0 1
1 0 . (3.33)

Now the Lagrangian (3.31) can be written in the more compact form

LDirac ! i#µ µ m ! . (3.34)

The associated equations of motion give the Dirac equation (1.10) with the identifi-
cations

#0 $ , # i i% i. (3.35)

The #-matrices defined in (3.32) satisfy the Clifford algebra

#µ ,#& 2'µ& . (3.36)
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DIRACOLOGY

38 3 Theories and Lagrangians I: Matter Fields

In D dimensions this algebra admits representations of dimension 2 D
2 . Eq. (3.32)

gives the so-called chiral representation of the Dirac algebra. Other representations
of the algebra (3.36) can be constructed exploting its invariance under unitary trans-
formations !µ U!µU .
A representation of the Lorentz algebra SO(1,D 1) can be constructed using

the !-matrices as

J µ" i
4
!µ ,!" # µ" . (3.37)

By definition, Dirac fermions$ inD dimensions transform under the Lorentz group
in this representation.
When D is even the representation (3.37) is reducible. In the case of interest

D 4 this result is easy to prove by defining the chirality matrix

!5 i!0!1!2!3 1 0
0 1 . (3.38)

The matrix !5 anticommutes with all other !-matrices and as a consequence

!5,#
µ" 0. (3.39)

Because of Schur’s lemma (see Appendix) this means that the representation of the
Lorentz group provided by # µ" is reducible into subspaces spanned by the eigen-
vectors of !5 with the same eigenvalue. Defining the projectors P 1

2 1 !5 these
subspaces correspond to

P $
u
0 , P $

0
u , (3.40)

which are precisely the Weyl spinors introduced above.
Our next task is to quantize the Dirac Lagrangian. This will be done along the

lines used for the Klein-Gordon field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation-annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equa-
tion. In the case of the scalar field the elements of the basis were labelled by their
four-momentum kµ . Now, however, we have more degrees of freedom since we are
dealing with a spinor which means that we have to add extra labels. Looking back
at Eq. (3.22) we can define the helicity operator for a Dirac spinor as

%
1
2#

k
k 0

0 1
2#

k
k

. (3.41)

Hence, each element of the basis of functions is labelled by its four-momentum
kµ and the corresponding eigenvalue s of the helicity operator. For positive energy
solutions we then propose the ansatz

38 3 Theories and Lagrangians I: Matter Fields

In D dimensions this algebra admits representations of dimension 2 D
2 . Eq. (3.32)

gives the so-called chiral representation of the Dirac algebra. Other representations
of the algebra (3.36) can be constructed exploting its invariance under unitary trans-
formations !µ U!µU .
A representation of the Lorentz algebra SO(1,D 1) can be constructed using

the !-matrices as

J µ" i
4
!µ ,!" # µ" . (3.37)

By definition, Dirac fermions$ inD dimensions transform under the Lorentz group
in this representation.
When D is even the representation (3.37) is reducible. In the case of interest

D 4 this result is easy to prove by defining the chirality matrix

!5 i!0!1!2!3 1 0
0 1 . (3.38)

The matrix !5 anticommutes with all other !-matrices and as a consequence

!5,#
µ" 0. (3.39)

Because of Schur’s lemma (see Appendix) this means that the representation of the
Lorentz group provided by # µ" is reducible into subspaces spanned by the eigen-
vectors of !5 with the same eigenvalue. Defining the projectors P 1

2 1 !5 these
subspaces correspond to

P $
u
0 , P $

0
u , (3.40)

which are precisely the Weyl spinors introduced above.
Our next task is to quantize the Dirac Lagrangian. This will be done along the

lines used for the Klein-Gordon field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation-annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equa-
tion. In the case of the scalar field the elements of the basis were labelled by their
four-momentum kµ . Now, however, we have more degrees of freedom since we are
dealing with a spinor which means that we have to add extra labels. Looking back
at Eq. (3.22) we can define the helicity operator for a Dirac spinor as

%
1
2#

k
k 0

0 1
2#

k
k

. (3.41)

Hence, each element of the basis of functions is labelled by its four-momentum
kµ and the corresponding eigenvalue s of the helicity operator. For positive energy
solutions we then propose the ansatz

38 3 Theories and Lagrangians I: Matter Fields

In D dimensions this algebra admits representations of dimension 2 D
2 . Eq. (3.32)

gives the so-called chiral representation of the Dirac algebra. Other representations
of the algebra (3.36) can be constructed exploting its invariance under unitary trans-
formations !µ U!µU .
A representation of the Lorentz algebra SO(1,D 1) can be constructed using

the !-matrices as

J µ" i
4
!µ ,!" # µ" . (3.37)

By definition, Dirac fermions$ inD dimensions transform under the Lorentz group
in this representation.
When D is even the representation (3.37) is reducible. In the case of interest

D 4 this result is easy to prove by defining the chirality matrix

!5 i!0!1!2!3 1 0
0 1 . (3.38)

The matrix !5 anticommutes with all other !-matrices and as a consequence

!5,#
µ" 0. (3.39)

Because of Schur’s lemma (see Appendix) this means that the representation of the
Lorentz group provided by # µ" is reducible into subspaces spanned by the eigen-
vectors of !5 with the same eigenvalue. Defining the projectors P 1

2 1 !5 these
subspaces correspond to

P $
u
0 , P $

0
u , (3.40)

which are precisely the Weyl spinors introduced above.
Our next task is to quantize the Dirac Lagrangian. This will be done along the

lines used for the Klein-Gordon field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation-annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equa-
tion. In the case of the scalar field the elements of the basis were labelled by their
four-momentum kµ . Now, however, we have more degrees of freedom since we are
dealing with a spinor which means that we have to add extra labels. Looking back
at Eq. (3.22) we can define the helicity operator for a Dirac spinor as

%
1
2#

k
k 0

0 1
2#

k
k

. (3.41)

Hence, each element of the basis of functions is labelled by its four-momentum
kµ and the corresponding eigenvalue s of the helicity operator. For positive energy
solutions we then propose the ansatz

38 3 Theories and Lagrangians I: Matter Fields

In D dimensions this algebra admits representations of dimension 2 D
2 . Eq. (3.32)

gives the so-called chiral representation of the Dirac algebra. Other representations
of the algebra (3.36) can be constructed exploting its invariance under unitary trans-
formations !µ U!µU .
A representation of the Lorentz algebra SO(1,D 1) can be constructed using

the !-matrices as

J µ" i
4
!µ ,!" # µ" . (3.37)

By definition, Dirac fermions$ inD dimensions transform under the Lorentz group
in this representation.
When D is even the representation (3.37) is reducible. In the case of interest

D 4 this result is easy to prove by defining the chirality matrix

!5 i!0!1!2!3 1 0
0 1 . (3.38)

The matrix !5 anticommutes with all other !-matrices and as a consequence

!5,#
µ" 0. (3.39)

Because of Schur’s lemma (see Appendix) this means that the representation of the
Lorentz group provided by # µ" is reducible into subspaces spanned by the eigen-
vectors of !5 with the same eigenvalue. Defining the projectors P 1

2 1 !5 these
subspaces correspond to

P $
u
0 , P $

0
u , (3.40)

which are precisely the Weyl spinors introduced above.
Our next task is to quantize the Dirac Lagrangian. This will be done along the

lines used for the Klein-Gordon field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation-annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equa-
tion. In the case of the scalar field the elements of the basis were labelled by their
four-momentum kµ . Now, however, we have more degrees of freedom since we are
dealing with a spinor which means that we have to add extra labels. Looking back
at Eq. (3.22) we can define the helicity operator for a Dirac spinor as

%
1
2#

k
k 0

0 1
2#

k
k

. (3.41)

Hence, each element of the basis of functions is labelled by its four-momentum
kµ and the corresponding eigenvalue s of the helicity operator. For positive energy
solutions we then propose the ansatz

Tr γµγν = 4 ηµν

Tr γµγνγαγβ = 4 ηµνηαβ − 4 ηµαηβν + 4 ηµβηαν

Tr γ5γ
αγβγµγν = 4 i �αβµν

We look for +ve and -ve energy solutions as usual

3.3 Dirac Spinors. 39

u k,s e ik x, s
1
2
, (3.42)

where u! k,s (! 1, . . . ,4) is a four-component spinor. Substituting in the Dirac
equation we obtain

k m u k,s 0. (3.43)

In the same way, for negative energy solutions we have

v k,s eik x, s
1
2
, (3.44)

where v! k,s has to satisfy

k m v k,s 0. (3.45)

Multiplying Eqs. (3.43) and (3.45) on the left respectively by k m we find that
the momentum is on the mass shell, k2 m2. Because of this, the wave function
for both positive- and negative-energy solutions can be labeled as well using the
three-momentum k of the particle, u k,s , v k,s .
A detailed analysis shows that the functions u k,s , v k,s satisfy the properties

u k,s u k,s 2m, v k,s v k,s 2m,

u k,s "µu k,s 2kµ , v k,s "µv k,s 2kµ , (3.46)

s 1
2

u! k,s u# k,s k m !# ,

s 1
2

v! k,s v# k,s k m !# ,

with k0 $k k2 m2. Then, a general solution to the Dirac equation including
creation and annihilation operators can be written as:

%! t,x
s 1

2

d3k
2& 3

1
2$k

u! k,s b k,s e i$kt ik x

v! k,s d k,s ei$kt ik x . (3.47)

Because we are dealing with half-integer spin fields, the spin-statistics theorem
forces a modification of the canonical quantization prescription (2.54) such that in
the case of the Dirac field the canonical Poisson brackets are replaced by anticom-
mutators

i , PB , . (3.48)

Thus we arrive to the following canonical anticommutation relations for the field
% t,x

%! t,x ,%# t,y ' x y '!# . (3.49)
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k2 = m2
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Quantisation

�ψα(t, �x) =
�

s=± 1
2

�
d3k

(2π)3
1

2ω�k

�
uα(�k, s)�b(�k, s)e−iω�kt+i�k·�x + vα(�k, s) �d †(�k, s)eiω�kt−i�k·�x

�
.

3.3 Dirac Spinors. 39

u k,s e ik x, s
1
2
, (3.42)

where u! k,s (! 1, . . . ,4) is a four-component spinor. Substituting in the Dirac
equation we obtain

k m u k,s 0. (3.43)

In the same way, for negative energy solutions we have

v k,s eik x, s
1
2
, (3.44)

where v! k,s has to satisfy

k m v k,s 0. (3.45)

Multiplying Eqs. (3.43) and (3.45) on the left respectively by k m we find that
the momentum is on the mass shell, k2 m2. Because of this, the wave function
for both positive- and negative-energy solutions can be labeled as well using the
three-momentum k of the particle, u k,s , v k,s .
A detailed analysis shows that the functions u k,s , v k,s satisfy the properties

u k,s u k,s 2m, v k,s v k,s 2m,

u k,s "µu k,s 2kµ , v k,s "µv k,s 2kµ , (3.46)

s 1
2

u! k,s u# k,s k m !# ,

s 1
2

v! k,s v# k,s k m !# ,

with k0 $k k2 m2. Then, a general solution to the Dirac equation including
creation and annihilation operators can be written as:

%! t,x
s 1

2

d3k
2& 3

1
2$k

u! k,s b k,s e i$kt ik x

v! k,s d k,s ei$kt ik x . (3.47)

Because we are dealing with half-integer spin fields, the spin-statistics theorem
forces a modification of the canonical quantization prescription (2.54) such that in
the case of the Dirac field the canonical Poisson brackets are replaced by anticom-
mutators

i , PB , . (3.48)

Thus we arrive to the following canonical anticommutation relations for the field
% t,x

%! t,x ,%# t,y ' x y '!# . (3.49)
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From Eq. (3.47) we find that the operators b k,s , b k,s satisfy the algebra2

b k,s ,b k ,s 2! 3 2"k # k k #ss ,

b k,s ,b k ,s b k,s ,b k ,s 0. (3.50)

They respectively create and annihilate a spin- 12 particle (for example, an electron)
out of the vacuum with momentum k and helicity s.
In the case of d k,s , d k,s , they satisfy the fermionic algebra

d k,s ,d k ,s 2! 3 2"k # k k #ss ,

d k,s ,d k ,s d k,s ,d k ,s 0. (3.51)

Hence we have a set of creation-annihilation operators for the corresponding an-
tiparticles (for example positrons). This is clear if we notice that d k,s can be
seen as the annihilation operator of a negative energy state of the Dirac equation
with wave function va k,s . In the Dirac picture this corresponds to the creation of
an antiparticle out of the vacuum (see Fig. 1.2). Finally, all other anticommutators
between b k,s , b k,s and d k,s , d k,s vanish.
The Hamiltonian operator for the Dirac field is

H
1
2
s 1

2

d3k
2! 3 b k,s b k,s d k,s d k,s . (3.52)

At this point we realize again of the necessity of quantizing the theory using an-
ticommutators instead of commutators. Had we use canonical commutation rela-
tions, the second term inside the integral in (3.52) would give the number operator
d k,s d k,s with a minus sign in front. As a consequence the Hamiltonian would
be unbounded from below and we would be facing again the instability of the theory
already noticed in the context of relativistic quantum mechanics. However, because
of the anticommutation relations (3.51), the Hamiltonian (3.52) takes the form

H
s 1

2

d3k
2! 3

1
2"k

"kb k,s b k,s "kd k,s d k,s

2 d3k"k# 0 . (3.53)

As with the scalar field, we find a divergent vacuum energy contribution due to the
zero-point energy of the infinite number of harmonic oscillators. Unlike the Klein-
Gordon field, the vacuum energy here is negative. This is interesting because, as it
will be explaned in Chapter 13, there is a certain type of theories called supersym-
metric where the number of bosonic and fermionic degrees of freedom is the same.

2 To simplify notation, and since there is no risk of confusion, we drop from now on the hat to
indicate operators.
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We repeat the bosonic arguments, except for the fact that we have now anti-commutation relations 
between electron and positron creation-annihilation operators

�H =
�

s=± 1
2

�
d
3
k

(2π)3
1

2ω�k

�
ω�kb

†(�k, s)b(�k, s) + ω�kd
†(�k, s)d(�k, s)

�
− 2

�
d
3
k ω�kδ(

�0).

3.3 Dirac Spinors. 41

For this kind of theories the contribution of the vacuum energy of the bosonic field
exactly cancels that of the fermionic ones. Notwithstanding, the divergent contribu-
tion in the Hamiltonian (3.53) can be removed by the normal order prescription

:H:
s 1

2

d3k
2! 3

1
2"k

"kb k,s b k,s "kd k,s d k,s . (3.54)

Finally, let us mention that using the Dirac equation it is easy to prove that there
is a conserved four-current given by

jµ #$µ# , µ jµ 0. (3.55)

As we will explain further in Chapter 7 this current is associated to the invariance
of the Dirac Lagrangian under the global phase shift # ei%# . In electrodynamics
the associated conserved charge

Q e d3x j0 (3.56)

is identified with the electric charge.
The Dirac field can also be quantized using the path integral formalism intro-

duced in chapter 2. Being a free theory, the only independent time-ordered correla-
tion function is3

S&' x1,x2 0 T #& x1 #' x2 0 . (3.57)

Because of the fermionic character of the Dirac field the time-ordered product is
now defined as

T #& x #' y % x0 y0 #& x #' y % y0 x0 #' y #& x . (3.58)

The relative minus sign is necessary because of the fermionic character of the fields.
The rule for higher order function is the same as in the bosonic case (“earlier” fields
always to the right) apart from the fact that each term comes now multiplied by the
sign needed to bring the original expression into the time order.
In terms of path integrals the two-point function (3.57) can be written as

S&' x1,x2
D#D##& x1 #' xn eiS #,#

D#D# eiS #,#
. (3.59)

3 The other two-point correlation functions 0 T #& x1 #' x2 0 and 0 T #& x1 #' x2 0
are zero, as can be seen by direct computation using the expansion of the fields in terms of creation-
annihilation operators.

We have a conserved charge and current
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The two-point function or Feynman propagator is:
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Introducing gauge fields

The canonical gauge field is the electromagnetic field.  The first one that was understood as a gauge field.  For some 
time this symmetry sounded like a luxury.  In fact the classical theory can be formulated exclusively in terms of the 
E,B field that are manifestly gauge invariant.  This is not so in the quantum theory, where we need to use the vector 
and scalar potentials.  There are new, non-local observables.  They are responsible for the Bohm-Aharonov effect and 
the quantisation of electric charge (if there is a single monopole in the Universe, (Dirac)).

What we have learned is that all fundamental interactions known to us are mediated by suitable generalisations of 
the EM field.  They are gauge theories.  In fact it seems as though Nature abhors global symmetries.  It appears that 
all the known global symmetries are just low-energy accidents.  All symmetries in the UV should be local.  

We do not know why this should be so.  String Theory is the only theory where this fact finds an explanation.  
Unfortunately there is no evidence for it at this moment...
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Dirac string

!

g

Fig. 4.2 The Dirac monopole.

gauge invariant observables are non-local, as can be seen from the definition of the
phaseU .

Magnetic monopoles.

It is very easy to check that the vacuum Maxwell equations

" E 0
" B 0 (4.10)

" E
t
B

" B
t
E

remain invariant under the transformation

E iB ei# E iB , # 0,2$ (4.11)

which, in particular, for # $
2 interchanges the electric and the magnetic fields:

E B, B E. This duality symmetry is however broken in the presence of elec-
tric sources % , j . Nevertheless the Maxwell equations can be “completed” by intro-
ducing sources for the magnetic field %m, jm in such a way that the duality (4.11)
is restored when supplemented by the transformation

% i%m ei# % i%m , j i jm ei# j i jm . (4.12)

Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

4.1 Classical Gauge Fields

In classical electrodynamics the basic quantities are the electric and magnetic fields
E and B. These can be expressed in terms of the scalar and vector potential ! ,A
as

E "!
A
t
,

B " A. (4.1)

From these equations follows that there is an ambiguity in the definition of the
potentials given by the gauge transformations

! t,x ! t,x
t
# t,x , A t,x A t,x "# t,x . (4.2)

From a classical point of view the introduction of the potentials ! ,A is seen as
a technicality that helps solving the Maxwell equations, but without physical rele-
vance.
The equations of electrodynamics can be recast in a manifestly Lorentz invariant

form using the four-vector gauge potential Aµ ! ,A and the antisymmetric rank-
two tensor: Fµ$ µA$ $Aµ . Maxwell’s equations become

µFµ$ jµ ,

#µ$%& $F%& 0, (4.3)

where the four-current jµ ' , j contains the charge density and the electric cur-
rent. The field strength tensor Fµ$ and the Maxwell equations are invariant under
gauge transformations (4.2), which in covariant form read

Aµ Aµ µ#. (4.4)
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Finally, the equations of motion of charged particles are given, in covariant form, by

m
duµ

d!
eFµ"u" , (4.5)

where e is the charge of the particle and uµ ! its four-velocity as a function of the
proper time. These equations of motion, depending only on the field strength Fµ" ,
are gauge invariant.
The physical role of the vector potential becomes manifest only in QuantumMe-

chanics. Using the prescription of minimal substitution p p eA, the Schrödinger
equation describing a particle with charge e moving in an electromagnetic field is

i
t
#

1
2m

$ ieA 2 e% # . (4.6)

Because of the explicit dependence on the electromagnetic potentials % and A, this
equation seems to change under the gauge transformations (4.2). This is physically
acceptable only if the ambiguity does not affect the probability density given by
# t,x 2. Therefore, a gauge transformation of the electromagnetic potential should
amount to a change in the (unobservable) phase of the wave function. This is indeed
what happens: the Schrödinger equation (4.6) is invariant under the gauge transfor-
mations (4.2) provided the phase of the wave function is transformed at the same
time according to

# t,x e ie& t,x # t,x . (4.7)

The Aharonov-Bohm effect.

This interplay between gauge transformations and the phase of the wave function
give rise to surprising phenomena. The first evidence of the role played by the elec-
tromagnetic potentials at the quantum level was pointed out by Yakir Aharonov and
David Bohm [1]. Let us consider a double slit experiment as shown in Fig. 4.1,
where we have placed a shielded solenoid just behind the first screen. Although
the magnetic field is confined to the interior of the solenoid, the vector potential is
nonvanishing also outside. Of course the value of A outside the solenoid is a pure
gauge, i.e.$ A 0, however because the region outside the solenoid is not simply
connected the vector potential cannot be gauged to zero everywhere.
If we denote by# 0

1 and# 0
2 the wave functions for each of the two electron

beams in the absence of the solenoid, the total wave function once the magnetic field
is switched on can be written as

# eie '1
A dx# 0

1 eie '2
A dx# 0

2

eie '1
A dx # 0

1 eie ' A dx# 0
2 , (4.8)
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Classical EM

Classical EM in relativistic form

Coupling to QM requires the gauge potentials and a non-trivial transformation of the wave 
function, this gives subtle consequences to gauge symmetry
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Non-local observables
4.1 Classical Gauge Fields 45

!1

!
2

Screen

Electron S
source

Fig. 4.1 Illustration of an interference experiment to show the Aharonov-Bohm effect. S represent
the solenoid in whose interior the magnetic field is confined.

where !1 and !2 are two curves surrounding the solenoid from different sides, and
! is any closed loop surrounding it. Therefore the relative phase between the two
beams gets an extra term depending on the value of the vector potential outside the
solenoid

U exp ie
!

A dx . (4.9)

Because of the change in the relative phase of the electron wave functions, the pres-
ence of the vector potential becomes observable even if the electrons do not feel the
magnetic field. If we perform the double-slit experiment when the magnetic field
inside the solenoid is switched off we will observe the usual interference pattern on
the second screen. However if now the magnetic field is switched on, because of the
phase (4.8), a change in the interference pattern will appear. This is the Aharonov-
Bohm effect.
The first question that comes up is what happens with gauge invariance. Since

we said that A can be changed by a gauge transformation it seems that the resulting
interference patters might depend on the gauge used. This is not the case because the
phase factor (4.9) is actually independent of the gauge used. This is a consequence
of Stoke’s theorem. Since " A 0 outside the solenoid the value of U does not
change under a continuous deformation of the curve ! , so long as the solenoid is
not crossed.
The lesson we have learned is that in the quantum theory there are, apart from

the electric and magnetic fields, other gauge invariant quantities that give rise to
observable effects. A very important difference with respect E and B is that these
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This is the Aharonov-Bohm effect.  The phase factor, and its non-abelian generalisation are 
known as “Wilson loops” or holonomies of the gauge field.  Note that classically there would 
be no effect.  The Lorentz force equation only involves E,B hence the electrons would not see 
the solenoid at all!!
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Magnetic monopoles:
Dirac and charge quantisation

46 4 Theories and Lagrangians II: Introducing Gauge Fields

Dirac string

!

g

Fig. 4.2 The Dirac monopole.

gauge invariant observables are non-local, as can be seen from the definition of the
phaseU .

Magnetic monopoles.

It is very easy to check that the vacuum Maxwell equations

" E 0
" B 0 (4.10)

" E
t
B

" B
t
E

remain invariant under the transformation

E iB ei# E iB , # 0,2$ (4.11)

which, in particular, for # $
2 interchanges the electric and the magnetic fields:

E B, B E. This duality symmetry is however broken in the presence of elec-
tric sources % , j . Nevertheless the Maxwell equations can be “completed” by intro-
ducing sources for the magnetic field %m, jm in such a way that the duality (4.11)
is restored when supplemented by the transformation

% i%m ei# % i%m , j i jm ei# j i jm . (4.12)
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For angle = 90 E and B get exchanged

The symmetry extend to matter if we have magnetic sources:

4.1 Classical Gauge Fields 47

In covariant language, this modification of the Maxwell equations implies adding
sources on the right-hand side of the Bianchi identities

µFµ! jµm, (4.13)

where jµm "m, jm and Fµ! 1
2#

µ!$%F$% is the dual electromagnetic tensor field.
This means that while electric charges act as sources for Fµ! , magnetic charges are
sources of the dual field strength Fµ! . The duality transformation (4.11)-(4.12) is
written now as

Fµ! iFµ! ei& Fµ! iFµ! , jµ i jµm ei& jµ i jµm (4.14)

that keep the extended Maxwell equations invariant. For & '
2 electric and mag-

netic sources get interchanged and the field strength is replaced by its dual.
In 1931 Dirac [2] studied the possibility of finding solutions of the completed

Maxwell equations with a magnetic monopoles of charge g as a source, i.e. solutions
to

( B g) x . (4.15)

Away from the position of the monopole ( B 0 and the magnetic field can be
still derived locally from a vector potential A according to B ( A. However,
the vector potential cannot be regular everywhere since otherwise Gauss law would
imply that the magnetic flux threading a closed surface around the monopole should
vanish, contradicting (4.15).
Keeping this in mind we look now for solutions to Eq. (4.15). Working in spher-

ical coordinates we find

Br
1
4'

g
x 2

, B* B& 0. (4.16)

Away from the position of the monopole (x 0) the magnetic field can be derived
from the vector potential

A*
1
4'

g
x
tan

&
2

, Ar A& 0. (4.17)

As expected we find that this vector potential is actually singular around the half-
line & ' (see Fig. 4.2). This singular line starting at the position of the monopole
is called the Dirac string and its position changes with a change of gauge but cannot
be eliminated by any gauge transformation. Physically we can see it as an infinitely
thin solenoid confining a magnetic flux entering into the magnetic monopole from
infinity that equals the outgoing magnetic flux from the monopole.
Since the position of the Dirac string depends on the gauge chosen it seems

that the presence of monopoles introduces an ambiguity. This would be rather
strange, since Maxwell equations are gauge invariant also in the presence of mag-
netic sources. The solution to this apparent riddle lies in the fact that the Dirac string
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The Dirac string can be changed by gauge transformations, in doing QM it has to be 
unobservable.  Then we can do a “A-B” like argument (Dirac did it 20 years earlier).  We should 
not forget the fact that there is a factor of 
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does not pose any consistency problem as far as it does not produce any physical
effect, i.e. if its presence turns out to be undetectable. From our discussion of the
Aharonov-Bohm effect we know that the wave function of charged particles pick up
a phase (4.9) when surrounding a region where magnetic flux is confined (such as
the solenoid in the Aharonov-Bohm experiment).We explained that the Dirac string
associated with the monopole can be seen as a infinitely thin solenoid. Therefore it
will be unobservable if the phase picked up by the wave function of a charged par-
ticle is equal to one. A simple calculation of this phase in the field of the monopole
shows that this happens if

eieg 1 eg 2!n with n Z. (4.18)

Interestingly, we are led to the conclusion that the presence of a single magnetic
monopole somewhere in the Universe implies for consistency the quantization of
the electric charge in units of 2!g , where g is the magnetic charge of the monopole

1

The idea of the magnetic monopole can be extended to dyons, particles having
both electric and magnetic charge q,g . The equations of motion for such a particle
in an electromagnetic field can be written remembering that the magnetic charges
couple to the dual field strength and requiring invariance under duality. This leads
to

mxµ qFµ" gFµ" x" , (4.19)

where m is the mass of the dyon and the dot indicates differentiation with respect to
the proper time. Writing the right-hand side of this equation in components in the
nonrelativistic limit we get the generalization of the Lorentz force acting on a dyon
with charges q,g

F q E v B g B v E . (4.20)

The invariance under duality is obvious if we notice that the parenthesis in the right-
hand side of (4.19) can be written as Im q ig Fµ" iFµ" , which is manifestly
invariant.
The Dirac quantization condition, valid for an electrically charged particle and

a magnetic monopole, can be extended to two dyons with charges q1,g1 and
q2,g2 . To obtain this new condition one could proceed as in the case of the Dirac
monopole and impose the condition that the corresponding singularities of the gauge
potentials are unobservable. Here instead we are going to exploit the invariance of
both the extended Maxwell equations and the equations of motion of the dyons un-
der duality transformations.

1 The quantization of the electric charge has another consequence which is that the gauge trans-
formations of the wave function (4.7) are periodic. Using a technical jargon one says that the U(1)
gauge group gets compactified (see Appendix B). Although it might seem just a technical point,
this has important physical consequences for the production of monopoles in gauge theories.
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4.2 Quantization of the Electromagnetic Field. 49

These two facts implies that the proper quantization condition for the charge of
the dyons should also be duality invariant and, moreover, reduce to the Dirac quanti-
zation condition for the case q1,g1 e,0 , q2,g2 0,g . Taking into account
how the electric and magnetic charge transforms it is obvious that the following
combination is duality invariant

q1 ig1 q2 ig2 q1q2 g1g2 i q1g2 q2g1 . (4.21)

A look at the Lorentz force shows q1g2 q2g1 is the coupling constant of the
velocity-dependent part of the force between the two dyons. The other duality-
invariant combination,q1q2 g1g2, gives the strength of the coupling of the velocity-
independent part of this force, i.e. their “Coulomb” interaction. Since the imaginary
part of Eq. (4.21) reduces to the Dirac quantization condition in the appropriate
limit, we arrive at

q1g2 q2g1 2!n, where n Z, (4.22)

called the Dirac-Schwinger-Zwanziger quantization condition [3].
There are some difficulties in considering quantum theories with fundamental

magnetic monopoles. One of them is that they cannot be handled in perturbation
theory, since the Dirac quantization condition implies that electric and magnetic
coupling constants are inverse of each other and cannot be simultaneously small.
This problem is avoided if monopoles are not fundamental objects, but field con-
figurations with finite size and energy. It was proved by ’t Hooft and Polyakov [4]
that many gauge theories contain such monopole solitonic solutions. The ’t Hooft-
Polyakov monopoles have masses that scale with the inverse of the coupling con-
stant, and therefore they are very heavy when the theory is weakly coupled. Only
at large gauge couplings this objects become light and can be counted among the
low-lying excitations of the system.
Monopoles are believed to have been produced copiously in the very early Uni-

verse. It is a generic prediction of grand unified theories that monopoles forms when
a semisimple gauge group is spontaneously broken leaving a U(1) factor (sponta-
neous symmetry breaking will be explained in Chapter 7). The reason is that this
U(1) is compact in the sense explained in the footnote of page 48, and therefore
can “accommodate” monopole solutions. The fact that these monopoles are not ob-
served today is believed to be the result of the dilution they underwent during the
inflationary era that presumably followed their production.

4.2 Quantization of the Electromagnetic Field.

We now proceed to the quantization of the electromagnetic field in the absence of
sources " 0, j 0. In this case the Maxwell equations (4.10) can be derived from
the Lagrangian density
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Electromagnetic Fields and Photons

Ignoring sources, the E&M field is a “free field”
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Although in general the procedure to quantize the Maxwell Lagrangian is not very
different from the one used for the Klein-Gordon or the Dirac field, here we need
to deal with a new ingredient: gauge invariance. Unlike the cases studied so far,
here the photon field Aµ is not unambiguously defined because the action and the
equations of motion are insensitive to the gauge transformations Aµ Aµ µ" .
A first consequence of this symmetry is that the theory has less physical degrees of
freedom than one would expect from the fact that we are dealing with a vector field.
The way to tackle the problem of gauge invariance is to fix the freedom in choos-

ing the electromagnetic potential before quantization. This can be done in several
ways, for example by imposing the Lorentz gauge fixing condition

µAµ 0. (4.24)

Notice that this condition does not fix completely the gauge freedom since Eq. (4.24)
is left invariant by gauge transformations satisfying µ

µ" 0. One of the advan-
tages, however, of the Lorentz gauge is that it is covariant and therefore does not
pose any danger to the Lorentz invariance of the quantum theory. Besides, applying
it to the Maxwell equation µFµ! 0 one finds

0 µ
µA! ! µAµ µ

µA! . (4.25)

Because Aµ satisfies the massless Klein-Gordon the photon, the quantum of the
electromagnetic interaction, has zero mass.
Once gauge invariance is fixed Aµ t,x can be expanded in a complete basis of

plane-wave solutions to Eq. (4.25)

"µ k,# e i k t ik x, (4.26)

where # 1 represents the helicity of the photon and "µ k,# are the correspond-
ing polarization vectors. The Lorentz gauge condition (4.24) forces the polarization
vectors to be transverse

kµ"µ k,# kµ"µ k,# 0. (4.27)

Now, upon quantization, the gauge field operator Aµ t,x can be written as the fol-
lowing expansion

Aµ t,x
# 1

d3k
2$ 3

1
2 k

"µ k,# a k,# e i k t ik x

"µ k,# a k,# ei k t ik x . (4.28)

In addition, the canonical commutation relations imply that

Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

4.1 Classical Gauge Fields

In classical electrodynamics the basic quantities are the electric and magnetic fields
E and B. These can be expressed in terms of the scalar and vector potential ! ,A
as

E "!
A
t
,

B " A. (4.1)

From these equations follows that there is an ambiguity in the definition of the
potentials given by the gauge transformations

! t,x ! t,x
t
# t,x , A t,x A t,x "# t,x . (4.2)

From a classical point of view the introduction of the potentials ! ,A is seen as
a technicality that helps solving the Maxwell equations, but without physical rele-
vance.
The equations of electrodynamics can be recast in a manifestly Lorentz invariant

form using the four-vector gauge potential Aµ ! ,A and the antisymmetric rank-
two tensor: Fµ$ µA$ $Aµ . Maxwell’s equations become

µFµ$ jµ ,

#µ$%& $F%& 0, (4.3)

where the four-current jµ ' , j contains the charge density and the electric cur-
rent. The field strength tensor Fµ$ and the Maxwell equations are invariant under
gauge transformations (4.2), which in covariant form read

Aµ Aµ µ#. (4.4)
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As usual, we look for plane wave solutions 
Residual gauge transformation used to fully 
fix the gauge

k2 = kµk
µ = (k0)2 − k2 = 0
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In addition, the canonical commutation relations imply that

�µ(k,λ) → �µ(k,λ) + kµ χ(k), k2 = 0

Now, as usual we expand the field in oscillator and apply CCR.  After fully fixing the gauge there are only two physical 
polarisations.  Gauge invariance seems more a redundancy rather than a symmetry in the description of the theory
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The electric field is the 
momentum p and the 
vector potential the 
“coordinate” q
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In addition, the canonical commutation relations imply that
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a k,! ,a k ,! i 2" 3 2 k # k k #!!
a k,! ,a k ,! a k,! ,a k ,! 0. (4.29)

Therefore a k,! , a k,! form a set of creation-annihilation operators for photons
with momentum k and helicity ! .
Behind the simple construction presented above there are a number of subtleties

related with gauge invariance. In particular the gauge freedom seem to introduce
states in the Hilbert space with negative probability. A careful analysis shows that
when gauge invariance if properly handled these spurious states decouple from
physical states and can be eliminated. The details can be found in standard text-
books (see Ref. [1] in Chapter 1).

4.3 Coupling Gauge Fields to Matter.

Once we have learned how to quantize the electromagnetic field we consider inter-
acting theories containing electrically charged particles, for example electrons. To
couple the Dirac Lagrangian to electromagnetism we use as guiding principle what
we learned about the Schrödinger equation for a charged particle. There we saw that
the gauge ambiguity of the electromagnetic potential is compensated with a U(1)
phase shift in the wave function. In the case of the Dirac equation we know that the
Lagrangian is invariant under$ eie%$ , with % a constant. However this invariance
is broken as soon as one identifies % with the gauge transformation parameter of the
electromagnetic field which depends on the position.
Looking at the Dirac Lagrangian (3.34) it is easy to see that in order to promote

the global U(1) symmetry into a local one, $ eie% x $ , it suffices to replace the
ordinary derivative µ by a covariant one Dµ satisfying

Dµ eie% x $ eie% x Dµ$ . (4.30)

This covariant derivative can be constructed in terms of the gauge potential Aµ as

Dµ µ ieAµ . (4.31)

The Lagrangian of a spin- 12 field coupled to electromagnetism is written as

LQED
1
4
Fµ&Fµ& $ iD m $ , (4.32)

invariant under the gauge transformations

$ eie% x $ , Aµ Aµ µ% x . (4.33)

Unlike the theories we have seen so far, the Lagrangian (4.32) describe an inter-
acting theory. By plugging (4.31) into the Lagrangian we find that the interaction
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Dµ µ ieAµ . (4.31)

The Lagrangian of a spin- 12 field coupled to electromagnetism is written as

LQED
1
4
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Unlike the theories we have seen so far, the Lagrangian (4.32) describe an inter-
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If we keep all four polarisation by partial gauge fixing, 
then we get negative probabilities (Gupta-Bleuler, BRST)

δλ,λ� → −ηλ,λ�
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Coupling matter

We imitate the coupling in the Schrödinger equation, this is what used to be called minimal coupling.  We make 
derivatives covariant with respect to space-time dependent changes of phases in the wave-function

Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

4.1 Classical Gauge Fields

In classical electrodynamics the basic quantities are the electric and magnetic fields
E and B. These can be expressed in terms of the scalar and vector potential ! ,A
as

E "!
A
t
,

B " A. (4.1)

From these equations follows that there is an ambiguity in the definition of the
potentials given by the gauge transformations

! t,x ! t,x
t
# t,x , A t,x A t,x "# t,x . (4.2)

From a classical point of view the introduction of the potentials ! ,A is seen as
a technicality that helps solving the Maxwell equations, but without physical rele-
vance.
The equations of electrodynamics can be recast in a manifestly Lorentz invariant

form using the four-vector gauge potential Aµ ! ,A and the antisymmetric rank-
two tensor: Fµ$ µA$ $Aµ . Maxwell’s equations become

µFµ$ jµ ,

#µ$%& $F%& 0, (4.3)

where the four-current jµ ' , j contains the charge density and the electric cur-
rent. The field strength tensor Fµ$ and the Maxwell equations are invariant under
gauge transformations (4.2), which in covariant form read

Aµ Aµ µ#. (4.4)
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Finally, the equations of motion of charged particles are given, in covariant form, by

m
duµ

d!
eFµ"u" , (4.5)

where e is the charge of the particle and uµ ! its four-velocity as a function of the
proper time. These equations of motion, depending only on the field strength Fµ" ,
are gauge invariant.
The physical role of the vector potential becomes manifest only in QuantumMe-

chanics. Using the prescription of minimal substitution p p eA, the Schrödinger
equation describing a particle with charge e moving in an electromagnetic field is

i
t
#

1
2m

$ ieA 2 e% # . (4.6)

Because of the explicit dependence on the electromagnetic potentials % and A, this
equation seems to change under the gauge transformations (4.2). This is physically
acceptable only if the ambiguity does not affect the probability density given by
# t,x 2. Therefore, a gauge transformation of the electromagnetic potential should
amount to a change in the (unobservable) phase of the wave function. This is indeed
what happens: the Schrödinger equation (4.6) is invariant under the gauge transfor-
mations (4.2) provided the phase of the wave function is transformed at the same
time according to

# t,x e ie& t,x # t,x . (4.7)

The Aharonov-Bohm effect.

This interplay between gauge transformations and the phase of the wave function
give rise to surprising phenomena. The first evidence of the role played by the elec-
tromagnetic potentials at the quantum level was pointed out by Yakir Aharonov and
David Bohm [1]. Let us consider a double slit experiment as shown in Fig. 4.1,
where we have placed a shielded solenoid just behind the first screen. Although
the magnetic field is confined to the interior of the solenoid, the vector potential is
nonvanishing also outside. Of course the value of A outside the solenoid is a pure
gauge, i.e.$ A 0, however because the region outside the solenoid is not simply
connected the vector potential cannot be gauged to zero everywhere.
If we denote by# 0

1 and# 0
2 the wave functions for each of the two electron

beams in the absence of the solenoid, the total wave function once the magnetic field
is switched on can be written as

# eie '1
A dx# 0

1 eie '2
A dx# 0

2

eie '1
A dx # 0

1 eie ' A dx# 0
2 , (4.8)
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a k,! ,a k ,! i 2" 3 2 k # k k #!!
a k,! ,a k ,! a k,! ,a k ,! 0. (4.29)

Therefore a k,! , a k,! form a set of creation-annihilation operators for photons
with momentum k and helicity ! .
Behind the simple construction presented above there are a number of subtleties

related with gauge invariance. In particular the gauge freedom seem to introduce
states in the Hilbert space with negative probability. A careful analysis shows that
when gauge invariance if properly handled these spurious states decouple from
physical states and can be eliminated. The details can be found in standard text-
books (see Ref. [1] in Chapter 1).

4.3 Coupling Gauge Fields to Matter.

Once we have learned how to quantize the electromagnetic field we consider inter-
acting theories containing electrically charged particles, for example electrons. To
couple the Dirac Lagrangian to electromagnetism we use as guiding principle what
we learned about the Schrödinger equation for a charged particle. There we saw that
the gauge ambiguity of the electromagnetic potential is compensated with a U(1)
phase shift in the wave function. In the case of the Dirac equation we know that the
Lagrangian is invariant under$ eie%$ , with % a constant. However this invariance
is broken as soon as one identifies % with the gauge transformation parameter of the
electromagnetic field which depends on the position.
Looking at the Dirac Lagrangian (3.34) it is easy to see that in order to promote

the global U(1) symmetry into a local one, $ eie% x $ , it suffices to replace the
ordinary derivative µ by a covariant one Dµ satisfying

Dµ eie% x $ eie% x Dµ$ . (4.30)

This covariant derivative can be constructed in terms of the gauge potential Aµ as

Dµ µ ieAµ . (4.31)

The Lagrangian of a spin- 12 field coupled to electromagnetism is written as

LQED
1
4
Fµ&Fµ& $ iD m $ , (4.32)

invariant under the gauge transformations

$ eie% x $ , Aµ Aµ µ% x . (4.33)

Unlike the theories we have seen so far, the Lagrangian (4.32) describe an inter-
acting theory. By plugging (4.31) into the Lagrangian we find that the interaction
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The rigid phase rotation invariance of the Dirac Lagrangian for electrons is transformed into local phase rotations, a 
physically more satisfactory concept.  This defines the coupling of the electron to the E&M field:

This is QED, the best tested theory in the history of science, an 
example is the gyromagnetic ratio of the electron, 
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between fermions and photons to be

L int
QED eAµ!"µ! . (4.34)

As advertised above, in the Dirac theory the electric current four-vector is given by
jµ e!"µ! .
The quantization of interacting field theories poses new problems that we did not

meet in the case of the free theories. In particular in most cases it is not possible
to solve the theory exactly. When this happens the physical observables have to
be computed in perturbation theory in powers of the coupling constant. An added
problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables are plagued with infinities that should
be taken care of. We will go back to this problem in Chapter 9.

4.4 Nonabelian Gauge Theories.

Quantum electrodynamics (QED) is the simplest example of a gauge theory cou-
pled to matter based in the abelian gauge symmetry of local U(1) phase rotations.
However, it is possible also to construct gauge theories based on nonabelian groups.
Actually, our knowledge of the strong and weak interactions is based on the use of
such nonabelian generalizations of QED, the Yang-Mills theories.
Let us consider a gauge group G with generators Ta, a 1, . . . ,dimG satisfying

the Lie algebra2

Ta,Tb i f abcT c. (4.35)

A gauge field taking values on the Lie algebra g of the group G can be introduced
Aµ AaµTa which transforms under a gauge transformations as

Aµ
1

igYM
U µU 1 UAµU 1, U ei#

a x Ta , (4.36)

where gYM is the coupling constant. These gauge transformations are non-linear in
the gauge function #a. Infinitesimally, the fields Aaµ transform according to

$Aaµ
1
gYM

µ#a f abcAbµ#
c (4.37)

The field strength tensor associated with the nonabelian gauge field Aaµ is defined
as

Faµ% µAa% %Aaµ gYM f abcAbµA
c
% . (4.38)

2 Some basics facts about Lie groups have been summarized in Appendix A.

g/2 = 1.00115965218085(76)

α−1 = 137.035999070(98)

g
e

8m
[γµ, γν ]Fµν
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Group Theory reminder
For the SM all group we will need are:

G : U(1), SU(2), SU(3)

g ∈ G g = ei�
a Ta

[T a , T b] = ifabc T c

tr(T aT b) = T2(R) δab

GSM = SU(3)× SU(2)× U(1)

U(1) is of course the simplest, just phase multiplication, i.e. as in QED

SU(2): angular momentum, isospin, and also weak isospin

244 B A Crash Course in Group Theory

SU(2)

The group SU(2) is well-known from the theory of angular momentum in quantum
mechanics. Its Lie algebra has three generators T 1,T 2,T 3 that satisfy the algebra

Ta,Tb i!abcT c. (B.8)

The generators

T
1
2
T 1 iT 2 , T 3 (B.9)

can alternatively be used to write the SU(2) Lie algebra as

T 3,T T , T ,T T 3. (B.10)

Either form of the algebra shows that no subset of generators is mutually commut-
ing. Therefore the Cartan subalgebra of SU(2) can be taken to be made of a single
generator that, by convention, we can take to be T 3.
Using (B.10) the irreducible representations of the Lie algebra of SU(2) can be

constructed following the standard techniques familiar from quantum mechanics.
The are characterize by their spin s, a nonnegative integer or half-integer, and have
dimension 2s 1. Here we focus on two basic representations. One is the fundamen-
tal two-dimensional representation with spin s 1

2 ). The generators can be written
in terms of the Pauli matrices as

Ta
1
2
"a, a 1,2,3, (B.11)

whereas finite transformations in the connected component of the identity are

D 1
2
#i e

i
2#i"

i
, (B.12)

The second representation of SU(2) that wemention here is the three-dimensional
adjoint (or spin 1) representation which can be written as

D1 #i e i#iJi , (B.13)

with the generators given by

J1
0 0 0
0 0 1
0 1 0

, J2
0 0 1
0 0 0
1 0 0

, J3
0 1 0
1 0 0
0 0 0

. (B.14)

Actually, Ji (i 1,2,3) generate rotations around the x, y and z axis respectively.
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Actually, Ji (i 1,2,3) generate rotations around the x, y and z axis respectively.

det g = 1 ⇒ trT a = 0 (for SU(2), SU(3) not for U(1) of course)

For spin ½ 
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constructed following the standard techniques familiar from quantum mechanics.
The are characterize by their spin s, a nonnegative integer or half-integer, and have
dimension 2s 1. Here we focus on two basic representations. One is the fundamen-
tal two-dimensional representation with spin s 1

2 ). The generators can be written
in terms of the Pauli matrices as

Ta
1
2
"a, a 1,2,3, (B.11)

whereas finite transformations in the connected component of the identity are

D 1
2
#i e

i
2#i"

i
, (B.12)

The second representation of SU(2) that wemention here is the three-dimensional
adjoint (or spin 1) representation which can be written as

D1 #i e i#iJi , (B.13)

with the generators given by

J1
0 0 0
0 0 1
0 1 0

, J2
0 0 1
0 0 0
1 0 0

, J3
0 1 0
1 0 0
0 0 0

. (B.14)

Actually, Ji (i 1,2,3) generate rotations around the x, y and z axis respectively.

For spin 1 

tr
σa

2

σa

2
=

1

2
δab

For SU(3) the generators are the eight Gell-Mann 3x3 traceless hermitean matrices chosen to satisfy:

tr
λa

2

λa

2
=

1

2
δab; a, b = 1, . . . , 8

a, b = 1, 2, 3

 SU(3) of color, an exact gauge symmetry,  also flavor SU(3), which is global (see later)
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Fig. 5.1 The lowest-lying pseudoscalar mesons. The masses of the particles are indicated in paren-
thesis.

An important relation is the Gell-Mann-Nishijima formula that gives the electric
charge of an strong-interacting particle in terms of its third isospin component and
strangeness

Q I3
B S
2

, (5.6)

where B is the baryon number, that takes the values B 1 for baryons, B 1
for antibaryons and B 0 for mesons. The combination Y 1

2 B S defines the
strong hypercharge that is conserved in strong interaction processes.

Weak interaction.

After gravity the weak interaction is the most universal force in Nature since every
knownmatter particle take part in it. This includes all hadrons as well as a number of
nonhadronic particles called leptons. In spite of its feebleness, the weak interaction
cannot produce bound states, it is behind very important physical processes such as
neutron beta decay

n p e #e, (5.7)

responsible for the radioactive disintegration of nuclei.
Neutron beta decay is an example of a process mediated by a so-called weak

charged current: the hadronic n, p and leptonic e ,#e pare contain particles
whose electric charge differ in one unit. Another example of this kind of processes
is provided by muon decay
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There are very few representations we will need 
for color SU(3):

3, 3̄, 8

qu
ar

ks

an
tiq

ua
rk

s

gl
uo

ns
For flavor SU(3) more needed: mesons, 
baryons

3, 3̄, 8, 10, 10, 27 . . .

A remarkable fact about the SM and QCD in particular is 
the fact that once we write the most general Lagrangian 
compatible with color gauge symmetry,  flavor appears as 
an approximate global symmetry of the problem, although 
it was theorised earlier.5.3 Quantum Chromodynamics 79

quarks and has total spin s 3
2 . Then, its wave function with sz

3
2 has to be

! ;sz 3
2 uuu u ,u ,u . (5.24)

As it stands, the wave function is symmetric under the interchange of any of the
identical three quarks. This is indeed a problem because quarks are fermions and
therefore their total wave function has to be completely antisymmetric. One way
way to avoid the problem is if each quark has an extra index taking three values, ui
with i 1,2,3. Then, the wave function

! ;sz 3
2

1
3!
"i jk ui ,u j ,uk . (5.25)

is antisymmetric under the interchange of any of the constituent quarks, as required
by their fermionic statistics. This new quantum number is called color. The conclu-
sion we have reached is that each quark flavor comes in tree different states labeled
by this new index.
The color quantum number is the key to the formulation of a theory of strong

interaction able to give account of the phenomenology. This theory is called Quan-
tum Chromodynamics (QCD) and is a nonabelian gauge theory based on the gauge
group SU(3). This group acts on the color index of the quark spinor field as

Qf
i U g i j Q f

j , with g SU(3), (5.26)

where f 1, . . . ,6 runs over the six quark flavors and U g is an element of the
fundamental representation of the gauge group. The Lagrangian of the theory can
be constructed using what we learned in section 4.4

LQCD
1
4
Faµ#F

aµ#
6

f 1
Qf iD mf Qf . (5.27)

To keep the notation simple we have omitted the color indices. The nonabelian
gauge field strength Faµ# (with a 1, . . . ,8) and the covariant derivative Dµ are
given in terms of the SU(3) gauge field Aaµ by (4.38) and (4.45) respectively. In the
latter case the generators TaR are the Gell-Mann matrices listed in equation (B.16).
The QCD Lagrangian (5.27) leads to a theory where the interaction between

quarks have the features required to explain both quark confinement and the deep
inelastic scattering experiments. Unfortunately, at this point we cannot be more ex-
plicit because we still have to learn quite a lot about how to quantize an interacting
field theory such as QCD. The most we can say now is that quantum effects in
this theory result in an effective force between quarks that grows at large distances,
whereas it tends to zero at short distances. The clarification of this statement will
have to wait until chapter 9.
From the point of view of the quark model it seems rather arbitrary that hadrons

results form bound states of either a quark and an antiquark or of three quarks. Why
not, let us say, having hadrons made of two quarks? QCD offers an explanation of
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choice for the proton and neutron wave functions, uud and udd , are not good
candidates. This is because these states are eigenstate of the third component of the
isospin I3 but not of the total isospin I2. Indeed, for the case of the proton the states
with well defined total isospin are1

uud S
1
6

uud udu 2 duu ,

uud A
1
2

uud udu . (5.15)

Both states have I 1
2 , I3

1
2 . The subscripts indicate that the states are symmetric

and antisymmetric with respect to the interchange of the two last states. The proton
is in fact a linear combination of these two states. To find the precise one we need to
take into account that the total wave function, including the spin degrees of freedom,
have to be antisymmetric under the interchange of any two quarks. Taking this into
account we have

p
1
2

uud S A uud A S ,

p
1
2

uud S A uud A S . (5.16)

The spin states A,S, A,S are eigenstates of the total spin (with s 1
2 ) and its

third component (sz 1
2 ), the subscripts indicating again that the wave functions

are symmetric and antisymmetric in the last two states. For example, for the spin-up
states we have

S
1
6

2 ,

A
1
2

. (5.17)

A similar analysis can be carried out for the neutron, whose flavor wave function is
written in terms of the states ddu S,A which have I 1

2 , I3
1
2 .

Protons and neutrons are not the only hadrons made out of u and d quarks. By
simple countingwe see that there are 23 8 possible baryon states. Keeping in mind
that quarks transform in the fundamental representation of the SU(2)I isospin group
these states are classified by the irreducible representations contained in the product
representation

2 2 2 4 2S 2A. (5.18)

1 Here we have to remember that the isospin operator acting on the Hilbert space of three particles
has the form Ii I 1i 1 1 1 I 2i 1 1 1 I 3i , where I ai is the isospin operator acting
on the Hilbert space of the a-th particle.
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pseudo-scalar meson octet
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Gauge theories and their quantisation

Imagine we have a theory with a global symmetry

ψ → g ψ ψ̄ → ψ̄g† L = ψ̄i/∂ ψ

Imitating electromagnetism:

∂µ → Dµψ =
�
∂µ + ieAa

µT
a
�
ψ ≡ (∂µ + ieAµ)ψ Dµψ → gDµψ

We can read off the gauge field transformations

Aµ → 1

ie
g ∂µg

−1 + gAµ g
−1

g ≈ 1 + � Aµ → Aµ +
1

ie
Dµ� Dµ�+ ie[Aµ, �]

[Dµ, Dν ] = ieT aF a
µν , F a

µν = ∂µA
a
ν − ∂νA

a
µ − efabcAb

µA
c
ν

Fµν ≡ T aF a
µν → gFµν g

−1

Nonabelian gauge fields have self-couplings unlike photons.  This is responsible for 
confinement, among other things
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54 4 Theories and Lagrangians II: Introducing Gauge Fields

L
1
4
Faµ!F

µ! a i"D" Dµ# Dµ#

" M1 # i$5M2 # " V # . (4.46)

In order to keep the theory renormalizable we have to restrict M1 # and M2 #
to be at most linear in # whereas V # have to be at most of quartic order. The
Lagrangian of the Standard Model is of the form (4.46).

4.5 Understanding Gauge Symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the replace-
ment of generalized velocities by momenta

pi
L
qi

qi qi q, p . (4.47)

Most of the times there is no problem in inverting the relations pi pi q,q . How-
ever in some systems these relations might not be invertible and result in a number
of constraints of the type

fa q, p 0, a 1, . . . ,N1. (4.48)

These systems are called degenerate or constrained [5, 6].
The presence of constraints of the type (4.48) makes the formulation of the

Hamiltonian formalism more involved. The first problem is related to the ambi-
guity in defining the Hamiltonian, since the addition of any linear combination of
the constraints do not modify its value. Secondly, one has to make sure that the
constraints are consistent with the time evolution in the system. In the language of
Poisson brackets this means that further constraints have to be imposed in the form

fa,H PB 0. (4.49)

Following [5] we use the symbol to indicate a “weak” equality that holds when
the constraints fa q, p 0 are satisfied. Notice however that since the computation
of the Poisson brackets involves derivatives, the constraints can be used only after
the bracket is computed. In principle the conditions (4.49) can give rise to a new
set of constraints gb q, p 0, b 1, . . . ,N2. Again these constraints have to be
consistent with time evolution and we have to repeat the procedure. Eventually this
finishes when a set of constraints is found that do not require any further constraint
to be preserved in time3.

3 In principle it is also possible that the procedure finishes because some kind of inconsistent
identity is found. In this case the system itself is inconsistent as it is the case with the Lagrangian
L q,q q.

General gauge theory Lagrangian:

We need to provide the gauge 
g r o u p a n d t h e m a t t e r 
representations for bosons and 
fermions and off we go

General Gauge Theory

Quantising a gauge theory is no joke.  There are plenty of subtleties. We give you just a taste

We can define chromoelectric and magnetic fields as in QED

F a
0i = ∂0A

a
i − ∂iA

a
0 − iefabcAb

0A
c
i ≡ Ea

i

F a
ij = �ijkB

a
k , F a

0i = ∂0A
a
0 −DiA

a
0

The canonical variables are

Aa,Ea

Aa
0 implements a constraint

We can read off the Hamiltonian density

L = Ea ∂0A
a − 1

2
(E2 +B2)−Aa

0 (D ·E)a

Tuesday, 16 October, 2012
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General Gauge Theory

H =

�
d
3
x

�
1

2
(E2 +B2) +A

a
0 (D ·E)a

�

[Aa
i (x, 0), E

b
j (y, 0)] = i δij δ

abδ(x− y)

We can fix the gauge A_0=0 so that we only 
h a v e t i m e - i n d e p e n d e n t g a u g e 
transformations in the Hamiltonian theory, 
but we are missing one of the equations of 
motion, Gauss’ law that has to be 
implemented as a constraint.

(D ·E)a = 0 Cannot be implemented at the operator level.  It generates gauge 
transformations

[Q(�), Aa
i ] = i(D�)a U(�) = exp(i

�
d
3
x �

a(x) (D ·E)a), U H U
−1 = H

Gauss’ law becomes a condition on the physical states:

U(�)|phys� = |phys�

D ·E |phys� = 0

Each gauge configuration sits in an orbit and we need choose only 
one element, this is done by “fixing” the gauge for the t-
independent gauge transf.

WE HAVE 2-DIM G PHYSICAL DEGREES OF FREEDOM
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Some remarks

❖  Gauge symmetry is more a redundant description of the d.o.f.

❖  Gauss’ law implements gauge invariance under gauge t. connected to the identity. 
Consider finite-E configurations

58 4 Theories and Lagrangians II: Introducing Gauge Fields

Since states have to be identified by gauge transformations the topology of the
gauge group plays an important physical role. To illustrate the point let us first deal
with a toy model of a U(1) gauge theory in 1+1 dimensions. Later we will be more
general. In the Hamiltonian formalism gauge transformations g x are functions
defined on R with values on the gauge group U(1)

g :R U 1 . (4.64)

We assume that g x is regular at infinity. In this case we can add to the real line R

the point at infinity to compactify it into the circumference S1 (see Fig. 4.3). Once
this is done g x are functions defined on S1 with values on U 1 S1 that can be
parametrized as

g : S1 U 1 , g x ei! x , (4.65)

with x 0,2" .

... ...

.

8 8

(a) (b)

Fig. 4.3 Compactification of the real line (a) into the circumference S1 (b) by adding the point at
infinity.

Because S1 does have a nontrivial topology, g x can be divided into topological
sectors. These sectors are labelled by an integer number n Z and are defined by

! 2" ! 0 2" n . (4.66)

Geometrically n gives the number of times that the spatial S1 winds around the
S1 defining the gauge group U(1). This winding number can be written in a more
sophisticated way as

S1

g x 1dg x 2"n , (4.67)

where the integral is along the spatial S1.
In R3 a similar situation happens with the gauge group4 SU(2). If we demand

g x SU(2) to be regular at infinity x we can compactify R3 into a three-
dimensional sphere S3, exactly as we did in 1+1 dimensions. On the other hand, the
matrices g x can be parameterized as
4 Although we present for simplicity only the case of SU(2), similar arguments apply to any simple
group.

g(x) = eiα(x) → 1 |x| → ∞
α(x) → 0 |x| → ∞

There are others, and Gauss’ law cannot impose invariance

g(x) : S3 → G, g(∞) = 1
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g x a0 x 1 ia x ! (4.68)

and the conditions g x g x 1, detg 1 implies that a0 2 a2 1. This shows
that SU(2) is a three-dimensional sphere and therefore g x defines a map from the
spatial S3 to the S3 defined by the gauge group

g : S3 S3. (4.69)

As in the case in 1+1 dimensions here the gauge transformations g x are also di-
vided into topological sectors labelled this time by the integer winding number

n
1

24"2 S3
d3x#i jkTr g 1

ig g 1
ig g 1

ig . (4.70)

In the two cases analyzed we have found that, due to the nontrivial topology of
the gauge group manifold, gauge transformations are divided into different sectors
labelled by an integer n. Because this winding number is a continuous function of the
gauge transformation g x , two transformations with different values of n cannot be
smoothly deformed into each other. In particular, the sector with n 0 corresponds
to those transformations that can be continuously connected with the identity.
Now we will be a bit more formal. Let us consider a gauge theory in 3+1 dimen-

sions with gauge groupG and let us denote by G the set of all gauge transformations
G g : S3 G . At the same time we define G0 as the set of transformations in
G that can be smoothly deformed into the identity. Our theory will have topological
sectors if

G G0 1. (4.71)

The existence of topological sectors in three-dimensional gauge theories is con-
trolled by a mathematical object called the third homotopy group of the gauge group
manifoldMG that is denoted by "3 MG . It can be proved (see for example [8]) that
"3 S1 1, i.e. the homotopy group is trivial, and therefore no topological sectors
appear in three-dimensional electrodynamics. On the other hand, "3 S3 Z and as
a consequence the topological sectors of the SU(2) gauge theory are labelled by a
single integer, the winding number5.
In the case of the electromagnetism we have seen that Gauss’ law annihilates

physical states. For a nonabelian theory the analysis is similar and leads to the con-
dition

U g0 phys exp i d3x$a x % Ea phys phys , (4.72)

where g0 x ei$a x Ta is in the connected component of the identity G0. The im-
portant point to realize here is that only the elements of G0 can be written as expo-

5 The existence of topological sectors in (1+1)-dimensional electrodynamics is a consequence of
the nontrivial character of the first homotopy group of S1, namely "1 S1 Z.

You cannot comb a sphere

π3(G) = Z the integers
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A surprise: CP violation

❖  Gauge invariance only requires that under non-trivial transformations, a phase is generated.  This is a 
vacuum angle!  In fact it violates CP.

❖  It can be measured by looking for an edm of the neutron.  So far no result:

❖  The strong CP problem, axions, invisible axions, axion cosmology, dark matter...

60 4 Theories and Lagrangians II: Introducing Gauge Fields

nentials of the infinitesimal generators. Since this generators annihilate the physical
states this implies that U g0 phys phys only when g0 G0.
What happens then with gauge transformations in the other topological sectors?

If g G G0 there is still a unitary operatorU g that realizes gauge transformations
on the Hilbert space of the theory. However since g is not in the connected com-
ponent of the identity, it cannot be written as the exponential of Gauss’ law. Still
gauge invariance is preserved if U g only changes the overall global phase of the
physical states. For example, if g1 is a gauge transformation with winding number
n 1

U g1 phys ei! phys . (4.73)

It is easy to convince oneself that all transformations with winding number n 1
have the same value of ! modulo 2" . This can be shown by noticing that if g x has
winding number n 1 then g x 1 has opposite winding number n 1. Since the
winding number is additive, given two transformations g1, g2 with winding number
1, g 1

1 g2 has winding number n 0. This implies that

phys U g 1
1 g2 phys U g1 U g2 phys

ei !2 !1 phys (4.74)

and we conclude that !1 !2 mod 2" . Once we know this it is straightforward to
conclude that a gauge transformation gn x with winding number n has the follow-
ing action on physical states

U gn phys ein! phys , n Z. (4.75)

To find a physical interpretation of this result we are going to look for similar
things in other physical situations. One of then is borrowed from condensed matter
physics and refers to the quantum states of electrons in the periodic potential pro-
duced by the ion lattice in a solid. For simplicity we discuss the one-dimensional
case where the minima of the potential are separated by a distance a. When the bar-
rier between consecutive degenerate vacua is high enough we can neglect tunneling
between different vacua and consider the ground state na of the potential near the
minimum located at x na (n Z) as possible vacua of the theory. This vacuum
state is, however, not invariant under lattice translations

eiaP na n 1 a . (4.76)

It is nevertheless possible to define a new vacuum state

k
n Z

e ikna na , (4.77)

which under eiaP transforms just by a global phase

g1 ∈ G/G0 the generator
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Lagrangian analysis. In constructing the Lagrangian for the nonabelian version of
Maxwell theory we only consider the term Faµ!Fµ! a. However this is not the only
Lorentz and gauge invariant term that contains just two derivatives. We can write
the more general action

S
1
4

d4xFaµ!Fµ! a "g2YM
32#2

d4xFaµ!Fµ! a, (4.84)

where Faµ! is the dual of the field strength defined by

Faµ!
1
2
$µ!%&F%& a. (4.85)

The constant " is dimensionless in natural units. The extra term in (4.84), propor-
tional to Ea Ba, is actually a total derivative and does not change the equations of
motion or the quantum perturbation theory.
This, however, does not mean that the addition of the second piece in the action

(4.84) does not change the physics. It can be directly checked that

g2YM
32#2

Faµ!Fµ! a g2YM
16#2

Tr Fµ!Fµ!
µJ µ (4.86)

with

J µ g2YM
16#2

$µ!%&Tr F!%A&
2igYM
3

A!A%A& . (4.87)

Thus, the contribution of the second term in (4.84) can be computed using Gauss’
theorem. To ensure the convergence of the integral we assume that the vector poten-
tial A t,x approaches a pure gauge configuration both at spatial infinity and at late
and early times t . To be more precise we assume that

A t ,x 1
igYM

g x 'g x 1, (4.88)

while A t,x is taken to vanish at t . This last condition implies no loss of
generality, since it can be always achieved by an appropriate gauge transformation
of the vector potential.
In the gauge A0 0 it is easy to check thatJ i 0 at spatial infinity. Hence, the

integral of the topological term in the action only receives contributions from the
boundaries at t (see Fig. 4.4). This gives the following result

g2YM
32#2

d4xFaµ!F
µ! a

1
24#2

d3x$i jkTr g ig 1 g jg 1 g kg 1 . (4.89)
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= 4Ea ·Ba

62 4 Theories and Lagrangians II: Introducing Gauge Fields

Lagrangian analysis. In constructing the Lagrangian for the nonabelian version of
Maxwell theory we only consider the term Faµ!Fµ! a. However this is not the only
Lorentz and gauge invariant term that contains just two derivatives. We can write
the more general action

S
1
4

d4xFaµ!Fµ! a "g2YM
32#2

d4xFaµ!Fµ! a, (4.84)

where Faµ! is the dual of the field strength defined by

Faµ!
1
2
$µ!%&F%& a. (4.85)

The constant " is dimensionless in natural units. The extra term in (4.84), propor-
tional to Ea Ba, is actually a total derivative and does not change the equations of
motion or the quantum perturbation theory.
This, however, does not mean that the addition of the second piece in the action

(4.84) does not change the physics. It can be directly checked that

g2YM
32#2

Faµ!Fµ! a g2YM
16#2

Tr Fµ!Fµ!
µJ µ (4.86)

with

J µ g2YM
16#2

$µ!%&Tr F!%A&
2igYM
3

A!A%A& . (4.87)

Thus, the contribution of the second term in (4.84) can be computed using Gauss’
theorem. To ensure the convergence of the integral we assume that the vector poten-
tial A t,x approaches a pure gauge configuration both at spatial infinity and at late
and early times t . To be more precise we assume that

A t ,x 1
igYM

g x 'g x 1, (4.88)

while A t,x is taken to vanish at t . This last condition implies no loss of
generality, since it can be always achieved by an appropriate gauge transformation
of the vector potential.
In the gauge A0 0 it is easy to check thatJ i 0 at spatial infinity. Hence, the

integral of the topological term in the action only receives contributions from the
boundaries at t (see Fig. 4.4). This gives the following result

g2YM
32#2

d4xFaµ!F
µ! a

1
24#2

d3x$i jkTr g ig 1 g jg 1 g kg 1 . (4.89)

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

34

Computational tools

❖ There are two general procedures to obtain computational rules in 
QFT:  The canonical formalism and the Path Integral formulation.  

❖ You may recall that one used the Interaction Representation, Wick’s 
theorem,  T-products, Gaussian integrations…

❖  In the end we get a collection of well-defined rules that allow us to 
compute the probability amplitude associates to a given scattering process, 
out of which we can evaluate the decay width, differential and total cross 
section and many other quantities that can be observed for instance in 
collider experiments.  The next few pages provide simply a reminder

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

35

102 6 Towards Computational Rules: Feynman Diagrams

diagram to the amplitude. In the case of QED in the Feynman gauge, we have the
following correspondence for vertices and internal propagators:

! "
i

p m i# "!

µ $
i%µ$

p2 i#

!

"

µ ie&µ"! 2'
4( 4 p1 p2 p3 .

A change in the gauge would reflect in an extra piece in the photon propagator. The
delta function implementing conservation of momenta is written using the conven-
tion that all momenta are entering the vertex. In addition, one has to perform an
integration over all momenta running in internal lines with the measure

dd p
2' 4 , (6.36)

and introduce a factor of 1 for each fermion loop in the diagram4.
In fact, some of the integrations over internal momenta can actually be done using

the delta functions at the vertices, leaving just a global delta function implementing
the total momentum conservation in the diagram [cf. Eq. (6.24)]. Moreover, there is
a class of diagrams in which all integrations can be eliminated in this way. These
are the so-called tree level diagrams that contain no closed loops. On the other hand,
in the case of diagrams with loops there will be as many remaining integrations as
the number of independent loops in the diagram.
The need to perform integrations over internal momenta in loop diagrams has

important consequences in Quantum Field Theory. The reason is that in many cases
the resulting integrals are ill-defined, i.e. are divergent either at small or large values
of momenta running in the loops. In the first case one speaks of infrared divergences
and usually they cancel once all contributions to a given process are added together.
More profound, however, are the divergences appearing at large internal momenta.
These ultraviolet divergences cannot be cancelled and have to be dealt through the
renormalization procedure. We will discuss this problem in some detail in Section
9.

4 The contribution of each diagram comes also multiplied by a degeneracy factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to 1 for many diagrams.

6.3 Feynman Rules 103

Were we computing time-ordered (amputated) correlation function of operators,
this would be all. However, in the case of S-matrix amplitudes this is not the whole
story. In addition to the previous rules here one needs to attach contributions also to
the external legs in the diagram, encoded in the wave functions and/or polarization
tensor of the corresponding asymptotic states. These contain all the information
about the spin and momenta of the incoming and outgoing particles. In the case of
QED these extra factors associated with the external legs are:

Incoming fermion: ! u! p,s

Incoming antifermion: ! v! p,s

Outgoing fermion: ! u! p,s

Outgoing antifermion: ! v! p,s

Incoming photon: µ "µ p

Outgoing photon: µ "µ p

u! p,s , v! p,s are the positive and negative energy solutions of the Dirac equation
that we introduced in Chapter 3, whereas "µ p,# is the polarization tensor of the
photon with polarization # . Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram. It is important
also to keep in mind that in the computation of S-matrix amplitudes all external
states are on-shell. In Section 6.4 below we illustrate the use of the Feynman rules
for QED with the case of the Compton scattering.
Feynman diagrams are a extremely useful tool to carry out perturbative calcu-

lations, providing a very convenient bookkeeping to account for all contributions
to a process at a given order in the coupling constant. Their use is not restricted
nowadays to Quantum Field Theory, but they can be found in Condensed Matter
Physics and Statistical Mechanics as well. This, however, does not mean that carry-
ing out the actual calculation is an easy task. The number of diagrams contributing
to a process grows very fast with the order in perturbation theory and the integrals

QED Feynman rules

Integrate over loop momenta
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are equal to 1 for many diagrams.

A minus sign has to be included for every 
fermion loop and for every positron line that 
goes from the initial to the final state.  With 
some extra effort we can derive the Feynman 
rules for QCD-like theories.  They appear in 
the next page.  The quark and anti-quark 
factors are similar to the electron positron 
ones, except that we need to include color 
quantum numbers.  The real difference comes 
with the gluon or non-abelian vector bosons 
interactions, the are quite involved and 
contain a large amount of interesting physics 
p e r t u r b a t i v e l y a n d s p e c i a l l y n o n -
perturbatively.
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Standard Model Feynman rules

104 6 Towards Computational Rules: Feynman Diagrams

that arise in calculating loop diagrams also get very complicated. This means that,
generically, the calculation of Feynman diagrams beyond the first few orders very
often requires the use of computers.
Above we have introduced the Feynman rules using QED as an example. Similar

rules can be computed for other interacting quantumfield theories with scalar, vector
or spinor fields. For the nonabelian gauge theories introduced in Chapter 4 we have:

!, i " , j
i

p m i# "!
$i j

µ ,a %,b
i&µ%

p2 i#
$ ab

!, i

" , j

µ ,a ig'µ"!t
a
i j

%,b

( ,c

µ ,a g f abc &µ% p(1 p(2 permutations

µ ,a

( ,c

%,b

) ,d

ig2 f abe f cde &µ(&%) &µ)&%(

permutations

Although we have omitted them here it is understood that, as in the case of QED,
each vertex includes a delta functions implementing momentum conservation.
It is not our aim here to give a full and detailed description of the Feynman

rules for nonabelian gauge theories. It suffices to point out that, unlike the case of
QED, here the gauge fields can interact among themselves. Indeed, the three and
four gauge field vertices are a consequence of the cubic and quartic terms in the
Lagrangian (4.41). The self-interaction of the nonabelian gauge fields has crucial

Although the rules seem to be those for 
QCD, notice that we could always include in 
the group theory factors t^a-{ij} chiral 
projectors and make the group not simple but 
semi-simple as in the case of the SM:  SU(3)
xSU(2)xU(1) .  I f we work in nice 
renormalizable gauges, the only difference is 
that we have to include the Feynman rules for 
the couplings of the scalar sector.  Something 
we will do later. 

taij → taij
1

2
(1± γ5)

With this simple trick the hard part, which is 
the  coupling of the W,Z, and photons can be 
read simply from the rules in the LHS
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6.4 An Example: Compton Scattering 105

dynamical consequences and its at the very heart of its success in describing the
physics of elementary particles.

6.4 An Example: Compton Scattering

Having introduced the Feynman rules it is time now to show how they can be used
to calculate observables in physical processes. For this we are going to study an
example with important physical applications: the calculation of the cross section
for the dispersion of photons by free electrons, the so-called Compton scattering

! k," e p,s ! k ," e p ,s .

Inside the parenthesis we have indicated the momenta for the different particles,
as well as the polarizations and spins of the incoming and outgoing photon and
electrons respectively.
The first step step in our calculation is to identify all the diagrams contributing

to the process at leading order. Taking into account that the vertex of QED contains
two fermion and one photon leg, it is immediate to realize that any diagram con-
tributing to the process at hand must contain at least two vertices. Thus the leading
contribution is of order e2. A first diagram that can be drawn is:

k,"

p,s

k ,"

p ,s

This is, however, not the only possibility. Indeed, there is a second possible diagram:

k,"

p,s

p ,s

k ,"

It is important to stress that these two diagrams are topologically nonequivalent,
since deforming one into the other would require changing the label of the external
legs. Moreover one can see that, unlike the example of the Bhabha scattering studied
in the previous section, both diagrams contribute with the same sign. This is because
both diagrams are related by interchanging the incoming photon with the outgoing
one. Since photons are bosons, no minus sign comes from this permutation.
Thus, the leadingO e2 amplitude to the Compton scattering has to be computed

adding the contributions from the two diagrams shown above. Using the Feynman
rules of QED we find

One example: Thomson Scattering

106 6 Towards Computational Rules: Feynman Diagrams

ie 2u p ,s ! k
p k me
p k 2 m2e

! k u p,s (6.37)

ie 2u p ,s ! k
p k me
p k 2 m2e

! k u p,s .

with me the electron mass. As explained in Section 6.3, all incoming and outgoing
particles are on-shell,

p2 m2e p 2 and k2 0 k 2. (6.38)

The calculation at hand involves only tree-level diagrams, so there is no integra-
tion over internal momenta. To get an explicit result we begin by simplifying the
numerators. The following simple identity turns out to be very useful for this task

ab ba 2 a b 1. (6.39)

In addition, we are going to study Compton scattering at low energy when electrons
are nonrelativistic, known in the literature as Thomson scattering. More precisely,
we take all spatial momenta much smaller than the electron mass

p , k , p , k me. (6.40)

In this approximation the amplitude for Compton scattering simplifies quite a lot.
Let us begin with the first term in Eq. (6.37). Applying the identity (6.39) we can
write

p k me ! k u p,s ! k p me u p,s k! k u p,s
2p ! k u p,s . (6.41)

The first term on the right-hand side of this equation vanishes because of Eq. (3.43).
Moreover, in the approximation (6.40) we find that the electrons’ four-momenta
satisfy pµ , p µ me,0 and therefore

p ! k 0. (6.42)

This follows from the absence of temporal photon polarization, !0 k 0. Then we
conclude that at low energies

p k me ! k u p,s k! k u p,s (6.43)

and similarly for the second term in Eq. (6.37)

p k me ! k u p,s k ! k u p,s . (6.44)
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p2 m2e p 2 and k2 0 k 2. (6.38)

The calculation at hand involves only tree-level diagrams, so there is no integra-
tion over internal momenta. To get an explicit result we begin by simplifying the
numerators. The following simple identity turns out to be very useful for this task

ab ba 2 a b 1. (6.39)

In addition, we are going to study Compton scattering at low energy when electrons
are nonrelativistic, known in the literature as Thomson scattering. More precisely,
we take all spatial momenta much smaller than the electron mass

p , k , p , k me. (6.40)

In this approximation the amplitude for Compton scattering simplifies quite a lot.
Let us begin with the first term in Eq. (6.37). Applying the identity (6.39) we can
write

p k me ! k u p,s ! k p me u p,s k! k u p,s
2p ! k u p,s . (6.41)

The first term on the right-hand side of this equation vanishes because of Eq. (3.43).
Moreover, in the approximation (6.40) we find that the electrons’ four-momenta
satisfy pµ , p µ me,0 and therefore

p ! k 0. (6.42)

This follows from the absence of temporal photon polarization, !0 k 0. Then we
conclude that at low energies

p k me ! k u p,s k! k u p,s (6.43)

and similarly for the second term in Eq. (6.37)

p k me ! k u p,s k ! k u p,s . (6.44)
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Next, we turn to the denominators in Eq. (6.37). Using the mass-shell condition
we have

p k 2 m2e p2 k2 2p k m2e 2p k
2!p k 2p k (6.45)

and

p k 2 m2e p2 k 2 2p k m2e 2p k
2!p k 2p k . (6.46)

Working again in the low energy approximation (6.40) these two expressions sim-
plify to

p k 2 m2e 2me k , p k 2 m2e 2me k . (6.47)

Putting together all the previous results, the amplitude for Thomson scattering
amplitude can be written as

ie 2

2me
u p ,s " k

k
k
" k

" k
k
k

" k u p,s . (6.48)

Using again the identity (6.39) a number of times, as well as the transversality con-
dition of the polarization vectors (4.27), we end up with a handier equation

e2

me
" k " k u p ,s

k
k
u p,s

e2

2me
u p ,s " k " k

k
k

k
k

u p,s . (6.49)

With a little extra effort one can show that the second term on the right-hand side
of this equation vanishes. First we notice that in the low energy limit k k . If
in addition, we use the conservation of momentum k k p p and the identity
(3.43) to write

u p ,s " k " k
k
k

k
k

u p,s

1
k
u p ,s " k " k p me u p,s . (6.50)

Next we use the identity (6.39) to take the term p me to the right. Finally, keep-
ing in mind that in the low energy limit the electron four-momenta are orthogonal

We work in the NR approximation for 
simplicity but keeping explicit ly the 
dependence on the photon polarisations.  We 
can guess that the answer has to be a pure 
number times the classical electron radius

106 6 Towards Computational Rules: Feynman Diagrams

ie 2u p ,s ! k
p k me
p k 2 m2e

! k u p,s (6.37)

ie 2u p ,s ! k
p k me
p k 2 m2e

! k u p,s .

with me the electron mass. As explained in Section 6.3, all incoming and outgoing
particles are on-shell,

p2 m2e p 2 and k2 0 k 2. (6.38)

The calculation at hand involves only tree-level diagrams, so there is no integra-
tion over internal momenta. To get an explicit result we begin by simplifying the
numerators. The following simple identity turns out to be very useful for this task

ab ba 2 a b 1. (6.39)

In addition, we are going to study Compton scattering at low energy when electrons
are nonrelativistic, known in the literature as Thomson scattering. More precisely,
we take all spatial momenta much smaller than the electron mass

p , k , p , k me. (6.40)

In this approximation the amplitude for Compton scattering simplifies quite a lot.
Let us begin with the first term in Eq. (6.37). Applying the identity (6.39) we can
write

p k me ! k u p,s ! k p me u p,s k! k u p,s
2p ! k u p,s . (6.41)

The first term on the right-hand side of this equation vanishes because of Eq. (3.43).
Moreover, in the approximation (6.40) we find that the electrons’ four-momenta
satisfy pµ , p µ me,0 and therefore

p ! k 0. (6.42)

This follows from the absence of temporal photon polarization, !0 k 0. Then we
conclude that at low energies

p k me ! k u p,s k! k u p,s (6.43)

and similarly for the second term in Eq. (6.37)

p k me ! k u p,s k ! k u p,s . (6.44)

3.3 Dirac Spinors. 39

u k,s e ik x, s
1
2
, (3.42)

where u! k,s (! 1, . . . ,4) is a four-component spinor. Substituting in the Dirac
equation we obtain

k m u k,s 0. (3.43)

In the same way, for negative energy solutions we have

v k,s eik x, s
1
2
, (3.44)

where v! k,s has to satisfy

k m v k,s 0. (3.45)

Multiplying Eqs. (3.43) and (3.45) on the left respectively by k m we find that
the momentum is on the mass shell, k2 m2. Because of this, the wave function
for both positive- and negative-energy solutions can be labeled as well using the
three-momentum k of the particle, u k,s , v k,s .
A detailed analysis shows that the functions u k,s , v k,s satisfy the properties

u k,s u k,s 2m, v k,s v k,s 2m,

u k,s "µu k,s 2kµ , v k,s "µv k,s 2kµ , (3.46)

s 1
2

u! k,s u# k,s k m !# ,

s 1
2

v! k,s v# k,s k m !# ,

with k0 $k k2 m2. Then, a general solution to the Dirac equation including
creation and annihilation operators can be written as:

%! t,x
s 1

2

d3k
2& 3

1
2$k

u! k,s b k,s e i$kt ik x

v! k,s d k,s ei$kt ik x . (3.47)

Because we are dealing with half-integer spin fields, the spin-statistics theorem
forces a modification of the canonical quantization prescription (2.54) such that in
the case of the Dirac field the canonical Poisson brackets are replaced by anticom-
mutators

i , PB , . (3.48)

Thus we arrive to the following canonical anticommutation relations for the field
% t,x

%! t,x ,%# t,y ' x y '!# . (3.49)
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p1, . . . , pn; in . (6.3)

On the other hand, as a result of the scattering experiment a number k of particles
with momenta p1, . . . ,pk are detected. Thus, the system is now in the “out” Heisen-
berg picture state

p1, . . . , pk;out (6.4)

labelled by the momenta of the particles detected at late times. The probability am-
plitude of detecting k particles in the final state with momenta p1, . . . ,pk in the col-
lision of n particles with initial momenta p1, . . . ,pn defines the S-matrix amplitude

S in out p1, . . . , pk;out p1, . . . , pn; in . (6.5)

It is very important to keep in mind that both (6.3) and (6.4) are time-independent
states in the Hilbert space of a very complicated interacting theory. However, since
both at early and late times the incoming and outgoing particles are well apart from
each other, the “in” and “out” states can be thought as two states p1, . . . , pn and
p1, . . . , pk of the Fock space of the corresponding free theory in which the coupling
constants are zero. Then, the overlaps (6.5) can be written in terms of the matrix
elements of an S-matrix operator S acting on the free Fock space

p1, . . . , pk;out p1, . . . , pn; in p1, . . . , pk S p1, . . . , pn . (6.6)

The operator S is unitary, S S 1, Lorentz invariant and its matrix elements are
analytic in the external momenta.
In a scattering experiment there is the possibility that the particles do not interact

at all and the system is left in the same initial state. It is useful to factor out this
possibility from the S-matrix elements between initial and final states by writing

S 1 iT , (6.7)

where 1 represents the identity operator. In this way all nontrivial interactions are
encoded in the matrix elements of the T -operator, pi, . . . , pk iT p1, . . . , pn . Fur-
thermore, in these matrix elements it is convenient to factor out a delta function
implementing momentum conservation to define the invariant scattering amplitude,
iMi f

f S i f i 2! 4" 4

final

pi
initial

p j iMi f . (6.8)

Using the Lorentz invariance of the S-matrix it is not difficult to show that iMi f
is a relativistic invariant as well (hence its name). Our next task is to show how
observable quantities such as decay rates or cross sections can be obtained from the
knowledge of this invariant amplitude. Once we know how this is done we will turn
to the problem of computing the amplitude itself in quantum field theory.

Thomson Scattering, continued
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where each !i is the width of the i-th decay channel. The lifetime of the particle is
given by the inverse of the total width !total.
We study now the calculation of the differential and total cross sections in the

scattering of two particles with an arbitrary number of particles in the final state.
The differential cross section for this problem is given by the number of particles
scattered within an infinitesimal solid angle along the final momenta p1, . . . ,pk di-
vided by the flux of incoming particles fin, thus generalizing eq. (6.1). In terms of
the probability density per unit time computed in eq. (6.11) this gives

d"
1

4E1E2V 2
wi f
fin

d#k (6.17)

To get this expression we have multiplied by 2E1V 1 2E2V 1 to take care of the
normalization of the incoming states as discussed previously.
To give an explicit expression for the differential cross section we need to com-

pute the incoming flux fin. The number of particles approaching the target (say
particle 2) in a time dt accross a surface dS is given by n v1 v2 dtdS, with n the
number density of projectiles (in this case the particle 1). Since in the calculation of
the S-matrix amplitude we have normalized our states such that there is one particle
per unit volume, we have that n V 1 and the incoming flux is fin v1 v2 V .
Plugging this result into (6.17) we see how the powers of the volume cancel out and
the differential cross section in the infinite volume limit reads

d"
Mi f

2

4E1E2 v1 v2
2$ 4 % 4 p1 p2

n

j 1
p j d#k, (6.18)

where d#k is the phase space factor for the k particles in the final state. To calculate
the total cross section we have to integrate over all final momenta and include the
necessary symmetry factors if identical particles are produced as the result of the
collision.
An inspection of eq. (6.18) shows that the only piece that depends on the frame in

which the scattering is observed is the denominator, that we denote in the following
by F 4E1E2 v1 v2 . The presence of this term implies that the measurement
of the differential and total cross sections of the same collision in various reference
frames takes different values. This is an important point that we discuss now in some
detail.
We consider first a collinear reference frame in which the momenta of the two

colliding particles lie along the same direction, p1 ‖ p2. This class of frames include
two cases of particular interest: the laboratory frame, in which one of the particles
is at rest (for example p2 0), and the center of mass frame in which the center of
mass is at rest, p2 p1.
It is not difficult to check that in the collinear case the combination E1E2 v1 v2

is invariant under boosts along the direction of the two incoming momenta. This
means that the value of the differential and total cross section is the same in all
collinear frames. Moreover we can write
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Fcoll 4E1E2 v1 v2 4E1E2
p1
E1

p2
E2

4 E2p1 E1p2 4 E2 p1 E1 p2 , (6.19)

where in writing the last identity we have used that the in the collinear frames the
two particles are approaching each other from opposite directions. As a matter of
fact this expression can be written in a way that is explicitly Lorentz invariant as

Fcoll 4 p1 p2 2 m21m22. (6.20)

Then, the differential cross section as measured in a collinear frame is given by

d!coll
Mi f

2

4 p1 p2 2 m21m22
2" 4 # 4 p1 p2

n

j 1
p j d$k. (6.21)

The corresponding total cross section is now obtained by integrating over all mo-
menta in the final state, namely

!coll
1

4 p1 p2 2 m21m22 final
states

d3pi
2" 3

1
2Ei

Mi f
2
2" 4# 4 p1 p2

final
states

pi . (6.22)

We will make use this expression in section 6.4 when studying Compton scattering.
Because of their invariance under Lorentz transformations, eqs. (6.21) and (6.22)

allow the computation in an arbitrary frame of the cross section measured by the
collinear observer. For example, in a general frame in which the two particles col-
lide with velocities v1 and v2 the collinear cross section is obtained by using the
following expression of Fcoll

Fcoll 4E1E2 v1 v2 2 v1 v2 2. (6.23)

In various physical setups, most notably in astrophysics, one needs to compute
the cross sectionsmeasured by generic observerswith respect to whom the momenta
of the colliding particle form an arbitrary angle. This requires the evaluation of the
denominator in eq. (6.18) in a generic “oblique” frame,

Fobl E1E2 v1 v2 E2p1 E1p2 . (6.24)

To relate Fobl to the corresponding factor for the collinear observer,Fcoll, we split the
incoming momenta into their components parallel and perpendicular to the center
of mass momentum Pcm p1 p2,
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1
2Ei

Mi f
2
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states

pi . (6.22)

We will make use this expression in section 6.4 when studying Compton scattering.
Because of their invariance under Lorentz transformations, eqs. (6.21) and (6.22)

allow the computation in an arbitrary frame of the cross section measured by the
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following expression of Fcoll
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denominator in eq. (6.18) in a generic “oblique” frame,
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To relate Fobl to the corresponding factor for the collinear observer,Fcoll, we split the
incoming momenta into their components parallel and perpendicular to the center
of mass momentum Pcm p1 p2,

Square the amplitude, sum over final electron polarisations, and sum 
over the initial ones.  We will consider unpolarised incoming photons 
and study how the outgoing photons can gain some degree of 
polarisation

3.3 Dirac Spinors. 39

u k,s e ik x, s
1
2
, (3.42)

where u! k,s (! 1, . . . ,4) is a four-component spinor. Substituting in the Dirac
equation we obtain

k m u k,s 0. (3.43)

In the same way, for negative energy solutions we have

v k,s eik x, s
1
2
, (3.44)

where v! k,s has to satisfy

k m v k,s 0. (3.45)

Multiplying Eqs. (3.43) and (3.45) on the left respectively by k m we find that
the momentum is on the mass shell, k2 m2. Because of this, the wave function
for both positive- and negative-energy solutions can be labeled as well using the
three-momentum k of the particle, u k,s , v k,s .
A detailed analysis shows that the functions u k,s , v k,s satisfy the properties

u k,s u k,s 2m, v k,s v k,s 2m,

u k,s "µu k,s 2kµ , v k,s "µv k,s 2kµ , (3.46)

s 1
2

u! k,s u# k,s k m !# ,

s 1
2

v! k,s v# k,s k m !# ,

with k0 $k k2 m2. Then, a general solution to the Dirac equation including
creation and annihilation operators can be written as:

%! t,x
s 1

2

d3k
2& 3

1
2$k

u! k,s b k,s e i$kt ik x

v! k,s d k,s ei$kt ik x . (3.47)

Because we are dealing with half-integer spin fields, the spin-statistics theorem
forces a modification of the canonical quantization prescription (2.54) such that in
the case of the Dirac field the canonical Poisson brackets are replaced by anticom-
mutators

i , PB , . (3.48)

Thus we arrive to the following canonical anticommutation relations for the field
% t,x

%! t,x ,%# t,y ' x y '!# . (3.49)
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s 1
2 s

1
2

u p ,s ku p,s
2

s 1
2 s

1
2

u p,s k u p ,s u p ,s ku p,s , (6.61)

and using that !µ !0!µ!0 one finds, after some manipulations,

s 1
2 s

1
2

u p ,s ku p,s
2

s 1
2

u" p,s u# p,s k #$

s 1
2

u$ p ,s u% p ,s k %"

Tr p me k p me k , (6.62)

where the final result has been obtained using the completeness relations in eq.
(3.46). The final evaluation of the trace can be done using the relation (6.46) to
commute p and k. Using besides that k2 0 and that we are working in the low
energy limit we have5

Tr p me k p me k 2 p k p k Tr1 8m2e k 2. (6.63)

With this we arrive at the following value for the invariant amplitude for the Comp-
ton scattering at low energies

iMi f 2 4e4 & k & k
2
. (6.64)

With this we have reached the end of our calculation. Plugging iMi f 2 into
(6.22) and dropping the integration over the direction of the outgoing particles we
find the differential cross section for the scattering of a photon by an electron at rest

d$
d'

1
64(2m2e

iMi f 2
e2

4(me

2

& k & k
2
. (6.65)

The prefactor of the last expression is precisely the square of the so-called classical
electron radius rcl. In fact, the result can be rewritten as

d$
d'

3
8(

$T & k & k
2
, (6.66)

where $T is the total Thomson cross section

5 We use also the fact that the trace of the product of an odd number of Dirac matrices is always
zero.
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where $T is the total Thomson cross section

5 We use also the fact that the trace of the product of an odd number of Dirac matrices is always
zero.
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Fig. 6.2 This figure illustrate eq. (6.69). The “vertical” component of the unpolarized radiation
arriving from the x direction is suppressed in the photons scattered along the z axis. This results in
a linear polarization of the scattered radiation.

!T
e4

6"m2e
8"
3
r2cl. (6.67)

One of the most important physical consequences of eq. (6.66) is that a net po-
larization is produced in the scattering of unpolarized radiation off nonrelativistic
charges. To see this we take the Thomson differential cross section and average
over the polarization of the incoming photon. Denoting by # k,a , with a 1,2, a
basis for the photon polarizations this average gives

1
2 a 1,2

# k,a # k
2

1
2 a 1,2

#i k,a # j k,a # j k #i k . (6.68)

The sum inside the brackets can be computed using the normalization of the polar-
ization vectors, # k,n 2 1, and the transversality condition k # k,n 0

1
2 a 1,2

# k,a # k
2 1

2
$i j

kik j
k 2

# j k #i k

1
2
1 k̂ # k 2 , (6.69)

where k̂ k
k is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all po-
larizations parallel to the direction of the incoming photon. At the same time the
differential cross section reaches its maximum values when the polarization of the
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arriving from the x direction is suppressed in the photons scattered along the z axis. This results in
a linear polarization of the scattered radiation.
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One of the most important physical consequences of eq. (6.66) is that a net po-
larization is produced in the scattering of unpolarized radiation off nonrelativistic
charges. To see this we take the Thomson differential cross section and average
over the polarization of the incoming photon. Denoting by # k,a , with a 1,2, a
basis for the photon polarizations this average gives

1
2 a 1,2

# k,a # k
2

1
2 a 1,2

#i k,a # j k,a # j k #i k . (6.68)

The sum inside the brackets can be computed using the normalization of the polar-
ization vectors, # k,n 2 1, and the transversality condition k # k,n 0

1
2 a 1,2

# k,a # k
2 1

2
$i j

kik j
k 2

# j k #i k

1
2
1 k̂ # k 2 , (6.69)

where k̂ k
k is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all po-
larizations parallel to the direction of the incoming photon. At the same time the
differential cross section reaches its maximum values when the polarization of the

We want to monitor the polarisation of the outgoing photons 
even when the incoming ones are not polarised
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larizations parallel to the direction of the incoming photon. At the same time the
differential cross section reaches its maximum values when the polarization of the
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Fig. 6.3 In these figures the larger density of unpolarized photons arriving from different direc-
tions is represented through two parallel lines indicating the polarization. The left panel shows the
scattering of isotropic radiation by a free electron and how this does not produce any net polariza-
tion in the scattered photons. On the right panel, on the other hand, the anisotropy in the intensity
of the radiation has a quadrupole component, being larger along the x direction. The result is a net
polarization in the photons scattered along the z axis.

scattered photon lies in the plane normal to k̂. This is represented in fig. 6.2 where
nonpolarized radiation coming from the x direction is scattered by a nonrelativistic
electron. According to eq. (6.69) the vertical polarization is fully suppressed in the
radiation scattered along the z direction, thus producing linear polarization.

6.5 Polarization of the Cosmic Microwave Background
Radiation

The differential cross section of Thomson scattering we have derived is relevant
in many areas of physics, but its importance is paramount in the study of the cos-
mological microwave background radiation (CMB). Here we are going to review
briefly how polarization emerges in the cosmic radiation and discuss why its de-
tection would serve as a window to the physics of the very early universe. Our
presentation would be rather sketchy. A throughout analysis of this problem can be
found in many places, such as [1, 2].
Just before recombination the universe is filled with a plasma of electrons inter-

acting with photons via Compton scattering. This plasma has a temperature of the
order T 1 keV and therefore electrons are nonrelativistic (T me 0.5 MeV),
so the approximations leading to the Thomson differential cross section are fully
valid. At the last scattering surface there is no way to know the polarization state
of the photons in the plasma before they are scattered by electrons to produce the
CMB radiation that we detect today. Therefore we have to average over incoming
polarizations as shown at the end of the previous section.

How we can get polarised light An isotropic incoming distribution of 
light does not generate polarisation

A incoming light with a quadrupole 
perturbation generates net polarisation6.5 Polarization of the Cosmic Microwave Background Radiation 115
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Fig. 6.5 A photon with momentum k is scattered by a nonrelativistic electron located at the origin.
The frame vectors n̂, ê and ê are the ones shown in the left panel of fig. 6.4.

where ê 1
2 ê! i ê" and the last identity follows immediately from ê ê .

This result reflects the fact that Thomson scattering do not distinguish between left
and right polarizations.
The measurement of Q n̂ and U n̂ provides important information about the

distribution function of photons at decoupling f k̂, n̂ , as we will see shortly. In
order to carry out the integration over k̂ in eqs. (6.71) and (6.73) we use the system
of coordinates defined by the three unit vectors ê , ê and n̂, as shown in fig. 6.5.
After a bit of algebra we arrive at

Q n̂ iU n̂ d# " ,! f " ,! ; n̂ sin2 " e 2i! , (6.75)

where the dependence on the unit vector k̂ is indicated by its polar coordinates
! ," .
There is something very interesting about this expression. The functional depen-

dence on k̂ of the term multiplying f k̂, n̂ is that of the spherical harmonics

Y 2
2 " ,! 3

5
96$

sin2 " e 2i! . (6.76)

Thus the only way to make the integral (6.75) nonzero is that the distribution func-
tion f k̂, n̂ contains a quadrupole anisotropy. In other words, what we have con-
cluded is that the measurement of the polarization of the CMB gives direct infor-
mation about the quadrupole component of the distribution function of photons at
decoupling!
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The relation between the polarization of the CMB and the anisotropies in the
density of photons at last scattering can be understood with the help of fig. (6.2).
We consider the polarization of photons traveling along the z direction resulting
from the scattering of photons traveling along the x and y axis. Since Thomson
scattering suppresses all polarizations in the direction of the incoming photons we
find that the two polarizations in the scattered radiation come from the “horizontal”
polarizations of the incoming photons. If the number of photons coming from the
x and y directions are the same no net polarizations is produced. This is shown in
the left panel of fig. 6.3. It is an instructive exercise to check that no polarization is
produced either in the presence of a dipolar anisotropy.
When the anisotropy has a quadrupole component, on the other hand, the situa-

tion changes. Then the intensity of the unpolarized radiation approaching from the
x and y directions is different and so is the relative intensity of the two polarizations
in the scattered radiation along the z axis. The outgoing radiation is then polarized
The previous heuristic arguments shows that the presence of a net polarization in

the CMB is the smoking gun of quadrupole anisotropies in the photon distribution
at the last scattering surface. There are several possible physical causes for such an
anisotropy. One of them, however, is specially glaring. Gravitational waves propa-
gating through the plasma would induce changes in its density with precisely the
quadrupole component necessary to produce the polarization in the CMB radiation.
In the following we make this discussion more precise. The polarization of ra-

diation can be described using three Stokes parameters: Q measures the excess of
horizontal versus vertical, U of diagonal versus antidiagonal and V of left versus
right polarization. CMB experiments allow the measurements of these parameters
for the background radiation arriving from a direction in the sky specified by a unit
vector n̂.
To compute the parameter Q n̂ we consider the polarizations along the direc-

tions defined by the unit vectors ê ê! and ê ê" , normal to the plane
defined by n̂ (see left panel in Fig. 6.4). We denote by f k̂, n̂ the distribution func-
tion of photons in the plasma with momentum along the unit vector k̂ at the last
scattering surface in the sky direction n̂. This distribution function does not depend
on the polarization of the photons because the incoming radiation is taken to be
unpolarized. Using the expression of the Thomson cross section (6.66), the Stokes
parameter Q n̂ can be written as

Q n̂
a 1,2

d# k̂ f k̂, n̂ $ k,a ê 2 $ k,a ê 2 , (6.70)

where we integrate over the directions of the incoming photons and have omitted a
global normalization constant. To write this expression we have taken the intensity
of scattered radiation to be proportional to the Thomson differential cross section
averaged over polarizations. The result is integrated over the direction of the incom-
ing photons weighted by the distribution function. The sum over polarizations can
be explicitly done using the result derived in eq. (6.68) to give
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Fig. 6.4 Polarization states used to define the Stokes parameter Q n̂ andU n̂ for a photon scat-
tered by a nonrelativistic electron and arriving from the direction n̂. The notation used in the unit
vectors ê and ê reflects the point of view of an observer located at the origin looking in the
direction defined by n̂.

Q n̂
1
2

d# k̂ f k̂, n̂ k̂ ê 2 k̂ ê 2 . (6.71)

In order to evaluate the parameter U n̂ we need to consider the polarizations
along the unit vectors defined by (see right panel in fig. 6.4)

ê
1
2
ê! ê" , ê

1
2
ê! ê" . (6.72)

This parameter is then given by the difference in intensity of the scattered radiation
with these polarizations, namely

U u
a 1,2

d# k̂ f k̂,u $ k,a ê 2 $ k,a ê 2

1
2

d# k̂ f k̂, n̂ k̂ ê 2 k̂ ê 2 , (6.73)

where in the second line we have carried out the sum over incoming polarizations.
A look at figure 6.4 shows that Q n̂ andU n̂ can be transformed into one another,
up to a sign, by a rotation of %

4 along the line of sight n̂.
Finally, the Stokes parameter V û measures the net circular polarization of the

CMB photons arriving from the last scattering surface

V û
a 1,2

d# k̂ f k̂,u $ k,a ê 2 $ k,a ê 2

d# k̂ f k̂,u k̂ ê 2 k̂ ê 2 0, (6.74)

114 6 Towards Computational Rules: Feynman Diagrams

^

!

"

n

e
e

 

^
^

^

"

!

n

e

^

^

e

Fig. 6.4 Polarization states used to define the Stokes parameter Q n̂ andU n̂ for a photon scat-
tered by a nonrelativistic electron and arriving from the direction n̂. The notation used in the unit
vectors ê and ê reflects the point of view of an observer located at the origin looking in the
direction defined by n̂.

Q n̂
1
2

d# k̂ f k̂, n̂ k̂ ê 2 k̂ ê 2 . (6.71)
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Finally, the Stokes parameter V û measures the net circular polarization of the

CMB photons arriving from the last scattering surface

V û
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ê! ê" , ê
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The frame vectors n̂, ê and ê are the ones shown in the left panel of fig. 6.4.

where ê 1
2 ê! i ê" and the last identity follows immediately from ê ê .

This result reflects the fact that Thomson scattering do not distinguish between left
and right polarizations.
The measurement of Q n̂ and U n̂ provides important information about the

distribution function of photons at decoupling f k̂, n̂ , as we will see shortly. In
order to carry out the integration over k̂ in eqs. (6.71) and (6.73) we use the system
of coordinates defined by the three unit vectors ê , ê and n̂, as shown in fig. 6.5.
After a bit of algebra we arrive at

Q n̂ iU n̂ d# " ,! f " ,! ; n̂ sin2 " e 2i! , (6.75)

where the dependence on the unit vector k̂ is indicated by its polar coordinates
! ," .
There is something very interesting about this expression. The functional depen-

dence on k̂ of the term multiplying f k̂, n̂ is that of the spherical harmonics

Y 2
2 " ,! 3

5
96$

sin2 " e 2i! . (6.76)

Thus the only way to make the integral (6.75) nonzero is that the distribution func-
tion f k̂, n̂ contains a quadrupole anisotropy. In other words, what we have con-
cluded is that the measurement of the polarization of the CMB gives direct infor-
mation about the quadrupole component of the distribution function of photons at
decoupling!

Stokes parameters:
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Quadrupole distribution

Finally we reach the punch line.  No circular polarisation is generated by Thomson 
scattering, and we can write the combination:
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After a bit of algebra we arrive at

Q n̂ iU n̂ d# " ,! f " ,! ; n̂ sin2 " e 2i! , (6.75)
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Thus the only way to make the integral (6.75) nonzero is that the distribution func-
tion f k̂, n̂ contains a quadrupole anisotropy. In other words, what we have con-
cluded is that the measurement of the polarization of the CMB gives direct infor-
mation about the quadrupole component of the distribution function of photons at
decoupling!
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This result reflects the fact that Thomson scattering do not distinguish between left
and right polarizations.
The measurement of Q n̂ and U n̂ provides important information about the

distribution function of photons at decoupling f k̂, n̂ , as we will see shortly. In
order to carry out the integration over k̂ in eqs. (6.71) and (6.73) we use the system
of coordinates defined by the three unit vectors ê , ê and n̂, as shown in fig. 6.5.
After a bit of algebra we arrive at
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where the dependence on the unit vector k̂ is indicated by its polar coordinates
! ," .
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dence on k̂ of the term multiplying f k̂, n̂ is that of the spherical harmonics
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sin2 " e 2i! . (6.76)

Thus the only way to make the integral (6.75) nonzero is that the distribution func-
tion f k̂, n̂ contains a quadrupole anisotropy. In other words, what we have con-
cluded is that the measurement of the polarization of the CMB gives direct infor-
mation about the quadrupole component of the distribution function of photons at
decoupling!

One of the obvious generators of quadrupole anisotropies are gravitational waves. 
Inflation predicts primordial gravitation waves, the measurement of polarisation in 
the CMB offers an amazing window to obtain this information.  The simple 
computation of Thomson scattering has unexpected consequences
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We have mentioned above that the distinction between Q n̂ and U n̂ is rather
arbitrary, since one parameter can be transformed into the other by an appropriate
rotation along n̂. In fact under such a rotation of angle! the complex combinations
of the two Stokes parameters in eq. (6.75) transform as

Q n̂ iU n̂ e 2i! Q n̂ iU n̂ . (6.77)

Now, Q n̂ iU n̂ defines two complex functions on the two-dimensional sphere
whose points are labelled by the unit vector n̂. Eq. (6.77) defines a local SO(2) rota-
tions in the sphere under which Q n̂ iU n̂ transform as quantities with spin 2.
Were they scalars, we could expand them using the ordinary spherical harmonics
Ym! n̂ . Due however to their nontrivial transformation properties, the expansion has
to be made in terms of a basis of eigenfunctions of the Laplace operators on the
sphere S2 with the appropriate transformations properties under SO(2) local rations.
The sought basis of functions are generalizations of the standard spherical harmon-
ics called the spin-weighted spherical harmonics of spin 2, denoted by 2Ym! n̂ .
Here we will not elaborate on their properties that can be found in [2]. For us it is
enough to know that they can be used to write the expansion

Q n̂ iU n̂
! 0

!

m !

E!m iB!m 2Ym! n̂ . (6.78)

The coefficients E!m and B!m define the E- and B-mode of the CMB polarization .
As with the temperature fluctuations, the CMB polarization can be handled as

random variables whose probability distributions are characterized, among others,
by the correlation functions

E!mE! m CEE! "!! "mm , B!mB! m CBB! "!! "mm . (6.79)

The quantities CEE! and CBB! can be computed from different theoretical models of
the early universe and compared with the direct measurements of CMB polarization.
Although the E-mode has beenmeasured byWMAP, the detection of the B-mode re-
mains one of the big observational challenges in CMB physics. This is an important
issue: among other possible sources, a nonvanishing B-mode would be produced by
primordial gravitational waves that are a generic prediction of inflation.
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primordial gravitational waves that are a generic prediction of inflation.
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Noether’s Theorem

Quantum mechanical realisation of Symmetries (Wigner’s theorem).  In a QM 
theory physical symmetries are maps among states that preserve probability 
amplitudes (their modulus).  They can be unitary or anti-unitary

7.2 Quantum Mechanical Realizations of Symmetries 119

As an example of these internal unitary symmetries we can mention the approxi-
mate flavor symmetries in hadron physics. Ignoring charges and masses differences
the QCD Lagrangian is invariant under the following unitary symmetry acting on
the quarks u and d

u
d M u

d , (7.24)

where M U(2) = U(1)B SU(2). The U(1)B factor corresponds to the baryon
number, whose conserved charge assigns 1

3 to quarks and antiquarks respectively.
On the other hand the SU(2) part mixes the quark u and d. Since the proton is a
bound state of two quarks u and one quark d, while the neutron is made out of one
quark u and two quarks d, this symmetry reduces at low energies to the well-known
isospin transformations of nuclear physics mixing protons and neutrons.

7.2 Quantum Mechanical Realizations of Symmetries

In a quantum theory physical symmetries are maps in the Hilbert space of the theory
that preserve the probability amplitudes. In more precise terms, a symmetry is a one-
to-one transformation that, acting on two arbitrary states ! , " H

! ! , " " , (7.25)

satisfies

! " ! " . (7.26)

Wigner’s theorem states that these transformations are implemented by operators
that are either unitary or antiunitary. Unitary operators are well-known objects from
any quantum mechanics course. They are linear operatorsU that satisfies2

U ! U " ! " , (7.27)

for any two states in the Hilbert space. In addition, the transformation of O under
U

O O U OU 1, (7.28)

from where it follows that ! O " ! O " .
Antiunitary operators, on the other hand, have the property

U ! U " ! " (7.29)

2 Here we use the notation U ! U ! and U ! ! U .
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unitary

anti-unitary T-reversal, CPT

For continuous symmetries we have Noether’s celebrated theorem:  If under 
infinitesimal transformations, AND WITHOUT USING THE EQUATIONS OF 
MOTION you can show that:

unitary

S[φ] =

�
d4xL(φ, ∂µφ)

116 7 Symmetries I: Continuous Symmetries

When !"qi is applied on a solution to the equations of motion the term inside the
square brackets vanishes and we conclude that there is a conserved quantity

Q 0 with Q
L
qi
!"qi. (7.2)

Notice that in this derivation it is crucial that the symmetry depends on a continuous
parameter since otherwise the infinitesimal variation of the Lagrangian in Eq. (7.1)
does not make sense.
In Classical Field Theory a similar result holds. Let us consider for simplicity a

theory of a single field # x . We say that the variations !"# depending on a contin-
uous parameter " are a symmetry of the theory if, again without using the equations
of motion, the Lagrangian density changes by

!"L µKµ . (7.3)

If this happens then the action remains invariant and so do the equations of motion.
Working out now the variation ofL under !"# we find

!"L
L

µ#
µ!"#

L

#
!"#

µ
L

µ#
!"#

L
# µ

L

µ#
!"# (7.4)

µKµ . (7.5)

If # x is a solution to the equations of motion the last terms in the second line
disappears, and we find that there is a conserved current

µJµ 0 with Jµ
L

µ#
!"# Kµ . (7.6)

A conserved current implies the existence of a charge

Q d3xJ0 t,x (7.7)

which is conserved

dQ
dt

d3x 0J0 t,x d3x iJi t,x 0, (7.8)

provided the fields vanish at infinity fast enough. Moreover, the conserved chargeQ
is a Lorentz scalar. After canonical quantization Q is promoted to an operator that
generates the symmetry on the fields

!# i # ,Q . (7.9)

then there is a conserved current in the theory
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116 7 Symmetries I: Continuous Symmetries

When !"qi is applied on a solution to the equations of motion the term inside the
square brackets vanishes and we conclude that there is a conserved quantity

Q 0 with Q
L
qi
!"qi. (7.2)
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Q d3xJ0 t,x (7.7)

which is conserved

dQ
dt

d3x 0J0 t,x d3x iJi t,x 0, (7.8)

provided the fields vanish at infinity fast enough. Moreover, the conserved chargeQ
is a Lorentz scalar. After canonical quantization Q is promoted to an operator that
generates the symmetry on the fields

!# i # ,Q . (7.9)

Noether’s Theorem

In formulas:
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With a conserved charge that generates the symmetry:

116 7 Symmetries I: Continuous Symmetries
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which is conserved
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provided the fields vanish at infinity fast enough. Moreover, the conserved chargeQ
is a Lorentz scalar. After canonical quantization Q is promoted to an operator that
generates the symmetry on the fields

!# i # ,Q . (7.9)Space-time translations -- Energy-Momentum
Lorentz transformation-- Angular momentum and CM motion
Phase rotation -- abelian and non-abelian charges
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Useful examples

118 7 Symmetries I: Continuous Symmetries

Q d3x!"0! d3x! ! . (7.17)

In physics there are several instances of global U(1) symmetries that act as phase
shifts on spinors. This is the case, for example, of the baryon and lepton number
conservation in the Standard Model. A more familiar case is the U(1) local sym-
metry associated with electromagnetism. Notice that although in this case we are
dealing with a local symmetry, # e$ x , the invariance of the Lagrangian holds
in particular for global transformations with $ x constant and therefore there is
a conserved current jµ e!"µ! . In Eq. (4.34) we saw how spinors in QED are
coupled to the photon field precisely through this current. Its time component is the
electric charge density % , while the spatial components make the current density
vector j.
The previous analysis can be extended also to nonabelian unitary global symme-

tries acting on N species of fermions as

!i Ui j! j, (7.18)

where Ui j is a N N unitary matrix, U U UU 1. This transformation leaves
invariant the Lagrangian

L i! j ! j m! j! j, (7.19)

where we sum over repeated indices. If we write the matrix U in terms of the N2
hermitian group generators Ta of U(N) as

U exp i$aTa , Ta Ta, (7.20)

the conserved currents are found to be

jµ a ! iT
a
i j"

µ! j, µ jµ 0. (7.21)

with N2 conserved charges

Qa d3x!i T
a
i j! j (7.22)

The group U(N) of N N unitary matrices admits the decomposition U(N)
U(1) SU(N). The U(1) factor corresponds to the elementU ei$01 that multiplies
all spinor fields by the same phase. The corresponding charge

Q0 d3x!i !i (7.23)

measures, in the quantum theory, the number of fermions minus the number of an-
tifermions. It commutes with the other N2 1 charges associated with the nontrivial
SU(N) part of the global symmetry group.
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tries acting on N species of fermions as

!i Ui j! j, (7.18)

where Ui j is a N N unitary matrix, U U UU 1. This transformation leaves
invariant the Lagrangian

L i! j ! j m! j! j, (7.19)

where we sum over repeated indices. If we write the matrix U in terms of the N2
hermitian group generators Ta of U(N) as

U exp i$aTa , Ta Ta, (7.20)

the conserved currents are found to be

jµ a ! iT
a
i j"

µ! j, µ jµ 0. (7.21)

with N2 conserved charges

Qa d3x!i T
a
i j! j (7.22)

The group U(N) of N N unitary matrices admits the decomposition U(N)
U(1) SU(N). The U(1) factor corresponds to the elementU ei$01 that multiplies
all spinor fields by the same phase. The corresponding charge

Q0 d3x!i !i (7.23)

measures, in the quantum theory, the number of fermions minus the number of an-
tifermions. It commutes with the other N2 1 charges associated with the nontrivial
SU(N) part of the global symmetry group.
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Massive Dirac fermions:
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and are antilinear, i.e.

U a ! b " a U ! b U " , a,b C. (7.30)

To find the transformation of operator matrix elements under an antiunitary trans-
formation we compute

! O " O ! " U " U O ! . (7.31)

Writing now U O ! U O ! and inserting the identity we arrive at the final
result

! O " " U O U 1 ! . (7.32)

Continuous symmetries are implemented only by unitary operators. This is be-
cause they are continuously connected with the identity, which is a unitary operator.
Discrete symmetries, on the other hand, can be implemented by either unitary or
antiunitary operators. An example of the latter is time reversal, that we will study in
detail in chapter 11.
In the previous section we have seen that in canonical quantization the conserved

chargesQa associated with a continuous symmetry by Noether’s theorem are opera-
tors that generate the infinitesimal transformation of the quantum fields. The conser-
vation of the classical charges Qa,H PB 0 implies that the operatorsQa commute
with the Hamiltonian

Qa,H 0. (7.33)

The symmetry group generated by the operators Qa is implemented on the Hilbert
space of the theory by a set of unitary operators U ! , where !a (with a
1, . . . ,dimg) labels the transformation3. That the group is generated by the con-
served charges means that in a neighborhood of the identity, the operators U !
can be written as

U ! ei!
aQa . (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing it
in one way or the other have important consequences for the spectrum of the theory,
as we will learn now.

Wigner-Weyl realization.

In this case the ground state of the theory 0 is invariant under all the elements
of the symmetry group U ! 0 0 . Eq. (7.34) implies then that the vacuum is

3 A quick survey of group theory can be found in Appendix B.
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When U is the identity, we have fermion number, or charge

In the m=0 we have more symmetry: CHIRAL SYMMETRY, rotate L,R fermions independently

L = iψ̄jL /∂ ψLj + iψ̄jR /∂ ψRj

U ∈ U(N) Nthe number of fermions

ψL,R → UL,R ψL,R U(N)L × U(N)R
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Wigner-Weyl mode

Imagine we have a symmetry that is a symmetry of the ground state
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Qa|0� = 0

Then the states of the theory fall into multiplets of the symmetry group

7.2 Quantum Mechanical Realizations of Symmetries 121

annihilated by them

Qa 0 0 . (7.35)

The field operators of the quantum theory have to transform according to some
irreducible representation of the symmetry group. It is easy to see that the finite
form of the infinitesimal transformation (7.9) is given by

U ! "iU ! 1 Ui j ! " j, (7.36)

where the matricesUi j ! form the group representation in which the field "i trans-
forms. If we consider now the quantum state associated with the operator "i

i "i 0 (7.37)

we find that, because of the invariance of the vacuum (7.35), the states i have to
transform in the same representation as "i

U ! i U ! "iU ! 1U ! 0 Ui j ! " j 0 Ui j ! j . (7.38)

Therefore the spectrum of the theory is classified in multiplets of the symmetry
group.
Any two states within a multiplet can be “rotated” into one another by a symme-

try transformation. Now, since H,U ! 0 the conclusion is that all states in the
same multiplet have the same energy. If we consider one-particle states, then going
to the rest frame we see how all states in the same multiplet have exactly the same
mass.

Nambu-Goldstone realization.

In our previous discussion we have seen how the invariance of the ground state of a
theory under a symmetry group has as a consequence that the spectrum is classified
in multiplets transforming under irreducible representations of the symmetry group.
This shows in degeneracies in the mass spectrum of the theory.
Nevertheless, the condition (7.35) is not mandatory and can be relaxed by con-

sidering theories where the vacuum state is not preserved by the symmetry

ei!
aQa 0 0 Qa 0 0. (7.39)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.
To illustrate the consequences of (7.39) we consider the example of a number

scalar fields # i (i 1, . . . ,N) whose dynamics is governed by the Lagrangian

L
1
2 µ# i µ# i V # i , (7.40)
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Therefore the spectrum of the theory is classified in multiplets of the symmetry
group.
Any two states within a multiplet can be “rotated” into one another by a symme-

try transformation. Now, since H,U ! 0 the conclusion is that all states in the
same multiplet have the same energy. If we consider one-particle states, then going
to the rest frame we see how all states in the same multiplet have exactly the same
mass.

Nambu-Goldstone realization.

In our previous discussion we have seen how the invariance of the ground state of a
theory under a symmetry group has as a consequence that the spectrum is classified
in multiplets transforming under irreducible representations of the symmetry group.
This shows in degeneracies in the mass spectrum of the theory.
Nevertheless, the condition (7.35) is not mandatory and can be relaxed by con-

sidering theories where the vacuum state is not preserved by the symmetry

ei!
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scalar fields # i (i 1, . . . ,N) whose dynamics is governed by the Lagrangian

L
1
2 µ# i µ# i V # i , (7.40)

The spectrum of the theory is classified in terms of multiplets of the symmetry group.  This is the case of the 
Hydrogen atom.  The Hamiltonian is rotational invariant, the ground state is an s-wave state, hence all excited states 
fall into degenerate representations of the rotation group: 1s, 2s, 2p, 2s, 3p, 3d,…  In QM (finite number of d.o.f.) this 
is always the case (tunnelling, band theory in solids)
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Nambu-Goldstone mode

Sometimes also called hidden symmetry.  The symmetry is 
spontaneously broken by the vacuum
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and are antilinear, i.e.

U a ! b " a U ! b U " , a,b C. (7.30)

To find the transformation of operator matrix elements under an antiunitary trans-
formation we compute

! O " O ! " U " U O ! . (7.31)

Writing now U O ! U O ! and inserting the identity we arrive at the final
result

! O " " U O U 1 ! . (7.32)

Continuous symmetries are implemented only by unitary operators. This is be-
cause they are continuously connected with the identity, which is a unitary operator.
Discrete symmetries, on the other hand, can be implemented by either unitary or
antiunitary operators. An example of the latter is time reversal, that we will study in
detail in chapter 11.
In the previous section we have seen that in canonical quantization the conserved

chargesQa associated with a continuous symmetry by Noether’s theorem are opera-
tors that generate the infinitesimal transformation of the quantum fields. The conser-
vation of the classical charges Qa,H PB 0 implies that the operatorsQa commute
with the Hamiltonian

Qa,H 0. (7.33)

The symmetry group generated by the operators Qa is implemented on the Hilbert
space of the theory by a set of unitary operators U ! , where !a (with a
1, . . . ,dimg) labels the transformation3. That the group is generated by the con-
served charges means that in a neighborhood of the identity, the operators U !
can be written as

U ! ei!
aQa . (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing it
in one way or the other have important consequences for the spectrum of the theory,
as we will learn now.

Wigner-Weyl realization.

In this case the ground state of the theory 0 is invariant under all the elements
of the symmetry group U ! 0 0 . Eq. (7.34) implies then that the vacuum is

3 A quick survey of group theory can be found in Appendix B.
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Nambu-Goldstone realization.
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theory under a symmetry group has as a consequence that the spectrum is classified
in multiplets transforming under irreducible representations of the symmetry group.
This shows in degeneracies in the mass spectrum of the theory.
Nevertheless, the condition (7.35) is not mandatory and can be relaxed by con-

sidering theories where the vacuum state is not preserved by the symmetry
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aQa 0 0 Qa 0 0. (7.39)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.
To illustrate the consequences of (7.39) we consider the example of a number

scalar fields # i (i 1, . . . ,N) whose dynamics is governed by the Lagrangian

L
1
2 µ# i µ# i V # i , (7.40)

Consider a collection of N scalar fields with a global symmetry group G

Sometimes also called hidden symmetry

The minima satisfy
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where we assume that V x is bounded from below and depends on the fields
through the combination ! i! i. Then the theory is globally invariant under the trans-
formations

"! i #a T a i
j!

j, (7.41)

with Ta, a 1, . . . , 12N N 1 the generators of the group SO N .
To analyze the structure of vacua in this theory we begin by constructing its

Hamiltonian

H $ i,! i d3x
1
2
$ i$ i

1
2
%! i %! i V ! i (7.42)

and look for the minimum of the potential energy functional, given by

V ! i d3x
1
2
%! i %! i V ! i . (7.43)

We want the vacuum to preserve translational invariance. Therefore we are looking
for field configurations satisfying%! 0. This means that the vacua of the potential
V ! i coincides with those of V ! i . The corresponding values of the scalar fields
! i we denote by4

! i : V ! i 0, V
! i ! i ! i

0. (7.44)

Let us divide now the generators Ta of SO(N) into two groups: the first one we
denote by H& (& 1, . . . ,h) and consists of those generator satisfying

H& i
j !

j 0. (7.45)

The meaning of this equation is that the vacuum configuration ! i is left invariant
by the group transformations generated by H& . For this reason we will call them
unbroken generators. Notice that the commutator of two unbroken generators also
annihilates the vacuum expectation value, H& ,H'

i j ! j 0. Thus they form a
subalgebra of the algebra of the generators of SO(N). The subgroup they generate
preserves the vacuum and hence it is realized à la Wigner-Weyl. This means in
particular that the spectrum is classified in multiplets with respect to this unbroken
subgroup.
The remaining generators we denote by KA, with A 1, . . . , 12N N 1 h, and

by definition do not preserve the vacuum expectation value of the field

KA i
j !

j 0. (7.46)

4 For simplicity we consider that the minima of V x occur at V 0.
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a = {Hα

, K
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4 For simplicity we consider that the minima of V x occur at V 0.

brokenunbroken
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Nambu-Goldstone mode

The masses are given by the second derivatives of the potential (assuming  canonical normalisation)

7.2 Quantum Mechanical Realizations of Symmetries 123

These will be called the broken generators. They generate group transformations
that do not preserve the vacuum expectation value of the field. Next we prove a
very important result concerning these broken generators known as the Goldstone
theorem: for each generator broken by the vacuum there is a massless excitation in
the theory.
The mass matrix of the field excitations around the vacuum ! i is determined by

the quadratic part of the potential. Since we have assumed that V ! i 0 and we
are expanding around a minimum, the leading term in the expansion of the potential
around the vacuum expectation values is given by

V ! i! i
2V

! i ! j
! !

! i ! i ! j ! j O ! ! 3 (7.47)

and the mass matrix is

M2
i j

2V
! i ! j

! !
. (7.48)

In order to avoid a cumbersome notation we do not indicate explicitly the depen-
dence of the mass matrix on ! i .
To extract some information about the possible zero modes of the M2

i j, we write
down the conditions that follow from the invariance of the potentialV ! i under the
field transformations "! i #a T a i

j!
j. At first order in #a

"V ! #a
V
! i

T a i
j!

j 0. (7.49)

Differentiating this expression with respect to !k we arrive at

2V
! i !k

T a i
j!

j V
! i

T a i
k 0. (7.50)

Now we evaluate this expression in the vacuum ! i ! i . Then the derivative in
the second term cancels while the second derivative in the first one gives the mass
matrix. Hence we have found

M2
ik T

a i
j !

j 0. (7.51)

Now we can write this expression for both broken and unbroken generators. For the
unbroken ones, since H$ i

j !
j 0, we find a trivial identity 0 0. Things are

more interesting for the broken generators, for which we have

M2
ik K

A i
j !

j 0. (7.52)

Since KA i
j !

j 0 this equation implies that the mass matrix has as many zero
modes as broken generators. Therefore we have proven Goldstone’s theorem: as-
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For eve r y b roken 
generator there is a 
massless scalar field

The argument works at the full 
quantum level

The fields acquiring a VEV need not 
be elementary

L =
1

2
∂µφ∂µφ

φ → φ+ c

Simplest example:

L =
1

2
∂µφ∂µφ

φ → φ+ c

Its own NG-boson
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Phonons are NG bosons

A liquid is translationally invariant

The crystal after solidification has discrete translational symmetry

The low energy excitation of the lattice contain acoustic phonons

Their dispersion relation is as for NG bosons

They propagate at the speed of sound

ω(k) = 2ω| sin(ka/2)|
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Order parameters

❖ The notion of symmetry breaking is intimately connected with the theory of phase 
transitions in CMP

❖ It is quite frequent that in going from one phase to another the symmetry of the 
ground state (vacuum) changes

❖ In real physical systems this is what we see with magnetic domains in magnetic 
material below the Curie point

❖ In going from one phase to the other, some parameters change in a noticeable way.  
These are the order parameters.

❖ In liquid-solid transition it is the density 

❖ In magnetic materials it is the magnetisation

❖ In the Ginsburg-Landau theory of superconductivity, the Cooper pairs acquire a VEV.  
This breaks U(1) inside the superconductor and thus explains among other things the 
Meissner effect.  The Cooper pairs are pairs of electrons bound by the lattice vibrations.  
In ordinary superconductors their size is several hundred Angstroms.

❖ The order parameters need not be elementary fields...
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Misconceptions, vacuum degeneracy

By abuse of language we often hear, or say that in theories with SSB there is vacuum degeneracy.  This is fact is not the 
case, at least in LQFT.  In understanding this we will also understand why there are massless states in theories with SSB.  N 
is the volume in the example.  The Heisenberg model of magnetism.  H is rotational invariant above the critical 
temperature, and magnetised below  it

|0� |θ�

�0|θ� = (cos(θ/2))N

→ 0 N → ∞

H = −J

�

<i,j>

si · sj

By making the transitions very slowly we 
can manage to make this configuration to 
have as small an energy as we wish.  
Hence we have a continuum spectrum 
above zero.  This is the sign of a massless 
particle, the NG-boson

Tuesday, 16 October, 2012
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No Goldstone bosons in finite volume

http://carlossicoli.free.fr/A/Alvarez-Gaume_L.,_Vazquez-Mozo_M.A.-An_Invitation_to_Quantum_Field_Theory_-Springer(2011).pdf

This simple example contains the ingredients of the general case.  Consider a theory in a 
box of side L and PBCs, the plane waves solutions are easy to write down

Φ = (φ1,φ2)

∂µ ∂
µ θ = 0 ∂µ ∂

µ φ = 0

Tuesday, 16 October, 2012

http://carlossicoli.free.fr/A/Alvarez-Gaume_L.,_Vazquez-Mozo_M.A.-An_Invitation_to_Quantum_Field_Theory_-Springer(2011).pdf
http://carlossicoli.free.fr/A/Alvarez-Gaume_L.,_Vazquez-Mozo_M.A.-An_Invitation_to_Quantum_Field_Theory_-Springer(2011).pdf


Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

51

Pions
In HEP they provide the only observed NG bosons

The order parameter is not an elementary field

To find other NG bosons in the SM we have to go to the Higgs 
sector, and there they are “eaten” to provide masses for the W and Z 
vector bosons

In QCD there are no fundamental scalars.  Consider just two flavors u,d.  We have chiral symmetry

7.3 The Brout-Englert-Higgs Mechanism. 125

that cannot be done by any local operator of the theory. Notice that this is radically
different from our expectations based on the Quantum Mechanics of a system with
a finite number of degrees of freedom.
A typical example of a Goldstone boson in high energy physics is the pion, as-

sociated with the spontaneous breaking of the global chiral isospin SU(2)L SU(2)R
symmetry and that we will study in some detail in Chapter 8. This symmetry acts
independently in the left- and right-handed u and d quark spinors as

uL,R
dL,R

ML,R
uL,R
dL,R

, ML,R SU 2 L,R (7.55)

Because quarks are confined at low energies, this symmetry is expected to be spon-
taneously broken by a nonvanishing value of the vacuum expectation values of the
quark bilinears of the type uRuL 0.
This breaking of the global SU(2)L SU(2)R symmetry to the diagonal SU(2) act-

ing in the same way on the two chiralities has a Goldstone mode which is identified
as the pion (see Section 8.3). This identification, however, might seem a bit puzzling
at first sight, because pions are massive contrary to what is expected of a Goldstone
boson. The solution to this apparent riddle is that the SU(2)L SU(2)R would be an
exact global symmetry of the QCD Lagrangian only in the limit when the masses
of the quarks are zero mu,md 0. Because these quarks have nonzero masses the
chiral symmetry is only approximate and as a consequence the correspondingGold-
stone bosons are not strictly massless. That is why pions have masses, although they
are the lightest particle among the hadrons.
The phenomenon of spontaneous symmetry breaking is not confined to high en-

ergy physics, but appears also frequently in condensed matter [1]. For example,
when a solid crystallizes from a liquid the translational invariance that is present in
the liquid phase is broken to a discrete group of translations that represent the crystal
lattice. This symmetry breaking has associated Goldstone bosons that are identified
with phonons, which are the quantum excitation modes of the vibrational degrees of
freedom of the lattice.

7.3 The Brout-Englert-Higgs Mechanism.

Gauge symmetry seems to prevent a vector field from having a mass. This is obvious
once we realize that a term in the Lagrangian like m2AµAµ is incompatible with
gauge invariance.
However certain physical situations seem to require massive vector fields. This

became evident during the 1960s in the study of weak interactions. The Glashow
model gave a common description of both the electromagnetic and weak forces
based on a gauge theory with group SU(2) U(1). However, in order to reproduce
Fermi’s four-fermion theory of the ! -decay, it was necessary that two of the vector

G = SU(2)L × SU(2)R� �� �×U(1)B × U(1)A

SU(2)V

qfα f = u, d, α = 1, 2, 3

�q̄f · qf
�
� = Λ3

χSB δff
�

q̄f · qf
�
� Λ3

χSB eiπ
aσa/fπ

These are the pions.
This is an IR property of QCD, not accessible to Pert. Th.
Low-E pion theorems, chiral Lagrangians….
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The BEH mechanism
Notice we say the mechanism, not necessary the particle!  In gauge 
theories one cannot just add a mass for the gauge bosons.  This 
badly destroys the gauge symmetry and the theory is inconsistent.  

BEH showed that in gauge theories with SSB the NG bosons are 
“eaten” by the gauge bosons to become massive but preserving the 
basic properties of the gauge symmetry. Ex. Abelian Higgs model

126 7 Symmetries I: Continuous Symmetries

fields involved would be massive. Also in condensed matter physics massive vector
fields are required to describe certain systems, most notably in superconductivity.
The way out to this situation was found independently by Brout and Englert [3]

and by Higgs [2] using the concept of spontaneous symmetry breaking discussed
above5: if the consistency of the quantum theory requires gauge invariance this can
also be realized à la Nambu-Goldstone. When this happens the full gauge symmetry
is not explicitly present in the effective action constructed around the particular
vacuum chosen by the theory. This makes possible the existence of mass terms for
gauge fields without jeopardizing the consistency of the full theory, which is still
invariant under the whole gauge group.
To illustrate the Higgs mechanism we study the simplest example, the Abelian

Higgsmodel: a U(1) gauge field coupled to a self-interacting charged complex scalar
field ! with Lagrangian

L
1
4
Fµ"Fµ" Dµ! Dµ!

#
4

! ! µ2
2
, (7.56)

where the covariant derivative is given in Eq. (4.31). This theory is invariant under
the gauge transformations

! ei$ x ! , Aµ Aµ µ$ x . (7.57)

The minimum of the potential is defined by the equation ! µ . Thus, there is a
continuum of different vacua labelled by the phase of the scalar field. None of these
vacua, however, is invariant under the gauge symmetry

! µei%0 µei%0 i$ x (7.58)

and therefore the symmetry is spontaneously broken.
Let us study now the theory around one of these vacua, for example ! µ , by

writing the field ! in terms of the excitations around this particular vacuum

! x µ
1
2
& x ei% x . (7.59)

We should keep in mind that the whole Lagrangian is still gauge invariant under
(7.57), independently of which vacuum we have chosen to perturb around. This
means that we are at liberty of performing a gauge transformation with parameter
$ x % x in order to get rid of the phase in Eq. (7.59). Substituting then ! x
µ 1

2& x in Eq. (7.56) we find

L
1
4
Fµ"Fµ" e2µ2AµAµ

1
2 µ& µ&

1
2
#µ2&2

#µ&3
#
4
&4 e2µAµAµ& e2AµAµ&2. (7.60)

5 In condensed matter the idea had been previously implemented by Anderson [4].
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also be realized à la Nambu-Goldstone. When this happens the full gauge symmetry
is not explicitly present in the effective action constructed around the particular
vacuum chosen by the theory. This makes possible the existence of mass terms for
gauge fields without jeopardizing the consistency of the full theory, which is still
invariant under the whole gauge group.
To illustrate the Higgs mechanism we study the simplest example, the Abelian

Higgsmodel: a U(1) gauge field coupled to a self-interacting charged complex scalar
field ! with Lagrangian

L
1
4
Fµ"Fµ" Dµ! Dµ!

#
4

! ! µ2
2
, (7.56)

where the covariant derivative is given in Eq. (4.31). This theory is invariant under
the gauge transformations

! ei$ x ! , Aµ Aµ µ$ x . (7.57)

The minimum of the potential is defined by the equation ! µ . Thus, there is a
continuum of different vacua labelled by the phase of the scalar field. None of these
vacua, however, is invariant under the gauge symmetry

! µei%0 µei%0 i$ x (7.58)

and therefore the symmetry is spontaneously broken.
Let us study now the theory around one of these vacua, for example ! µ , by

writing the field ! in terms of the excitations around this particular vacuum

! x µ
1
2
& x ei% x . (7.59)

We should keep in mind that the whole Lagrangian is still gauge invariant under
(7.57), independently of which vacuum we have chosen to perturb around. This
means that we are at liberty of performing a gauge transformation with parameter
$ x % x in order to get rid of the phase in Eq. (7.59). Substituting then ! x
µ 1

2& x in Eq. (7.56) we find

L
1
4
Fµ"Fµ" e2µ2AµAµ

1
2 µ& µ&

1
2
#µ2&2

#µ&3
#
4
&4 e2µAµAµ& e2AµAµ&2. (7.60)

5 In condensed matter the idea had been previously implemented by Anderson [4].

126 7 Symmetries I: Continuous Symmetries

fields involved would be massive. Also in condensed matter physics massive vector
fields are required to describe certain systems, most notably in superconductivity.
The way out to this situation was found independently by Brout and Englert [3]

and by Higgs [2] using the concept of spontaneous symmetry breaking discussed
above5: if the consistency of the quantum theory requires gauge invariance this can
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We have to ask now about the excitation of the theory around the vacuum !
µ . There is a real scalar field " x with mass #µ2. However, what makes the whole
thing interesting is that the gauge field Aµ has adquired a mass given by

m2$ 2e2µ2. (7.61)

What is really remarkable about this way of giving a mass to the photon is that at no
point we have given up gauge invariance. The symmetry is only hidden. Therefore in
quantizing the theory we can still enjoy all the advantages of having a gauge theory,
while at the same time we have managed to generate a mass for the gauge field.
It might look surprising that in the Lagrangian (7.60) we did not found any mass-

less mode. Since the vacuum chosen by the scalar field breaks the only generator
of U(1) we would have expected from Goldstone’s theorem to have one massless
particle. To understand the fate of the missing Goldstone boson we have to revisit
the calculation leading to the Lagrangian (7.60).Were we dealing with a global U(1)
theory, the Goldstone boson would correspond to excitation of the scalar field along
the valley of the potential and the phase % x would be the massless Goldstone
boson. However in writing the Lagrangian we managed to get rid of % x using a
gauge transformation. With this what we did was to shift the Goldstone mode into
the gauge field Aµ . In fact, by identifying the gauge parameter with the Goldstone
excitation we have completely fixed the gauge and the Lagrangian (7.60) does not
have any residual gauge symmetry.
A massive vector field has three polarizations: two transverse ones k & k, 1

0 with helicities # 1 plus a longitudinal one &L k k. In gauging away the
massless Goldstone boson % x we have transformed it into the longitudinal polar-
ization of the massive vector field. In the literature this is usually expressed say-
ing that the Goldstone mode is “eaten up” by the longitudinal component of the
gauge field. One should not forget that in spite of the fact that the Lagrangian (7.60)
looks pretty different from the one we started with we have not lost any degrees of
freedom. We started with two polarizations of the photon plus the two degrees of
freedom associated with the real and imaginary components of the complex scalar
field ! x . After symmetry breaking we ended up with the three polarizations of the
massive vector field and the degree of freedom represented by the real scalar field
" x .
We can also understand the Higgs mechanism in the light of our discussion of

gauge symmetry in Chapter 4 (see Section 4.5). In the Higgs mechanism the invari-
ance of the theory under infinitesimal gauge transformations is not explicitly broken,
and this implies that Gauss’ law is satisfied quantummechanically,' Ea phys 0.
Thus, the theory remains invariant under gauge transformations belonging to the
connected component of the identity G0, the ones generated by Gauss’ law. How-
ever, this does not prevent possible breaking of the invariance of the theory with
respect to transformations that cannot be continuously deformed to the identity. In
other words, in the Higgs mechanism the invariance under gauge transformation that
are not in the connected component of the identity, G G0, can be broken.

The simplest example is the GL and BCS theory of superconductivity, in this case the 
“Higgs” particle is composite, it is an object of charge made of two bound electrons 
that get a “VEV” (Cooper pairs) that get a VEV in the superconducting state.  The 
photon is massive in this state.  This explains among other things the Meissner effect.
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Gauge couplings: colour

There are three gauge groups in the theory, the colour group SU(3) and the electroweak group SU
(2)xU(1) of weak isospin and hypercharge.  Y and T3 mix to generate electric charge and the photon

SU(3)c × SU(2)× U(1)Y → SU(3)× U(1)Q

QCD by itself is a perfect theory in many ways

5.3 Quantum Chromodynamics 79

quarks and has total spin s 3
2 . Then, its wave function with sz

3
2 has to be

! ;sz 3
2 uuu u ,u ,u . (5.24)

As it stands, the wave function is symmetric under the interchange of any of the
identical three quarks. This is indeed a problem because quarks are fermions and
therefore their total wave function has to be completely antisymmetric. One way
way to avoid the problem is if each quark has an extra index taking three values, ui
with i 1,2,3. Then, the wave function

! ;sz 3
2

1
3!
"i jk ui ,u j ,uk . (5.25)

is antisymmetric under the interchange of any of the constituent quarks, as required
by their fermionic statistics. This new quantum number is called color. The conclu-
sion we have reached is that each quark flavor comes in tree different states labeled
by this new index.
The color quantum number is the key to the formulation of a theory of strong

interaction able to give account of the phenomenology. This theory is called Quan-
tum Chromodynamics (QCD) and is a nonabelian gauge theory based on the gauge
group SU(3). This group acts on the color index of the quark spinor field as

Qf
i U g i j Q f

j , with g SU(3), (5.26)

where f 1, . . . ,6 runs over the six quark flavors and U g is an element of the
fundamental representation of the gauge group. The Lagrangian of the theory can
be constructed using what we learned in section 4.4

LQCD
1
4
Faµ#F

aµ#
6

f 1
Qf iD mf Qf . (5.27)

To keep the notation simple we have omitted the color indices. The nonabelian
gauge field strength Faµ# (with a 1, . . . ,8) and the covariant derivative Dµ are
given in terms of the SU(3) gauge field Aaµ by (4.38) and (4.45) respectively. In the
latter case the generators TaR are the Gell-Mann matrices listed in equation (B.16).
The QCD Lagrangian (5.27) leads to a theory where the interaction between

quarks have the features required to explain both quark confinement and the deep
inelastic scattering experiments. Unfortunately, at this point we cannot be more ex-
plicit because we still have to learn quite a lot about how to quantize an interacting
field theory such as QCD. The most we can say now is that quantum effects in
this theory result in an effective force between quarks that grows at large distances,
whereas it tends to zero at short distances. The clarification of this statement will
have to wait until chapter 9.
From the point of view of the quark model it seems rather arbitrary that hadrons

results form bound states of either a quark and an antiquark or of three quarks. Why
not, let us say, having hadrons made of two quarks? QCD offers an explanation of
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80 5 Theories and Lagrangians III: The Standard Model

this fact. What happens is that hadrons are colorless objects, i.e., they transform
as singlets under SU(3). Then, since quarks (resp. antiquarks) transform under the
fundamental 3c (resp. antifundamental 3c) of SU(3) it is impossible to produce a
colorless object out of two quarks

3c 3c 6c 3c. (5.28)

Here, to avoid confusion with the notation of previous sections, we have introduced
a subscript to indicate that we are referring to irreducible representations of color
SU(3). On the other hand, using the well-known identities

3c 3c 8c 1c,
3c 3c 3c 10c 8c 8c 1c, (5.29)

we find that there is no problem in constructing colorless mesons and baryons. One
example is the ! wave function shown in equation (5.25). Notice that on purely
group theoretical grounds there ways different from (5.29) of producing color sin-
glets. For example the product of four fundamental and one antifundamental rep-
resentations of SU(3) contains a singlet. These exotic baryons, however, have not
been to date experimentally observed.
QCD includes, besides the six quarks, eight gauge fields mediating the strong in-

teraction, one for each generator of SU(3). These intermediate vector bosons are the
gluons. It is rather counterintuitive that a short-ranged force such as the strong inter-
action is mediated by massless particles. However, we have to recall that the strong
nuclear force that we referred to in section 5.1 is a force between colorless hadrons.
The nuclear force between nucleons emerges as a residual interaction very much in
the same fashion as the van der Waals force emerges in molecular physics between
electrically neutral molecules: the Coulomb force produces a residual potential that
falls off as r 6. The problem is that in the case of QCD the complication of the
theory makes very difficult to give concrete form to this general idea. In spite of
recent progresses [5] there is still no precise understanding of how nuclear effective
potentials emerge from the gluon-mediated QCD interaction between quarks.
The approximate symmetries of the strong interaction as (approximate) global

symmetries of the QCD Lagrangian. Focusing on the two lightest quark flavors, u
and d, the fermionic piece of this Lagrangian can be written as

L u,d
iD mu md

2 0
0 iD mu md

2

u
d

mu md
2

u,d
1 0
0 1

u
d

. (5.30)

In the limit when mu md the second term can be ignored and the Lagrangian is
approximately invariant under the global SU(2)I isospin transformations

80 5 Theories and Lagrangians III: The Standard Model

this fact. What happens is that hadrons are colorless objects, i.e., they transform
as singlets under SU(3). Then, since quarks (resp. antiquarks) transform under the
fundamental 3c (resp. antifundamental 3c) of SU(3) it is impossible to produce a
colorless object out of two quarks

3c 3c 6c 3c. (5.28)

Here, to avoid confusion with the notation of previous sections, we have introduced
a subscript to indicate that we are referring to irreducible representations of color
SU(3). On the other hand, using the well-known identities

3c 3c 8c 1c,
3c 3c 3c 10c 8c 8c 1c, (5.29)

we find that there is no problem in constructing colorless mesons and baryons. One
example is the ! wave function shown in equation (5.25). Notice that on purely
group theoretical grounds there ways different from (5.29) of producing color sin-
glets. For example the product of four fundamental and one antifundamental rep-
resentations of SU(3) contains a singlet. These exotic baryons, however, have not
been to date experimentally observed.
QCD includes, besides the six quarks, eight gauge fields mediating the strong in-

teraction, one for each generator of SU(3). These intermediate vector bosons are the
gluons. It is rather counterintuitive that a short-ranged force such as the strong inter-
action is mediated by massless particles. However, we have to recall that the strong
nuclear force that we referred to in section 5.1 is a force between colorless hadrons.
The nuclear force between nucleons emerges as a residual interaction very much in
the same fashion as the van der Waals force emerges in molecular physics between
electrically neutral molecules: the Coulomb force produces a residual potential that
falls off as r 6. The problem is that in the case of QCD the complication of the
theory makes very difficult to give concrete form to this general idea. In spite of
recent progresses [5] there is still no precise understanding of how nuclear effective
potentials emerge from the gluon-mediated QCD interaction between quarks.
The approximate symmetries of the strong interaction as (approximate) global

symmetries of the QCD Lagrangian. Focusing on the two lightest quark flavors, u
and d, the fermionic piece of this Lagrangian can be written as

L u,d
iD mu md

2 0
0 iD mu md

2

u
d

mu md
2

u,d
1 0
0 1

u
d

. (5.30)

In the limit when mu md the second term can be ignored and the Lagrangian is
approximately invariant under the global SU(2)I isospin transformations

Isospin as an approximate symmetry:

Once the electroweak sector is included the story of the masses is far more complicated (see 
later)
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The physics that led to the SM is the combined results of many people over more 
than a hundred years, some of the them were awarded the Nobel Prize in Physics.  
They appear in the pages that follow.  We can think of the beginning of the SM 
Odyssey with the discovery of the electron by Thomson in 1897.

Try putting names to the faces as well as the associated contributions.

This is an amusing exercise in HEP history

The Standard Model
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If you do it more carefully (Werner Riegler), what you find is:

Who is who in the Standard Model

87 Nobel Prices related to the Development of the Standard Model

31 for Standard Model Experiments
13 for Standard Model Instrumentation and Experiments
3 for Standard Model Instrumentation
21 for Standard Model Theory
9 for Quantum Mechanics Theory
9 for Quantum Mechanics Experiments
1 for Relativity

See at the end of the lectures, the list prepared by Werner last year. 
Unfortunately this year we could not add Englert, Higgs,… 
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Fermion quantum numbers

84 5 Theories and Lagrangians III: The Standard Model

Leptons
i (generation) 1 2 3 T 3 Y

Li !e
e L

!µ
µ L

!"
" L

1
2
1
2

1
2

!iR eR µR "R 0 1

Table 5.1 Transformation properties of the lepton fields under the electroweak gauge group
SU(2) U(1)Y . In the last two columns on the right the values of the weak isospin and the hy-
percharge are shown for the different fields.

In the case of quarks we proceed along similar lines. We look first at the charged
weak current that couples protons with neutrons. Taking into account the quark
content of these particles we see how this current in fact couples the u and d quark,
suggesting that they form an isodoublet. This structure is repeated for the three quark
generations3

u
d L

,
c
s L

,
t
b L

. (5.44)

As with leptons, the right-handed quark components are singlet under SU(2). The
hypercharges of the different quarks are shown in table 5.2, where the notation Qi,
Ui
L and Di

L is respectively introduced to denote the left-handed doublets and right-
handed SU(2) singlets.
The next task is to determine the couplings of the different matter fields (lep-

tons and quarks) to the intermediate vector bosons. From Eq. (4.45) the covariant
derivative acting on the matter fields in a representation R of the gauge field is of
the form

Dµ µ igWµ ig Bµ
µ igWµ TR igWµ TR igW3

µT 3R ig BµYR, (5.45)

where the generators are in the representation of the corresponding matter fields
on which the covariant derivative acts. It is important to notice that we have intro-
duced two distinct coupling constants g and g associated with the two factors of the
gauge group, SU(2) and U(1)Y . This is because gauge transformations do not mix
the gauge field Wµ with Bµ and therefore gauge invariance does not require that

3 A word of warning is in order here. Although denoted by the same letter, the fields in the quark
doublets are not necessarily the same ones that appear as the hadron constituents in the quark
model. The two are related by a linear combination. This for the time being cryptic remark will
find clarification in chapter 10 (see page 173).
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Quarks
i (generation) 1 2 3 T 3 Y

Qi u
d L

c
s L

t
b L

1
2
1
2

1
6

Ui
R uR cR tR 0 2

3

Di
R dR sR bR 0 1

3

Table 5.2 Transformation properties of the quarks in the electroweak sector of the standard model.

both coupling constants should be related. Applying Eq. (5.41) we express Dµ in
terms of the gauge fields Aµ and Zµ

Dµ µ igWµ TR igWµ TR iAµ gsin!wT 3R g cos!wYR
iZµ gT 3R cos!w g YR sin!w . (5.46)

We have identified Aµ with the electromagnetic gauge field. Thus the third term
in the covariant derivative gives the coupling of the matter field to the electromag-
netism and, as a consequence, it should be of the form ieQAµ , with Q the charge
operator. With this in mind and using once more the Gell-Mann-Nishijima relation
(5.37) we conclude that the electric charge e is related to the coupling constants g
and g by

e gsin!w g cos!w. (5.47)

This equation gives the physical interpretation of the weak mixing angle that ap-
peared above in a rather mysterious way. It measures the ratio between the two
independent coupling constants in the electroweak sector of the standard model:

tan!w
g
g

. (5.48)

Precise calculations with the standard model requires writing an Lagrangian from
where to start a quantization of the theory. A first piece contains that dynamics
of gauge fields and can be constructed using what we learned in chapter 4 about
nonabelian gauge fields

The fundamental fermions come in three families with the same 
quantum numbers with respect to the gauge group

In principle one could add 
sterile neutrinos, right 
handed neutrinos who 
are singlets under the 
gauge group.  They would 
generate Dirac masses for 
the known neutrinos
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Gauge couplings: EW sector

The EW group has four generators

82 5 Theories and Lagrangians III: The Standard Model

with g a dimensionless coupling constant. At energies below the mass m the gauge
field becomes nonpropagating and the kinetic term can be ignored. Solving the equa-
tions of motion for Aµ and substituting the result in Lagrangian (5.35) we arrive at
the low energy “contact” interaction

Lint
g2

2m2
JµJµ . (5.36)

Extrapolation of this result to the weak interaction leads to the conclusion that both
charged and neutral weak currents are mediated by massive gauge bosons2.
The construction of a theory of weak interactions based in the interchange of

vector bosons leads in fact to the unification of the weak and electromagnetic inter-
action based on a gauge theory with gauge group SU(2) U(1)Y . This has four gen-
erators: two charged and one neutral bosons, responsible respectively for charged
and neutral weak currents, and the photon. As group generators we use T ,T 3,Y .
The first three are the ladder generators (B.10) of the SU(2) factor, called the weak
isospin. In addition, the so-called weak hypercharge is the generator of the U(1)Y
factor where the subscript is intended to avoid confusion with the electromagnetic
U(1) gauge group. It is important to keep in mind that despite their similar names
the weak isospin and hypercharge are radically different from the strong interaction
namesakes introduced in section 5.1. This notwithstanding, the value of the weak
hypercharge of the different fields will be fixed in such a way that the analog of the
Gell-Mann-Nishijima is satisfied

Q T 3 Y. (5.37)

Once the gauge group is chosen, we begin studying the intermediate gauge
bosons of the theory. For this we introduce the Lie algebra valued gauge fields

Wµ Wµ T Wµ T W3
µT 3, Bµ BµY. (5.38)

Using the Gell-Mann-Nishijima formula (5.37) and the commutation relations of
the SU(2) algebra shown in Eq. (B.10) we have that

Q,T T , Q,T 3 Q,Y 0. (5.39)

This means that the gauge fieldsWµ are electrically charged intermediate bosons,
whileW 3

µ and Bµ are neutral fields.
We still have to identify the electromagnetic U(1) in the gauge group of the elec-

troweak theory. Since the photon has no electric charge, the Maxwell gauge field Aµ
should be somehow a combination of the two neutral gauge bosons,W 3

µ and Bµ . We
define then a new pair of neutral gauge fields Aµ ,Zµ by

2 At the end of this chapter we will see that this is itself not free of problems. How these are
overcome will be explained in chapter 10.
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Aµ Bµ cos!w W3
µ sin!w, (5.40)

Zµ Bµ sin!w W3
µ cos!w,

where the transformation is parametrized by an angle !w called the weak mixing
angle. The form of the linear combination is not arbitrary: it is the most general one
that guarantees that the new gauge fields Aµ and Zµ have canonical kinetic terms
in the action. The field Aµ is now identified with the electromagnetic potential. In
short, what we have done is to parametrize our ignorance of how QED is embedded
in the electroweak gauge theory by introducing the weak mixing angle. Its value
will have to be experimentally determined. The fact that is nonzero indicates that
the weak and electromagnetic interactions are in fact mixed.
We are done, for the time being, with the gauge bosons. Next we fix the rep-

resentation of the matter fields, i.e. how matter fields transform under the gauge
group. Here the experiment is our guiding principle. For example we know that
chargedweak currents couple left-handed leptons to their corresponding left-handed
neutrinos. Because these interactions are mediated by the charged gauge fields
Wµ Wµ T , we are led to include both fields in a SU(2) doublet

"e
e L

,
"µ
µ L

,
"#
# L

. (5.41)

In addition we also know that the right-handed component of the electron does not
take part in interactions mediated by weak charged currents. This indicates that they
should be taken to be singlets under the SU(2) factor.
The Gell-Mann-Nishijima formula can be used now to fix the hypercharge of the

leptons, i.e. their transformations under the U(1) factor of the gauge group. Using
that the left-handed isodoublets (5.41) transform in the fundamental (s 1

2 ) repre-
sentation of SU(2) where T 3 1

2$
3, we have

Y "!
1
2
, Y !

1
2
, (5.42)

where ! denotes e , µ or # . In the case of the right-handed lepton, being a singlet
under SU(2), we have that T 3 0 and therefore

Y !R 1. (5.43)

We summarize the results in table 5.1. There we have introduced the compact no-
tation Li and !i to denote respectively the left-handed isodoublets and right-handed
singlets.
In all this discussion we have ignored the possibility of having a right-handed

component for the neutrino. Being a SU(2) singlet and having zero charge this par-
ticle would have also vanishing hypercharge.Thus, such a particle would be a singlet
under all gauge groups of the standard model. This is called a sterile neutrino and
would only interact gravitationally, what makes their detection extremely difficult.
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Leptons
i (generation) 1 2 3 T 3 Y

Li !e
e L

!µ
µ L

!"
" L

1
2
1
2

1
2

!iR eR µR "R 0 1

Table 5.1 Transformation properties of the lepton fields under the electroweak gauge group
SU(2) U(1)Y . In the last two columns on the right the values of the weak isospin and the hy-
percharge are shown for the different fields.

In the case of quarks we proceed along similar lines. We look first at the charged
weak current that couples protons with neutrons. Taking into account the quark
content of these particles we see how this current in fact couples the u and d quark,
suggesting that they form an isodoublet. This structure is repeated for the three quark
generations3

u
d L

,
c
s L

,
t
b L

. (5.44)

As with leptons, the right-handed quark components are singlet under SU(2). The
hypercharges of the different quarks are shown in table 5.2, where the notation Qi,
Ui
L and Di

L is respectively introduced to denote the left-handed doublets and right-
handed SU(2) singlets.
The next task is to determine the couplings of the different matter fields (lep-

tons and quarks) to the intermediate vector bosons. From Eq. (4.45) the covariant
derivative acting on the matter fields in a representation R of the gauge field is of
the form

Dµ µ igWµ ig Bµ
µ igWµ TR igWµ TR igW3

µT 3R ig BµYR, (5.45)

where the generators are in the representation of the corresponding matter fields
on which the covariant derivative acts. It is important to notice that we have intro-
duced two distinct coupling constants g and g associated with the two factors of the
gauge group, SU(2) and U(1)Y . This is because gauge transformations do not mix
the gauge field Wµ with Bµ and therefore gauge invariance does not require that

3 A word of warning is in order here. Although denoted by the same letter, the fields in the quark
doublets are not necessarily the same ones that appear as the hadron constituents in the quark
model. The two are related by a linear combination. This for the time being cryptic remark will
find clarification in chapter 10 (see page 173).
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Quarks
i (generation) 1 2 3 T 3 Y

Qi u
d L

c
s L

t
b L

1
2
1
2

1
6

Ui
R uR cR tR 0 2

3

Di
R dR sR bR 0 1

3

Table 5.2 Transformation properties of the quarks in the electroweak sector of the standard model.

both coupling constants should be related. Applying Eq. (5.41) we express Dµ in
terms of the gauge fields Aµ and Zµ

Dµ µ igWµ TR igWµ TR iAµ gsin!wT 3R g cos!wYR
iZµ gT 3R cos!w g YR sin!w . (5.46)

We have identified Aµ with the electromagnetic gauge field. Thus the third term
in the covariant derivative gives the coupling of the matter field to the electromag-
netism and, as a consequence, it should be of the form ieQAµ , with Q the charge
operator. With this in mind and using once more the Gell-Mann-Nishijima relation
(5.37) we conclude that the electric charge e is related to the coupling constants g
and g by

e gsin!w g cos!w. (5.47)

This equation gives the physical interpretation of the weak mixing angle that ap-
peared above in a rather mysterious way. It measures the ratio between the two
independent coupling constants in the electroweak sector of the standard model:

tan!w
g
g

. (5.48)

Precise calculations with the standard model requires writing an Lagrangian from
where to start a quantization of the theory. A first piece contains that dynamics
of gauge fields and can be constructed using what we learned in chapter 4 about
nonabelian gauge fields
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Precise calculations with the standard model requires writing an Lagrangian from
where to start a quantization of the theory. A first piece contains that dynamics
of gauge fields and can be constructed using what we learned in chapter 4 about
nonabelian gauge fields
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Lgauge
1
2
Wµ!W µ! 1

4
Zµ!Zµ!

1
4
Fµ!Fµ! ig

2
cos"wWµ W! Zµ!

ie
2
Wµ W! Fµ! g2

2
Wµ W µ Wµ W µ Wµ W µ 2 (5.49)

where we have introduced the notation

Wµ! µW! !Wµ ie Wµ A! W! Aµ igcos"w Wµ Z! W! Zµ

Zµ! µZ! !Zµ , (5.50)

while Fµ! is the familiar field strength of the Maxwell field Aµ . The gauge piece of
the Lagrangian that just wrote might look a bit cumbersome at first sight. This is
only because we have chosen to write it in terms of the fields Aµ and Zµ . Although
it is there the SU(2) U(1)Y gauge symmetry is not obvious, but as a compensation
we have an action that is explicitly invariant under the gauge transformations of
electromagnetism.We have also eliminated the coupling constant g in favor of g and
the weak mixing angle "w. Moreover, whenever the combination gsin"w appeared
we further used (5.47) and wrote the electric charge e.
For the matter fields, on the other hand, we can write the following gauge invari-

ant Lagrangian

Lmatter

3

i 1
iL jDL j i! jRD!

j
R

iQ jDQ j iU j
RDU

j
R iDj

RDD
j
R . (5.51)

The covariant derivatives that appear in this Lagrangian can be written explicitly
from (5.46) taking into account the representation for the different matter fields.
A glimpse at the LagrangiansLgauge and Lmatter and at the covariant derivative

(5.46) shows the coupling between the standard model particles. As right-handed
fields are singlets under SU(2) we see that theW boson only couples to the left-
handed doublets. Using the expression of the T generators in the fundamental
representation of SU(2) we see that the terms in the standard model Lagrangian
coupling theW boson to the leptons are of the form

gWµ !!#
µ!L, gWµ !L#µ!!. (5.52)

Notice that the strength of these couplings is given by g.
In the case of the Z0 we notice that in the covariant derivative it appears together

with a combination of the two generators of the Cartan subalgebra of the gauge
group SU(2) U(1)Y , namely T 3 and Y . Since they can be taken diagonal we see
that this gauge boson couples fermions of the same kind. In the case of the leptons
these are

g
2cos"w

Zµ!!#
µ!!,

g
cos"w

1
2

sin2 "w Zµ!L#µ!L, (5.53)
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Wµ W µ Wµ W µ Wµ W µ 2 (5.49)

where we have introduced the notation

Wµ! µW! !Wµ ie Wµ A! W! Aµ igcos"w Wµ Z! W! Zµ

Zµ! µZ! !Zµ , (5.50)

while Fµ! is the familiar field strength of the Maxwell field Aµ . The gauge piece of
the Lagrangian that just wrote might look a bit cumbersome at first sight. This is
only because we have chosen to write it in terms of the fields Aµ and Zµ . Although
it is there the SU(2) U(1)Y gauge symmetry is not obvious, but as a compensation
we have an action that is explicitly invariant under the gauge transformations of
electromagnetism.We have also eliminated the coupling constant g in favor of g and
the weak mixing angle "w. Moreover, whenever the combination gsin"w appeared
we further used (5.47) and wrote the electric charge e.
For the matter fields, on the other hand, we can write the following gauge invari-

ant Lagrangian

Lmatter

3

i 1
iL jDL j i! jRD!

j
R

iQ jDQ j iU j
RDU

j
R iDj

RDD
j
R . (5.51)

The covariant derivatives that appear in this Lagrangian can be written explicitly
from (5.46) taking into account the representation for the different matter fields.
A glimpse at the LagrangiansLgauge and Lmatter and at the covariant derivative

(5.46) shows the coupling between the standard model particles. As right-handed
fields are singlets under SU(2) we see that theW boson only couples to the left-
handed doublets. Using the expression of the T generators in the fundamental
representation of SU(2) we see that the terms in the standard model Lagrangian
coupling theW boson to the leptons are of the form

gWµ !!#
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Notice that the strength of these couplings is given by g.
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Higgs couplings

170 10 The Origin of Mass

Higgs mode discussed in the previous section [see Eq. (7.56)]. We add a massless
fermion ! and couple it to the complex scalar field " x introducing the so-called
Yukawa coupling term

LYukawa c"!! , (10.1)

where c is a real constant. Upon symmetry breaking this term in the Lagrangian
takes the form

LYukawa cµ!!
c
2
#!! . (10.2)

The first term gives a Dirac mass m! cµ to the fermion ! x , while the second
one couples it to the scalar field # x .
This shows the way to solve the problem of giving mass to fermions coupling

to gauge fields in a chiral way without breaking gauge invariance. In Chapter 5 we
learned that in the standard model the left-handed fermions transform as doublets
under the SU(2) factor of the gauge group, whereas the right-handed components
are singlets. Then, the gauge invariance of the Yukawa couplings indicates that the
Higgs field has to be a SU(2) doublet

H H
H0 , (10.3)

where H and H0 are complex scalar fields. Taking this into account we add to the
standard model Lagrangian the piece

L !
Yukawa

3

i, j 1
C !
i j L

iH!
j
R C !

ji !
i
RH L j (10.4)

that is invariant under SU(2) gauge transformations. Here C !
i j are dimensionless

coupling constants and we have used the notation introduced in the table 5.1. The
Yukawa couplings have been constructed in such a way that neutrinos do not get
Dirac masses. How neutrino masses come about will be discussed later.
The masses of the quarks are generated by Yukawa couplings similar to the ones

already written for the leptons. One important difference, however, lies in the fact
that we want to give mass to the two components of the left-handed SU(2) doublets.
To achieve this we need to couple the fermions not only to the Higgs doubletH but
also to its “charge conjugate”

H i#2H H0
H . (10.5)

From the identity

i#2 e ia #
2 eia

#
2 i#2 (10.6)
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10.1 The Masses in the Standard Model 171

follows that the conjugated Higgs field H also transforms as a SU(2) doublet. Then,
the Dirac masses of the quark fields can be obtained from the following Yukawa
couplings

L q
Yukawa

3

i, j 1
C q
i j Q

iHDj
R C q

ji DiRH Q j

3

i, j 1
C q
i j Q

iHU j
R C q

ji Ui
RH Q j . (10.7)

The notation again is the one set in table 5.2.
We have constructed an interaction term between the Higgs field and the fermions

demanding invariance under SU(2) gauge transformations. It is easy to see that the
Yukawa couplings (10.4) and (10.7) are invariant also under the U(1)Y gauge sym-
metry factor provided the Higgs field is assigned the hypercharge Y H 1

2 . The
Gell-Mann-Nishijima formula then implies that

Q H 1, Q H0 0, (10.8)

thus justifying our notation.
To implement symmetry breaking we have to add the following piece to the stan-

dard model Lagrangian

LHiggs DµH DµH V H,H , (10.9)

where Dµ is the corresponding SU(2) U(1)Y covariant derivative (see Chapter 5,
Section 5.4). The potential has to be wisely chosen in such a way that spontaneous
symmetry breaking takes place and solves our problems with the particle masses
in a satisfactory way. In fact, gauge invariance and the condition that the theory is
renormalizable (see chapter 9) imply that the Higgs potential should be of the form

V H,H !
4
H H µ2

2
. (10.10)

The system exhibit spontaneous symmetry breaking if µ2 0. Then, the theory has
a degenerate family of vacua defined by H H µ2.
The only surviving gauge symmetry in the electroweak sector at low energies is

the U(1) invariance of QED. This means that this symmetry is realized à la Wigner-
Weyl and therefore the vacuum has zero electric charge. Taking into account Eq.
(10.8) this means that we are forced to take

H 0
µ

. (10.11)
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Weyl and therefore the vacuum has zero electric charge. Taking into account Eq.
(10.8) this means that we are forced to take

H 0
µ

. (10.11)

10.1 The Masses in the Standard Model 171

follows that the conjugated Higgs field H also transforms as a SU(2) doublet. Then,
the Dirac masses of the quark fields can be obtained from the following Yukawa
couplings

L q
Yukawa

3

i, j 1
C q
i j Q

iHDj
R C q

ji DiRH Q j

3

i, j 1
C q
i j Q

iHU j
R C q

ji Ui
RH Q j . (10.7)

The notation again is the one set in table 5.2.
We have constructed an interaction term between the Higgs field and the fermions

demanding invariance under SU(2) gauge transformations. It is easy to see that the
Yukawa couplings (10.4) and (10.7) are invariant also under the U(1)Y gauge sym-
metry factor provided the Higgs field is assigned the hypercharge Y H 1

2 . The
Gell-Mann-Nishijima formula then implies that

Q H 1, Q H0 0, (10.8)

thus justifying our notation.
To implement symmetry breaking we have to add the following piece to the stan-

dard model Lagrangian

LHiggs DµH DµH V H,H , (10.9)

where Dµ is the corresponding SU(2) U(1)Y covariant derivative (see Chapter 5,
Section 5.4). The potential has to be wisely chosen in such a way that spontaneous
symmetry breaking takes place and solves our problems with the particle masses
in a satisfactory way. In fact, gauge invariance and the condition that the theory is
renormalizable (see chapter 9) imply that the Higgs potential should be of the form

V H,H !
4
H H µ2

2
. (10.10)

The system exhibit spontaneous symmetry breaking if µ2 0. Then, the theory has
a degenerate family of vacua defined by H H µ2.
The only surviving gauge symmetry in the electroweak sector at low energies is

the U(1) invariance of QED. This means that this symmetry is realized à la Wigner-
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The Higgs couplings responsible for the masses of the leptons and the current 
algebra masses of the quarks are:

The most general Lagrangian compatible with the 
gauge symmetry and up to dimension 4, so that the 
theory is renormalisable.  One H gets its VEV the 
masses are generated from the Yukawa couplings.  
Use unitary gauge.  The gauge fields get masses from 
the kinetic term

172 10 The Origin of Mass

Because Y H 1
2 this vacuum expectation value breaks not only SU(2) but also

U(1)Y . It however preserves the electromagnetic U(1) and therefore implements cor-
rectly the symmetry breaking pattern, SU(2) U(1)Y U(1).
Following the example of the Abelian Higgs model, the fluctuations around this

vacuum can be parametrized as [cf. Eq. (7.59)]

H x eia x
!
2

0
µ 1

2h x
. (10.12)

There are four different fields associated with these fluctuations, here denoted by
a x and h x . The factor eia x !

2 represents the action of the three broken gen-
erators1, and can be eliminated by a SU(2) gauge transformation. This removes
the three would-be Goldstone bosons a x that are transmuted into the longitudinal
components of the massive gauge bosonsW , W and Z0. The remaining propa-
gating degree of freedom h x is the neutral scalar whose elementary excitations we
call the Higgs boson. Inserting

H x
0

µ 1
2h x

(10.13)

in V H,H and expanding the result in powers of the field h x the mass of the
Higgs particle is found to be

mH µ " . (10.14)

The dimensionless coupling " governs the self-interaction of the Higgs bosons.
Plugging Eq. (10.13) in the Yukawa couplings (10.4), and we find, at low ener-

gies, the following lepton mass terms in the Lagrangian

L !
mass eL,µL,#L M !

eR
µR
#R

h.c. (10.15)

We notice that no mass term for the neutrinos is generated through the Higgs mech-
anism, so neutrino masses have to be explained in some other way. On the other
hand, for the quarks we find

L q
mass dL,sL,bL M q

dR
sR
bR

uL,cL,tL M q
uR
cR
tR

h.c. (10.16)

1 It might seem strange that, apparently, we have included only the action of the SU(2) generators
on the vacuum. As a matter of fact this is not the case. What happens is that the electromagnetic
U(1) remains unbroken and therefore Qvac 0. Then, using the Gell-Mann-Nishijima relation, the
action of the hypercharge generator Y on the vacuum can be written in terms of the generators of
SU(2) as Y 2T3 ! 3.
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Higgs decays

Courtesy J. Incancella

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

64

Courtesy J. Incancella

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

65

Branching ratios

Tuesday, 16 October, 2012



Lu
is

 A
lv

ar
ez

-G
au

m
e 

 F
uk

uo
ka

  L
ec

tu
re

s 
O

ct
ob

er
 1

5-
19

 2
01

2

66

CKM matrix

172 10 The Origin of Mass
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call the Higgs boson. Inserting

H x
0

µ 1
2h x

(10.13)

in V H,H and expanding the result in powers of the field h x the mass of the
Higgs particle is found to be

mH µ " . (10.14)

The dimensionless coupling " governs the self-interaction of the Higgs bosons.
Plugging Eq. (10.13) in the Yukawa couplings (10.4), and we find, at low ener-

gies, the following lepton mass terms in the Lagrangian

L !
mass eL,µL,#L M !

eR
µR
#R

h.c. (10.15)

We notice that no mass term for the neutrinos is generated through the Higgs mech-
anism, so neutrino masses have to be explained in some other way. On the other
hand, for the quarks we find

L q
mass dL,sL,bL M q

dR
sR
bR

uL,cL,tL M q
uR
cR
tR

h.c. (10.16)

1 It might seem strange that, apparently, we have included only the action of the SU(2) generators
on the vacuum. As a matter of fact this is not the case. What happens is that the electromagnetic
U(1) remains unbroken and therefore Qvac 0. Then, using the Gell-Mann-Nishijima relation, the
action of the hypercharge generator Y on the vacuum can be written in terms of the generators of
SU(2) as Y 2T3 ! 3.

10.1 The Masses in the Standard Model 173

In these expressions the mass matrices are given by

M !,q
i j µC !,q

i j , M q
i j µC q

i j , (10.17)

with C !,q
i j and C q

i j the strength of the Yukawa couplings that, we have to bear in
mind, define general 3 3 complex matrices. We notice as well that the mass scale
of all charged fermion are set by the Higgs vacuum expectation value µ .
So far the we have written the standard model Lagrangian in terms of fields

with well defined transformations under the gauge group (this we call flavor eigen-
states). Now, however, there is no a priori reason for the mass matrices in (10.15)
and (10.16) to be diagonal. This means that the corresponding propagators are not
diagonal and therefore the different flavor eigenstates mix with each other as they
propagate. In order to quantize the theory, however, it is more convenient to work
with fields whose propagators, at low energies, are diagonal and therefore have well-
defined masses. These fields are constructed by noticing that a general complex ma-
trix can always be diagonalized by a biunitary transformation. More precisely, this
means that there are unitary matrices V !,q

L,R , V q
L,R such that

V !
L M ! V !

R

me 0 0
0 mµ 0
0 0 m!

(10.18)

for the leptons, whereas for the quarks we have

V q
L M q V q

R

md 0 0
0 ms 0
0 0 mb

, V q
L M q V q

R

mu 0 0
0 mc 0
0 0 mt

. (10.19)

In view of this we define the mass eigenstate quark fields as2

uL,R
cL,R
tL,R

V q
L,R

uL,R
cL,R
tL,R

,

dL,R
sL,R
bL,R

V q
L,R

dL,R
sL,R
bL,R

, (10.20)

and similarly for the charged lepton fields, this time using the matrices V !
L,R . By

construction the propagators are diagonal when expressed in terms of the new fields.
The couplings with the gauge fields, on the other hand, can get a dependence of the
unitary matrices involved in the diagonalization of the mass matrices. To see how
this dependence comes about we look, for example, at the quark charged current
that couples to theW bosons

2 Our notation at this point differs from the usual one in the literature in that we use primed fields
to indicate the mass eigenstates. The reason to use this notation to avoid cluttering the equations
with primes both in this chapter and in chapter 5.
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In the quark sector going from to mass eigenstates leaves a matrix of phases in the charged 
currents,  the CKM matrix.  Not for neutral currents GIM

174 10 The Origin of Mass

jµ uL,cL,tL !µ
dL
sL
bL

uL,cL,tL !
µV q

L V q
L

dL
sL
bL

(10.21)

A similar calculation for the neutral quark current shows that it does not depend on
the unitary matrices relating flavor to mass eigenstates.
We have shown that the couplings of the quarks to theW bosons mix the dif-

ferent mass eigenstates. This mixing is given by the 3 3 matrix

V V q
L V q

L , (10.22)

called the Cabibbo-Kobayashi-Maskawa quark mixing matrix. It is immediate to
check that this matrix is unitary and therefore in general complex. In chapter 11 we
will see that this have important physical consequences.
We analyze next the leptonic sector. The charged lepton-neutrino current is then

jµ "eL,"µ L,"# L !µ
eL
µL
#L

"e,L,"µ,L,"#,L !µV
!

L

eL
µL
#L

(10.23)

Were the neutrino massless, the matrixVL ! could be reabsorbed in a redefinition of
the neutrino fields without making the propagator nondiagonal. We know, however,
that the neutrinos are massive and the only question is whether their mass terms are
of Dirac or Majorana type. In either case one has to redefine the neutrino fields to
diagonalize their mass matrix and this results in the introduction of second Cabibbo-
Kobayashi-Maskawa matrix in the leptonic sector.

Higgs couplings

Having learned how masses of the fermions are generated we would like to know
how these states couple to the Higgs field itself. This is important because these
couplings determine both how the Higgs particles can be produced in a scattering
experiment and also what signatures they create upon decay. Looking at the terms
linear in h x in (10.4) we find that the Higgs boson couples to the charged mass
eigenstates f e ,µ ,# ,u ,d ,c ,s ,t ,b according to the vertices

f

f

h
mf

µ

where mf is the mass of the charged fermion. Thus, the Higgs-fermion couplings
are suppressed by the ratio between the fermion masses and the vacuum expectation
value of the Higgs field.
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Discrete symmetries

11.4 Time Reversal 191

q0,p0
T q0, p0

t t

q t ,p t T q t , p t

(11.42)

In the quantum theory this diagram gives the action of the operator T that imple-
ments time reversal on the evolution operator, namely

e itHT e itH T , (11.43)

where H is the Hamiltonian of the theory. Infinitesimally this implies that iH anti-
commutes with time reversal,

iH,T 0. (11.44)

Because of Wigner’s theorem we are now faced with a double choice:T being a
symmetry it has to be either a unitary or an antiunitary operator. In the first case we
find that

HT T H 0, (T unitary). (11.45)

IfT is antiunitary, on the other hand, complex numbers get conjugatedwith passing
through the time reversal operator. In our case this means that

HT T H 0, (T antiunitary). (11.46)

In fact, takingT unitary is a source of trouble. From (11.45) we conclude that if the
!E is a Hamiltonian eigenstate with eigenvalue E , then T !E is an eigenstate as
well with eigenvalue E . Because the original spectrum is unbounded above, the
transformed theory does not have a ground state (i.e., the spectrum is unbounded
below). If, on the other hand, the time reversal operatorT is antiunitary we see that
both !E and T !E has the same eigenvalue and the spectrum is invariant. The
antiunitarity ofT is also necessary for the invariance of the canonical commutation
relations under time reversal.
Any antiunitary operator can be written, in a basis-dependent way, as the product

U K of a unitary operator U and a second operatorK that acts by complex con-
jugation on the numerical coefficients. With the help of this decomposition we can
easily show that the square of an antiunitary operator is unitary. Indeed, using that
K 2 1 we find that

U K 2 U U (11.47)

which is a unitary operator.
Let us briefly study the consequences of time reversal invariance in nonrelativis-

tic quantummechanics. From the transformation of the angular momentum operator

T JT 1 J (11.48)

❖ In the classical world, we have invariance uncer P,C,T.  All we 
had was E&M and gravity.

❖ In QFT they are not guaranteed in fact P,C,T, CP are broken 
symmetries.  The only one that survives so far is CPT.  It has 
several important consequences.  CP violation is fundamental in 
the generation of matter.  In the SM we need at least three 
families

❖ The existence of antiparticles with the same mass and decay 
rate

❖ The connection between spin and statistics

❖T-reversal and CPT are the only ones implemented by anti-
unitary operators
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Anomalous Symmetries

Sometimes symmetries of the classical Lagrangian do not survive quantisation.  There are three examples we 
can cite:

❖Global chiral symmetries, responsible for the electromagnetic decay of the neutral pion

❖Gauged chiral symmetries.  This happens when left and right multiplets have different representations of the 
gauge group.  At the one-loop level we find a non-trivial conditions among the quantum numbers necessary to 
maintain gauge invariance.  It suffices to satisfy this condition at the one-loop level

❖Scale invariance.  The behaviour of the theory under scale transformation.  Rather how physics depends on 
scales is far more interesting that just dimensional analysis.

144 8 Anomalies

where the chiral fermions ! i transform according to the representations "ai, of the
gauge group G (a 1, . . . ,dimG). The covariant derivatives Dµ are then defined
by

Dµ ! i
µ! i igAaµ"

a ! i . (8.59)

As with global symmetries, anomalies in the gauge symmetry appear in the triangle
diagram with one axial and two vector gauge current vertices

0 T jaµA x jb#V x jc$V 0 0
jaµA jb#V

jc$V

symmetric

(8.60)

where gauge vector and axial currents jaµV , jaµA are given by

jaµV
N

i 1
! i "a %µ! i

N

j 1
! j "a %µ! j

,

jaµA

N

i 1
! i "a %µ! i

N

i 1
! j "a %µ! j

. (8.61)

Luckily, we do not have to compute the whole diagram in order to find an anomaly
cancellation condition, it is enough if we calculate the overall group theoretical fac-
tor. In the case of the diagram in Eq. (8.60) for every fermion species running in the
loop this factor is equal to

tr "ai, "bi, ,"ci, , (8.62)

where the sign corresponds respectively to the generators of the representation of
the gauge group for the left and right-handed fermions. Hence the anomaly cancel-
lation condition reads

N

i 1
tr "ai, "bi, ,"ci,

N

j 1
tr "aj, "bj, ,"cj, 0. (8.63)

Knowing this we can proceed to check the anomaly cancellation in the Stan-
dard Model SU(3) SU(2) U(1). Left handed fermions (both leptons and quarks)
transform as doublets with respect to the SU(2) factor whereas the right-handed
components are singlets. The charge with respect to the U(1) part, the hypercharge
Y , is determined by the Gell-Mann-Nishijima formula

Q T3 Y, (8.64)
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Anomaly cancellation condition, it has 
highly non-trivial implications for the 
family structure
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Anomalous Symmetries

8.4 Gauge Anomalies 145

where Q is the electric charge of the corresponding particle and T3 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding repre-
sentation: T3 1

2!
3 for the doublets and T3 0 for the singlets. For the first family

of quarks (u, d) and leptons (e, "e) we have the following field content

quarks: u#
d# L, 16

u#R, 23
d#R, 23

leptons: "e
e L, 1

2

eR, 1 (8.65)

where # 1,2,3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y . Denoting the representations of SU(3) SU(2)
U(1) by nc,nw Y , with nc and nw the representations of SU(3) and SU(2) respec-

tively and Y the hypercharge, the matter content of the Standard Model consists of
a three family replication of the representations:

left-handed fermions: 3,2 L
1
6

1,2 L
1
2

(8.66)
right-handed fermions: 3,1 R

2
3

3,1 R
1
3

1,1 R
1.

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3) SU(2) U(1) couples to each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)U(1)

SU(3)2U(1) SU(2)U(1)2

SU(3)SU(2)2

SU(3)SU(2)U(1)

SU(3)U(1)2

It is easy to check that some of them do not give rise to anomalies. For example the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term because of the Pauli matrices identity !a!b $ ab i%abc! c that leads to

tr !a !b,! c 2 tr!a $ bc 0. (8.67)

146 8 Anomalies

However the hardest anomaly cancellation condition to satisfy is the one with three
U(1)’s. In this case the absence of anomalies within a single family is guaranteed by
the nontrivial identity

left
Y 3

right
Y 3 3 2

1
6

3
2

1
2

3
3

2
3

3

3 1
3

3
1 3 3

4
3
4

0. (8.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole StandardModel gauge group and therefore does
not contribute to the triangle diagram. Therefore we see how the matter content of
the Standard Model conspires to yield a consistent quantum field theory.
In all our discussion of anomalies we only considered the computation of one-

loop diagrams. It may happen that higher loop orders impose additional conditions.
Fortunately this is not so: the Adler-Bardeen theorem [8] guarantees that the ax-
ial anomaly only receives contributions from one loop diagrams. Therefore, once
anomalies are canceled (if possible) at one loop we know that there will be no new
conditions coming from higher-loop diagrams in perturbation theory.
The Adler-Bardeen theorem, however, only applies in perturbation theory. It is

nonetheless possible that nonperturbative effects can result in the quantum viola-
tion of a gauge symmetry. This is precisely the case pointed out by Witten [9] with
respect to the SU(2) gauge symmetry of the Standard Model. In this case the prob-
lem lies in the nontrivial topology of the gauge group SU(2). The invariance of the
theory with respect to gauge transformations which are not in the connected com-
ponent of the identity makes all correlation functions equal to zero. Only when the
number of left-handed SU(2) fermion doublets is even gauge invariance allows for
a nontrivial theory. It is again remarkable that the family structure of the Standard
Model makes this anomaly to cancel

3 u
d L

1 !e
e L

4 SU(2)-doublets, (8.69)

where the factor of 3 comes from the number of colors.
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where Q is the electric charge of the corresponding particle and T3 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding repre-
sentation: T3 1

2!
3 for the doublets and T3 0 for the singlets. For the first family

of quarks (u, d) and leptons (e, "e) we have the following field content

quarks: u#
d# L, 16

u#R, 23
d#R, 23

leptons: "e
e L, 1

2

eR, 1 (8.65)

where # 1,2,3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y . Denoting the representations of SU(3) SU(2)
U(1) by nc,nw Y , with nc and nw the representations of SU(3) and SU(2) respec-

tively and Y the hypercharge, the matter content of the Standard Model consists of
a three family replication of the representations:

left-handed fermions: 3,2 L
1
6

1,2 L
1
2

(8.66)
right-handed fermions: 3,1 R

2
3

3,1 R
1
3

1,1 R
1.

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3) SU(2) U(1) couples to each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)U(1)

SU(3)2U(1) SU(2)U(1)2

SU(3)SU(2)2

SU(3)SU(2)U(1)

SU(3)U(1)2

It is easy to check that some of them do not give rise to anomalies. For example the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term because of the Pauli matrices identity !a!b $ ab i%abc! c that leads to

tr !a !b,! c 2 tr!a $ bc 0. (8.67)
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Anomalies cancel generation by generation.  In fact the 
hypercharge assignments is completely determined if we also 
impose the traceless-ness of any U(1)
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Deriving quantum numbers

(N, 2)LqL ⊕ (1, 2)LlL
(N, 1)RuR

⊕ (N, 1)RdR
⊕ (1, 1)ReR

SU(N)c × SU(2)× U(1) S.M. anomaly

Single family

Anomaly conditions, we will normalize e_R=-1 as in the SM

U(1)SU(2)2 2N qL + 2 lL = 0

U(1)SU(N)2 2 qL − (uR + dR) = 0

U(1)3 2N q3L + 2 l3L −N u3
R −N d3R − e3R = 0

U(1) 2 qL + 2 lL −N(uR + dR)− eR = 0

A simple computation now yields a (nearly) unique solution:

qL =
1

2N
lL = −1

2
eR = −1

uR + dR = 1/N

uR dR = −1

4
(1− 1

N2
)

uR =
N + 1

2N

dR = −N − 1

2N

For N=3 we obtain the hypercharges of the SM!!
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Scale invariance, renormalisation

×λ−1

Renormalisation deals with the scale dependence of the the physics even 
if the original theory is scale invariant.

Virtual phenomena can get more complicated or simplify as we move to 
larger and shorter distances

158 9 Renormalization

of renormalizable theories without mass terms. These theories are scale invariant at
the classical level because the action does not contain any dimensionful parameter.
In this case the running of the coupling constants can be seen as resulting from a
quantum breaking of classical scale invariance: different energy scales in the theory
are distinguished by different values of the coupling constants. Remembering what
we learned in Section 8, we conclude that classical scale invariance is an anomalous
symmetry. One heuristic way to see how the conformal anomaly comes about is to
notice that the regularization of an otherwise scale invariant field theory requires
the introduction of an energy scale (e.g. a cutoff). This breaking of scale invariance
cannot be restored after renormalization.
Nevertheless, scale invariance is not lost forever in the quantum theory. It is re-

covered at the fixed points of the beta function where, by definition, the coupling
does not run. To understand how this happens we go back to a scale invariant clas-
sical field theory whose field ! x transform under coordinate rescalings as

xµ "xµ , ! x " #! " 1x , (9.23)

where # is called the canonical scaling dimension of the field. An example of such
a theory is a massless !4 theory in four dimensions

L
1
2 µ! µ!

g
4!
!4, (9.24)

where the scalar field has canonical scaling dimension # 1. The Lagrangian den-
sity transforms as

L " 4L ! (9.25)

and the classical action remains invariant3.
We look at the free theory g 0 for a moment. Now there are no divergences

and all correlation functions can be exactly computed. In particular we consider the
momentum space n-point correlation function

G0 p1, . . . , pn 2$ 4% 4 p1 . . . pn

d4x1 . . .d4xn eip1 x1 ... ipn xn 0 T !0 x1 . . .!0 xn 0 , (9.26)

where by !0 x we denote the free field operator. Applying the rescaling (9.23) we
find the following transformation for the correlation function

G0 p1, . . . , pn " 4 n 1 n#G0 " p1, . . . ," pn . (9.27)

3 In a D-dimensional theory the canonical scaling dimensions of the fields coincide with its engi-
neering dimension: # D 2

2 for bosonic fields and # D 1
2 for fermionic ones. For a Lagrangian

with no dimensionful parameters classical scale invariance follows then from dimensional analysis.
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managed to rewrite the partition function solely in terms of this new (renormalized)
spin variables s 1 interacting through a new Hamiltonian H 1

Z
s 1

e !H 1 s 1a . (9.43)

Let us now think about the space of all possible Hamiltonians for our statistical
system including all kinds of possible couplings between the individual spins com-
patible with the symmetries of the system. If denote byR the decimation operation,
our previous analysis shows thatR defines a map in this space of Hamiltonians

R :H H 1 . (9.44)

At the same time the operation R replaces a lattice with spacing a by another one
with double spacing 2a. As a consequence the correlation length in the new lattice
measured in units of the lattice spacing is divided by two, R : " "

2 .
Now we can iterate the operation R an indefinite number of times. Eventually

we might reach a Hamiltonian H that is not further modified by the operationR

H R H 1 R H 2 R
. . .

R H . (9.45)

The fixed point Hamiltonian H is scale invariant because it does not change as
R is performed. Notice that because of this invariance the correlation length of the
system at the fixed point do not change under R. This fact is compatible with the
transformation " "

2 only if " 0 or " . Here we will focus in the case of
nontrivial fixed points with infinite correlation length.
The space of Hamiltonians can be parametrized by specifying the values of the

coupling constants associated with all possible interaction terms between individual
spins of the lattice. If we denote byOa si these (possibly infinite) interaction terms,
the most general Hamiltonian for the spin system under study can be written as

H si
a 1

#aOa si , (9.46)

where #a R are the coupling constants for the corresponding operators. These con-
stants can be thought of as coordinates in the space of all Hamiltonians. Therefore
the operationR defines a transformation in the set of coupling constants

R : #a # 1
a . (9.47)

For example, in our case we started with a Hamiltonian in which only one of the
coupling constants is different from zero (say #1 J). As a result of the decima-
tion #1 J J 1 while some of the originally vanishing coupling constants
will take a nonzero value. Of course, for the fixed point Hamiltonian the coupling
constants do not change under the scale transformationR.

9.3 The Renormalization Group in Statistical Mechanics 161

square lattice as the one depicted in Fig 9.2. In terms of the spin variables si 1
2 ,

where i labels the lattice site, the Hamiltonian of the system is given by

H J
i, j
si s j, (9.35)

where i, j indicates that the sum extends over nearest neighbors and J is the cou-
pling constant between neighboring spins (here we consider that there is no external
magnetic field). The starting point to study the statistical mechanics of this system
is the partition function defined as

Z
si

e !H , (9.36)

where the sum is over all possible configurations of the spins and ! 1
T is the

inverse temperature. For J 0 the Ising model presents spontaneous magnetization
below a critical temperature Tc, in any dimension higher than one. Away from this
temperature correlations between spins decay exponentially at large distances

sis j e
xi j
" , (9.37)

with xi j the distance between the spins located in the i-th and j-th sites of the lat-
tice. This expression serves as a definition of the correlation length " which sets the
characteristic length scale at which spins can influence each other by their interac-
tion through their nearest neighbors.

Fig. 9.3 Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective
spin computed according to the rule (9.39). Notice also that the size of the lattice spacing is doubled
in the process.
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!

! 2

1

F

O
Fig. 9.4 Example of a renormalization group flow.

perturbations the system flows either to the free theory at the origin or to a theory
with infinite values for the couplings.

9.4 The Renormalization Group in Quantum Field Theory

Let us see now how these ideas of the renormalization group apply to Field Theory.
Let us begin with a quantum field theory defined by the Lagrangian

L "a L0 "a
i
giOi "a , (9.49)

whereL0 "a is the kinetic part of the Lagrangian and gi are the coupling constants
associated with the operators Oi "a . In order to make sense of the quantum the-
ory we introduce a cutoff in momenta # . In principle we include all operators Oi
compatible with the symmetries of the theory.
In section 9.2 we saw how in the cases of QED and QCD, the value of the cou-

pling constant changed with the scale from its value at the scale # . We can under-
stand now this behavior along the lines of the analysis presented above for the Ising
model. If we would like to compute the effective dynamics of the theory at an en-
ergy scale µ # we only have to integrate out all physical models with energies
between the cutoff # and the scale of interest µ . This is analogous to what we did
in the Ising model by replacing the original spins by the block spins. In the case of
field theory the effective action S "a,µ at scale µ can be written in the language of
functional integration as

eiS "a,µ

µ p #
a

D"a eiS "a,# . (9.50)

Here S "a,# is the action at the cutoff scale

In relativistic QFT we seem to get only fixed points, no limit cycles nor 
strange attractors
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Scale invariance, fractals

Why not in QFT? It would be rather 
remarkable if in a field theory we found 
strange attractors at high or low energies.
Lorentz or Poincaré invariance play an 
important role in determining the possible 
limit structures.  Only fixed points?

Tuesday, 16 October, 2012
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9.2 The Beta-Function and Asymptotic Freedom 155

run in the loop (MW MZ). Taking this into account, as well as threshold effects,
the value of the electron charge at the scaleMZ is found to be [1]

! Mz
e MZ

2

4"
1

128.9
. (9.18)

This growing of the effective fine structure constant with energy can be under-
stood heuristically by remembering that the effect of the polarization of the vac-
uum shown in the diagram of Eq. (9.2) amounts to the creation of a plethora of
electron-positron pairs around the location of the charge. These virtual pairs behave
as dipoles that, as in a dielectric medium, tend to screen this charge and decreasing
its value at long distances (i.e. lower energies).
The variation of the coupling constant with energy is usually encoded in Quan-

tum Field Theory in the beta function defined by

# g µ
dg
dµ

. (9.19)

In the case of QED the beta function can be computed from Eq. (9.15) with the
result

# e QED
e3

12"2
. (9.20)

The fact that the coefficient of the leading term in the beta-function is positive
#0 1

6" 0 gives us the overall behavior of the coupling as we change the scale.
Eq. (9.20) means that, if we start at an energy where the electric coupling is small
enough for our perturbative treatment to be valid, the effective charge grows with
the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and bet-
ter results as we go to lower energies. Actually, because the electron is the lighter
electrically charged particle and has a finite nonvanishing mass the running of the
fine structure constant stops at the scale me in the well-known value 1

137 . Would
other charged fermions with masses below me be present in Nature, the effective
value of the fine structure constant in the interaction between these particles would
run further to lower values at energies below the electron mass.
On the other hand if we increase the energy scale e µ 2 grows until at some

scale the coupling is of order one and the perturbative approximation breaks down.
In QED this is known as the problem of the Landau pole but in fact it does not pose
any serious threat to the reliability of QED perturbation theory: a simple calculation
shows that the energy scale at which the theory would become strongly coupled is
$Landau 10277 GeV. However, we know that QED does not live that long! At much
lower scales we expect electromagnetism to be unified with other interactions, and
even if this is not the case we will enter the uncharted territory of quantum gravity
at energies of the order of 1019 GeV.
So much for QED. The next question that one may ask at this stage is whether it

is possible to find quantum field theories with a behavior opposite to that of QED,

Fixed points beta functions
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!"# ve$"ue
e2

4%q2
vµ$#uµ !"# ve$"ue

e2

4%q2
& q2 vµ$#uµ

!"# ve$"ue
e2

4%q2
1

e2

12%2
log

q2

'2
vµ$#uµ . (9.11)

Now let us imagine that we are performing a e e µ µ with a center of mass
energy µ . From the previous result we can identify the effective charge of the parti-
cles at this energy scale e µ as

!"# ve$"ue
e µ 2

4%q2
vµ$#uµ . (9.12)

This charge, e µ , is the quantity that is physically measurable in our experiment.
Now we can make sense of the formally divergent result (9.11) by assuming that
the charge appearing in the classical Lagrangian of QED is just a “bare” value that
depends on the scale ' at which we cut off the theory, e e ' bare. In order to
reconcile (9.11) with the physical results (9.12) we must assume that the dependence
of the bare (unobservable) charge e ' bare on the cutoff ' is determined by the
identity

e µ 2 e ' 2
bare 1

e ' 2
bare

12%2
log

µ2

'2
. (9.13)

If we still insist in removing the cutoff, ' we have to send the bare charge to
zero e ' bare 0 in such a way that the effective coupling has the finite value given
by the experiment at the energy scale µ . It is not a problem, however, that the bare
charge is small for large values of the cutoff, since the only measurable quantity is
the effective charge that remains finite. Therefore all observable quantities should
be expressed in perturbation theory as a power series in the physical coupling e µ 2

and not in the unphysical bare coupling e ' bare.

9.2 The Beta-Function and Asymptotic Freedom

We can look at the previous discussion, an in particular Eq. (9.13), from a different
point of view. In order to remove the ambiguities associated with infinities we have
been forced to introduce a dependence of the coupling constant on the energy scale
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Now we can make sense of the formally divergent result (9.11) by assuming that
the charge appearing in the classical Lagrangian of QED is just a “bare” value that
depends on the scale ' at which we cut off the theory, e e ' bare. In order to
reconcile (9.11) with the physical results (9.12) we must assume that the dependence
of the bare (unobservable) charge e ' bare on the cutoff ' is determined by the
identity

e µ 2 e ' 2
bare 1

e ' 2
bare

12%2
log

µ2

'2
. (9.13)

If we still insist in removing the cutoff, ' we have to send the bare charge to
zero e ' bare 0 in such a way that the effective coupling has the finite value given
by the experiment at the energy scale µ . It is not a problem, however, that the bare
charge is small for large values of the cutoff, since the only measurable quantity is
the effective charge that remains finite. Therefore all observable quantities should
be expressed in perturbation theory as a power series in the physical coupling e µ 2

and not in the unphysical bare coupling e ' bare.

9.2 The Beta-Function and Asymptotic Freedom

We can look at the previous discussion, an in particular Eq. (9.13), from a different
point of view. In order to remove the ambiguities associated with infinities we have
been forced to introduce a dependence of the coupling constant on the energy scale
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run in the loop (MW MZ). Taking this into account, as well as threshold effects,
the value of the electron charge at the scaleMZ is found to be [1]

! Mz
e MZ

2

4"
1

128.9
. (9.18)

This growing of the effective fine structure constant with energy can be under-
stood heuristically by remembering that the effect of the polarization of the vac-
uum shown in the diagram of Eq. (9.2) amounts to the creation of a plethora of
electron-positron pairs around the location of the charge. These virtual pairs behave
as dipoles that, as in a dielectric medium, tend to screen this charge and decreasing
its value at long distances (i.e. lower energies).
The variation of the coupling constant with energy is usually encoded in Quan-

tum Field Theory in the beta function defined by

# g µ
dg
dµ

. (9.19)

In the case of QED the beta function can be computed from Eq. (9.15) with the
result

# e QED
e3

12"2
. (9.20)

The fact that the coefficient of the leading term in the beta-function is positive
#0 1

6" 0 gives us the overall behavior of the coupling as we change the scale.
Eq. (9.20) means that, if we start at an energy where the electric coupling is small
enough for our perturbative treatment to be valid, the effective charge grows with
the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and bet-
ter results as we go to lower energies. Actually, because the electron is the lighter
electrically charged particle and has a finite nonvanishing mass the running of the
fine structure constant stops at the scale me in the well-known value 1

137 . Would
other charged fermions with masses below me be present in Nature, the effective
value of the fine structure constant in the interaction between these particles would
run further to lower values at energies below the electron mass.
On the other hand if we increase the energy scale e µ 2 grows until at some

scale the coupling is of order one and the perturbative approximation breaks down.
In QED this is known as the problem of the Landau pole but in fact it does not pose
any serious threat to the reliability of QED perturbation theory: a simple calculation
shows that the energy scale at which the theory would become strongly coupled is
$Landau 10277 GeV. However, we know that QED does not live that long! At much
lower scales we expect electromagnetism to be unified with other interactions, and
even if this is not the case we will enter the uncharted territory of quantum gravity
at energies of the order of 1019 GeV.
So much for QED. The next question that one may ask at this stage is whether it

is possible to find quantum field theories with a behavior opposite to that of QED,
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i.e. such that they become weakly coupled at high energies. This is not a purely
academic question. In the late 1960s a series of deep-inelastic scattering experiments
carried out at SLAC showed that the quarks behave essentially as free particles
inside hadrons. The apparent problem was that no theory was known at that time
that would become free at very short distances: the example set by QED seem to be
followed by all the theories that were studied. This posed a very serious problem for
Quantum Field Theory as a way to describe subnuclear physics, since it seemed that
its predictive power was restricted to electrodynamics but failed miserably when
applied to describe strong interactions.
Nevertheless, this critical time for Quantum Field Theory turned out to be its

finest hour. In 1973 David Gross and Frank Wilczek [2] and David Politzer [3]
showed that nonabelian gauge theories can actually display the required behavior.
For the QCD Lagrangian in Eq. (8.37) the beta function is given by2

! g
g3

16"2
11
3
Nc

2
3
Nf . (9.21)

In particular, for real QCD (NC 3, Nf 6) we have that ! g 7g3
16"2 0. This

means that for a theory that is weakly coupled at an energy scale µ0 the coupling
constant decreases as the energy increases µ . This explain the apparent free-
dom of quarks inside the hadrons: when the quarks are very close together their
effective color charge tend to zero. This phenomenon is called asymptotic freedom.
Asymptotic free theories display a behavior that is opposite to that found above

in QED. At high energies their coupling constant approaches zero whereas at low
energies they become strongly coupled (infrared slavery). This features are at the
heart of the success of QCD as a theory of strong interactions, since this is exactly
the type of behavior found in quarks: they are quasi-free particles inside the hadrons
but the interaction potential potential between them increases at large distances.
Although asymptotic free theories can be handled in the ultraviolet, they become

extremely complicated in the infrared. In the case of QCD it is still to be under-
stood (at least analytically) how the theory confines color charges and generates the
spectrum of hadrons, as well as the breaking of the chiral symmetry (8.52).
In general, the ultraviolet and infrared properties of a theory are controlled by

the fixed points of the beta function, i.e. those values of the coupling constant g for
which it vanishes

! g 0. (9.22)

Using perturbation theory we have seen that for both QED and QCD one of such
fixed points occurs at zero coupling, g 0. However, our analysis also showed that
the two theories present radically different behavior at high and low energies. From
the point of view of the beta function, the difference lies in the energy regime at

2 The expression of the beta function of QCD was also known to ’t Hooft [4]. There are even earlier
computations in the russian literature [5].

At one loop
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Fig. 9.1 Beta function for a hypothetical theory with three fixed points g1 , g2 and g3 . A pertur-
bative analysis would capture only the regions shown in the boxes.

which the coupling constant approaches its critical value. This is in fact governed
by the sign of the beta function around the critical coupling.
We have seen above that when the beta function is negative close to the fixed

point (the case of QCD) the coupling tends to its critical value, g 0, as the en-
ergy is increased. This means that the critical point is ultraviolet stable, i.e. it is an
attractor as we evolve towards higher energies. If, on the contrary, the beta function
is positive (as it happens in QED) the coupling constant approaches the critical value
as the energy decreases. This is the case of an infrared stable fixed point.
This analysis that we have motivated with the examples of QED and QCD is

completely general and can be carried out for any quantum field theory. In Fig. 9.1
we have represented the beta function for a hypothetical theory with three fixed
points located at couplings g1 , g2 and g3 . The arrows in the line below the plot
represent the evolution of the coupling constant as the energy increases. From the
analysis presented abovewe see that g1 0 and g3 are ultraviolet stable fixed points,
while the fixed point g2 is infrared stable.
In order to understand the high and low energy behavior of a quantum field the-

ory it is then crucial to know the structure of the beta functions associated with its
couplings. This can be a very difficult task, since perturbation theory only allows
the study of the theory around “trivial” fixed points, i.e. those that occur at zero cou-
pling like the case of g1 in Fig. 9.1. On the other hand, any “nontrivial” fixed point
occurring in a theory (like g2 and g3 ) cannot be captured in perturbation theory and
requires a full nonperturbative analysis.
The moral to be learned from our discussion above is that dealing with the ultra-

violet divergences in a quantum field theory has the consequence, among others, of
introducing an energy dependence in the measured value of the coupling constants
of the theory (for example the electric charge in QED). This happens even in the case
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β�(g)|g∗ > 0 , µ
dg

dµ
= β�(g − g∗) + . . .

µ ↑ , g ↑

β�(g)|g∗ < 0 , µ
dg

dµ
= β�(g − g∗) + . . .

µ ↑ , g ↓

IR free (QED)

UV free (QCD)

There is a dynamically generated scale 
responsible for most of the mass of the nucleons
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p2 !2QCD. (10.37)

So far we have not made any hypothesis as to the mass of the quarks. Let us now
assume that we are dealing with light quarks. They are defined as those whose mass
satisfies mq !QCD. This is the case of the u, d and s quarks that make up most of
the matter that we see around us. In this case, eq. (10.37) can be recast as

p2 m2q (q u,d,s). (10.38)

This means that light quarks inside the hadrons are relativistic. What is more impor-
tant, eq. (10.37) implies that the typical energy of these quarks if of order!QCD and
therefore we are in regime where QCD is strongly coupled.
There are two conclusions to be extracted from this discussion. The first one

is that we have found the reason behind the technical problems in calculating the
masses of hadrons such as protons or neutrons from first principles: we would have
to deal with a theory in a regime in which perturbation theory does not work. Hence
we have to resort to numerical approaches such as lattice field theory.
The second lesson we have learned is that the Higgs mechanism actually con-

tributes very little to explaining the mass we see around us. In fact, most of the mass
of the atoms comes from the nucleus (from about 99.95% for hydrogen to 99.9997%
for uranium) that is made of protons and neutrons. What we have seen above is that
quark mass parameter mq generated through the Higgs mechanism contributes very
little to the mass of these hadrons: most of the mass of protons and neutrons, and
therefore of the world we see, comes from !QCD.
That all difficulties in computing hadron masses comes from having light quarks

can be seen is a toy model due to Howard Georgi [2]. He imagines a world essen-
tially identical to our own but with a single crucial difference: the masses of the u
and d quarks satisfy

mu md
1
3
mproton !QCD. (10.39)

Because of this fact p2 m2q and the quarks can be treated nonrelativistically.
Thus, the typical energy of the processes inside the proton is mq and the condition
(10.39) implies that theory at this scale is weakly coupled. Tuningmq !QCD we can
even make

"s mq
g mq

2

4#
1
137

. (10.40)

This sets !QCD 10 42mq.
Given all this, it should be possible to study the bound state of the three quarks

in the proton using the techniques of atomic physics. Since the theory is in a cou-
pling regime where perturbation theory can be used, the static potential between the
quarks is obtained from the diagram where the two quarks interchange a gluon. If
fact we do not even have to compute the diagram. It suffices to compare the corre-
sponding processes in QCD and QED

ΛQCD � mu,md
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Farewell

‣ QFT is a vast and complex subject

‣ SM is a big achievement

‣ It summarises our knowledge of the fundamental laws of Nature

‣ But also our ignorance

‣ Many puzzles and unanswered questions remain

‣ We may be at the end of a cycle.  Perhaps the symmetry paradigm has 
been exhausted.

‣  Naturalness, a red herring? Higgs or not Higgs

‣Gravity into the picture finally?

‣Hopefully we are entering a golden decade

Thank you
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