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QCD Lagrangian and Feynman rules
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DIS and collinear factorization
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kT factorization



QCD Lagrangian

See Luis Alvarez-Gaume’s lectures



Lagrangian
e SU(3) QCD Lagrangian
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* Covariant derivative, gluon field tensor
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 Color matrices and structure constants
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Gauge-fixing

* Add gauge-fixing term to remove spurious
degrees of freedom
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* Ghost field from Jacobian of variable change,
as fixing gauge
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Feynman rules
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Feynman rules
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Asymptotic freedom

QCD confinement at low energy, hadronic
bound states: pion, proton,...

Manifested by infrared divergences in
perturbative calculation of bound-state
properties

Asymptotic freedom at high energy leads
to small coupling constant

Perturbative QCD for high-energy
processes



Infrared divergence and safty



Vertex correction

e Start from vertex correction as an

example
P b
d*l ((P1— )
. A'V‘Ta 1207
'/ (27;_)4( 1.(/, )(1)1 . [) + 1(_( L€ s )
X [(/))_ Z/) ( i.(/A."I./Ta) .)_1.
(p2 — 1)? + i€ [< + 1€

* Inclusion of counterterm is understood



Light-cone coordinates

* Analysis of infrared divergences simplified
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Spatial axis

* As particle moves
along light cone,
only one large
component is involved

Time axis



Leading regions
e Collinear region I=(1",1",1.) ~ (E,A’/E,A)

e Soft region | ~ (A, A,A)
e Infrared gluon |2 ~ A?
e Hard region | ~(E,E,E)

e They all generate log divergences
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Contour integration

* |n terms of light-cone coordinates, vertex
correction is written as
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* Study pole structures, since IR divergence
comes from vanishing denominator




Pinched singularity
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Double IR poles

* Contour integration over I- gives
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e+e- annihilation
e calculate e+e- annihilation

e cross section = |amplitude|?
* Born level final-state cut

fermion charge

Ot = N (4ﬂa2/3q2)(§ sz)

momentum transfer squared



Real corrections

e Radiative corrections reveal two types of
infrared divergences from on-shell gluons

* Collinear divergence: | parallel P1, P2
Soft divergence: | approaches zero
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Virtual corrections

* Double infrared pole also appears in virtual
corrections with a minus sign
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overlap of collinear and
soft divergences



Infrared safety

* Infrared divergences cancel between real and
virtual corrections

* Imaginary part of off-shell photon self-energy
corrections

* Total cross section (physical quantity) of
e+e- -> X is infrared safe )
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KLN theorem

* Kinoshita-Lee-Neuberger theorem:
R cancellation occurs as integrating over all
ohase space of final states

* Naive perturbation applies
0w(q®) = N (4ﬂa’2/3q2)§lef2[1 + (ay/m)3Co(F)]

* Used to determine the coupling constant



DIS and collinear factorization



Deep Inelastic scattering

Electron-proton DIS I(k)+N(p) -> I(k’)+X
Large momentum transfer -q%=(k-k’)?=Q?

Calculation of cross section suffers IR
divergence --- nonperturbative dynamics in
the proton k'

Factor out nonpert part «
from DIS, and leave it
to other methods? AN
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Structure functions for DIS

e Standard example for factorization theorem
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http://en.wikipedia.org/wiki/File:DIS.svg

NLO diagrams
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NLO total cross section
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IR divergence Is physical!

q ~ Hard
St ~ dynamics
: T 8
q ' —
t=-infty Soft t=0, when hard

dynamics scattering occurs

* It's a long-distance phenomenon, related
to confinement.

 All physical hadronic high-energy

processes involve both soft and hard
dynamics.



Collinear divergence
 Integrated over final state kinematics, but
not over Initial state kinematics. KLN
theorem does not apply

» Collinear divergence for initial state quark
exists. Confinement of initial bound state

» Soft divergences cancel between virtual
and real diagrams (proton is color singlet)

» Subtracted by PDF, evaluated in

perturbation hard kernel or Wilson coefficient
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Assignment of IR divergences
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Parton distribution function
* Assignment at one loop
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 PDF in terms of hadronic matrix element
reproduces IR divergence at each order
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Factorization at diagram level

Eikonal approximation
P, +1 . K+

P  Kkok'. P aP-
Sre o ke’ 1> T
P +1 K+ Z
~Py — y y", locl” § Pq
SR AT (k) é@
P K+1 S
NP - g u + f
2R a7 ke )
2P -Py K+l
P ey RRERSO
q
oou K+ n

N/

kD2



Effective diagrams

 Factorization of collinear gluons at leading
power leads to Wilson line W(y-,0)
necessary for gauge invariance

» Collinear gluons also change parton
momentum

ram I




Wilson links
W(y=.0) = WO)W(y)

Wi(y~™) = Pexp |:II.H/\ dAn_ - Ay + )m}]
0

loop momentum flows through the hard kernel
v

loop momentum does
not flow through
the hard kernel 0



Factorization in fermion flow

* To separate fermion flows for H and for
PDF, insert Fierz transformation
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* (¥);/2~(y");/2 goes into definition of
PDF. Others contribute at higher powers



Factorization in color flow

* To separate color flows for H and for PDF,
Insert Flerz transformation

1 . c C / \
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I
for color-octet state, namely
for three-parton PDF

 1;/Nc goes into definition of PDF




Parton model

The proton travels huge space-time,
before hit by the virtual photon

As Q2 >>1, hard scattering occurs at point
space-time

The quark hit by the virtual photon
behaves like a free particle
It decouples from the rest of the proton

Cross section Is the incoherent sum of the
scattered quark of different momentum




Incoherent sum

2 ° 2 2
Z | ~ Zi ;
C C
ié \S holds after collinear
i factorization




Factorization formula

« DIS factorized into hard kernel (infrared finite,
perturbative) and PDF (nonperturbative)

F(X) =2, [L(AE/OH  (}/E)r i (£)

 Universal PDF describes q /-
probability of parton f
carrying momentum
fraction & in nucleon N

« PDF computed by nonpert  p~ —t ———>b
methods, or extracted from J

data K — _(_--§P+,O,OT)




Expansion on light cone

Operator product expansion (OPE): expansion
in small distance y*

Infrared safe e’e” > X = Z.C.(y)O, (0)

>

Factorization theorem: expansion in y2
Example: Deeply inelastic scattering (DIS)

Collinear divergence in longitudinal direction
exists = (particle travels) finite y~



Factorization scheme

 Definition of an IR regulator is arbitrary,
like an UV regulator:
o) ~1/gHinite part

 Different inite parts shift between ¢ and H
correspond to different factorization
schemes

» Extraction of a PDF depends not only on
powers and orders, but on schemes.

 Must stick to the same scheme. The
dependence of predictions on factorization
schemes would be minimized.




RG evolution

« §(Q) is related to ¢(u,), py=2 GeV, through
a RG evolution equation.

* U, IS the (arbitrary) initial scale for RG
evolution.

 RG improved (more reliable in perturbation)
factorization formula, F(Q)=¢(Q,1,) H(Q)

* What is extracted (or derived from QCD
sum rules) is the initial condition ¢(u,,1L,)-

* Predictions will depend on powers, orders,
factorization schemes, factorization scales,
and initial scale p, inevitably.



Extraction of PDF

* Fit the factorization formula F=HP'> ¢, to
data. Extract ¢y, for f=u, d, g(luon), sea

X f(X,Q) versus x

1.0

CTEQ-TEA PDF
NNLO: solid color asl
NLO: dashed i
NLO, NNLO means os:;
Accuracy of H |

Nadolsky et al.
1206.3321




see
Lecture 2
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Application of factorization
theorem



Hard kernel

 PDF is Infrared divergent, if evaluated In
perturbation < confinement

» Quark diagram is also IR divergent.

 Difference between the quark diagram and
PDF gives the hard kernel HP'S

g
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Drell-Yan process

* Derive factorization theorem for Drell-Yan
process N(p,)+N(p,)->pu(q)+X

Same PDF




Hard kernel for DY

« Compute the hard kernel HPY

* IR divergences in quark diagram and in
PDF must cancel. Otherwise, factorization
theorem falls

HDY — W{ B .l.! 2 5

Same as in DIS




Prediction for DY

» Use cP"=d; ® HPY ®dy,/ to make
predictions for DY process
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Predictive power

» Before adopting PDFs, make sure at
which power and order, and in what

scheme they are defined Nadolsky et al.
....................... 1206.3321
20T ]
%“ [ CT10NNLO PDF error O<]y|<0.3 ATLAS inc. jet (R=0.6)
g 1.5:_ '+' Data with uncor. error
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——
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K. factorization



Collinear factorization

Factorization of many processes
Investigated up to higher twists

Hard kernels calculated to higher orders

Parton distribution function (PDF)
evolution from low to high scale derived
(DGLAP equation)

PDF database constructed (CTEQ)
Logs from extreme kinematics resummed

Soft, jet, fragmentation functions all
studied



Why k- factorization

k. factorization has been developed for
small x physics for some time

As Bjorken variable xz=-g%/(2p.q) is small,
parton momentum fraction x > Xz can
reach xp ~ Kkt . Kt Is not negligible.
Xp ~ Ky also possible in low g spectra, like
direct photon and jet production

In exclusive processes, x runs from 0 to 1.
The end-point region is unavoidable

But many aspects of k- factorization not
yet investigated In detalil




Condition for k; factorization

Collinear and k; factorizations are both
fundamental tools in PQCD

X #= 0 (large fractional momentum exists) IS
assumed in collinear factorization.

If small x not important, collinear
factorization Is self-consistent

If small x region Is important
X~0< Yy =0 expansion iny? fails
K. factorization is then more appropriate



Parton transverse momentum

 Keep parton transverse momentum in H

- K;dependence introduced by gluon
emission

» Need to describe distribution in K
F(X) =2, [ 1(d&/&)[ d’k:H (X/ék ) (& Kr)
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Eikonal approximation
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Effective diagrams

* Parton momentum k = (£P7,0,k-)

* Only minus component is neglected

« K appears only in denominator

» Collinear divergences regularized by ks

 Factorization of collinear gluons at leading
power leads to Wilson links W(y-,0)
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Wilson links

loop momentum | flows through the hard kernel
y,b

e

| does not flow through
the hard kernel. Feynman
rules the same as in collinear
factctorization




Factorization In k; space

Universal transverse-momentum-dependent
(TMD) PDF @, (&,k;) describes
probability of parton carrying momentum
fraction and transverse momentum

If neglecting k;In H,

integration over k., can ; e
be worked out, giving
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Summary

* Despite of nonperturbative nature of QCD,
theoetical framework with predictive power
can be developed

* It Is based on factorization theorem, In
which nonperturbative PDF is universal
and can be extracted from data, and hard
kernel can be calculated pertuebatvely

 k; factorization is more complicated than
collinear factorization, and has many
difficulties




