QCD

Hsiang-nan Li
Academia Sinica, Taipei
Presented at AEPSHEP
Oct. 18-22, 2012

Titles of lectures

- Lecture I: Factorization theorem
- Lecture II: Evolution and resummation
- Lecture III: PQCD for Jet physics
- Lecture IV: Hadronic heavy-quark decays

References

- Partons, Factorization and Resummation, TASI95, G. Sterman, hep-ph/9606312
- Jet Physics at the Tevatron, A. Bhatti and D. Lincoln, arXiv:1002.1708
- QCD aspects of exclusive B meson decays, H.-n. Li, Prog.Part.Nucl.Phys.51 (2003) 85, hep-ph/0303116

Lecture I Factorization theorem

Hsiang-nan Li

Oct. 18, 2012

Outlines

- QCD Lagrangian and Feynman rules
- Infrared divergence and safety
- DIS and collinear factorization
- Application of factorization theorem
- kT factorization

QCD Lagrangian

See Luis Alvarez-Gaume's lectures

Lagrangian

SU(3) QCD Lagrangian

$$\mathcal{L}_{QCD} = \bar{\psi}(i \mathcal{D}_a T_a - m)\psi - \frac{1}{4} F_a^{\mu\nu} F_{\mu\nu,a}$$

Covariant derivative, gluon field tensor

$$D_a^{\mu} = \partial^{\mu} + igA_a^{\mu}$$

$$F_a^{\mu\nu} = \partial^{\mu}A_a^{\nu} - \partial^{\nu}A_a^{\mu} - gf_{abc}A_b^{\mu}A_c^{\nu}$$

Color matrices and structure constants

$$[T_a^{(F)}, T_b^{(F)}] = i f_{abc} T_c^{(F)}, \quad (T_a^{(A)})_{bc} = -i f_{abc}$$

Gauge-fixing

Add gauge-fixing term to remove spurious degrees of freedom

$$\mathcal{L}_{QCD} = \bar{\psi}(i \mathcal{D}_a T_a - m)\psi - \frac{1}{4} F_a^{\mu\nu} F_{\mu\nu,a}$$
$$-\frac{1}{2} \lambda (\partial_{\mu} A_a^{\mu})^2 + \partial_{\mu} \eta_a^{\dagger} (\partial^{\mu} + g f_{abc} A_c^{\mu}) \eta_b$$

 Ghost field from Jacobian of variable change, as fixing gauge

Feynman rules

$$-gf_{a_1a_2a_3}[g^{\nu_1\nu_2}(p_1-p_2)^{\nu_3}\\+g^{\nu_2\nu_3}(p_2-p_3)^{\nu_1}+g^{\nu_3\nu_1}(p_3-p_1)^{\nu_2}$$

Feynman rules

Asymptotic freedom

- QCD confinement at low energy, hadronic bound states: pion, proton,...
- Manifested by infrared divergences in perturbative calculation of bound-state properties
- Asymptotic freedom at high energy leads to small coupling constant
- Perturbative QCD for high-energy processes

Infrared divergence and safty

Vertex correction

Start from vertex correction as an example

$$\int \frac{d^4l}{(2\pi)^4} (-ig\gamma^{\nu} T_a) \frac{i(\not p_1 - \not l)}{(p_1 - l)^2 + i\epsilon} (-ie\gamma_{\mu}) \\
\times \frac{i(\not p_2 - \not l)}{(p_2 - l)^2 + i\epsilon} (-ig\gamma_{\nu} T_a) \frac{-i}{l^2 + i\epsilon}$$

Inclusion of counterterm is understood

Light-cone coordinates

Analysis of infrared divergences simplified

$$l = (l^+, l^-, l_T)$$
$$l^{\pm} \equiv \frac{l^0 \pm l^3}{\sqrt{2}}$$

 As particle moves along light cone, only one large component is involved

Leading regions

- Collinear region $l = (l^+, l^-, l_T) \sim (E, \Lambda^2/E, \Lambda)$
- Soft region $l \sim (\Lambda, \Lambda, \Lambda)$
- Infrared gluon $l^2 \sim \Lambda^2$
- Hard region $l \sim (E, E, E)$

They all generate log divergences

$$\int \frac{d^4l}{l^4} \sim \int \frac{d^4\Lambda}{\Lambda^4} \sim \int \frac{d^4E}{E^4} \sim \log e^{-\frac{1}{2}}$$

Contour integration

 In terms of light-cone coordinates, vertex correction is written as

$$\int \frac{dl^{+}dl^{-}d^{2}l_{T}}{(2\pi)^{4}} \frac{1}{2(l^{+}-p_{1}^{+})l^{-}-l_{T}^{2}+i\epsilon} \times \frac{1}{2l^{+}(l^{-}-p_{2}^{-})-l_{T}^{2}+i\epsilon} \frac{1}{2l^{+}l^{-}-l_{T}^{2}+i\epsilon}$$

 Study pole structures, since IR divergence comes from vanishing denominator

Pinched singularity

Contour integration over I-

$$0 < l^+ < p_1^+$$

$$l^{-} = \frac{l_{T}^{2}}{2(l^{+} - p_{1}^{+})} + i\epsilon, \quad l^{-} = p_{2}^{-} + \frac{l_{T}^{2}}{2l^{+}} - i\epsilon \quad l^{-} = \frac{l_{T}^{2}}{2l^{+}} - i\epsilon$$

collinear region

$$l^{+} \sim O(p_{1}^{+})$$

Soft region

$$l^+ \sim O(l_T)$$

Double IR poles

Contour integration over I- gives

$$\frac{-i}{2p_1^+} \int \frac{dl^+ d^2 l_T}{(2\pi)^3} \frac{p_1^+ - l^+}{2p_2^- l^+ (p_1^+ - l^+) + p_1^+ l_T^2} \frac{1}{l_T^2}$$

$$\approx \frac{-i}{4p_1^+ p_2^-} \frac{1}{(2\pi)^3} \int \frac{dl^+}{l^+} \int \frac{d^2 l_T}{l_T^2}$$

e+e- annihilation

- calculate e+e- annihilation
- cross section = |amplitude|²
- Born level final-state cut

$$\sigma_{\text{tot}} = N(4\pi\alpha^2/3q^2) \left(\sum_f Q_f^2\right)$$
 fermion charge

momentum transfer squared

Real corrections

- Radiative corrections reveal two types of infrared divergences from on-shell gluons
- Collinear divergence: I parallel P1, P2
- Soft divergence: I approaches zero

$$2NC_{2}(F)Q_{f}^{2}(\alpha\alpha_{s}/\pi)q^{2}(4\pi\mu^{2}/q^{2})^{2\epsilon}[(1-\epsilon)/\Gamma(2-2\epsilon)]$$

$$\times \left[\epsilon^{-2} + \frac{3}{2}\epsilon^{-1} - \frac{1}{2}\pi^{2} + \frac{19}{4} + O(\epsilon)\right].$$

Virtual corrections

 Double infrared pole also appears in virtual corrections with a minus sign

$$-2NC_2(F)Q_f^2(\alpha\alpha_s/\pi)q^2(4\pi\mu^2/q^2)^{2\epsilon}[(1-\epsilon)/\Gamma(2-2\epsilon)]$$

$$\times \left[\epsilon^{-2} + \frac{3}{2}\epsilon^{-1} - \frac{1}{2}\pi^2 + 4 + O(\epsilon)\right]$$

overlap of collinear and soft divergences

Infrared safety

- Infrared divergences cancel between real and virtual corrections
- Imaginary part of off-shell photon self-energy corrections
- Total cross section (physical quantity) of e+e- -> X is infrared safe

$${
m Im} rac{-i}{p^2+iarepsilon} \propto \mathcal{S}(p^2)$$
 on-shell final state

KLN theorem

- Kinoshita-Lee-Neuberger theorem:
 IR cancellation occurs as integrating over all phase space of final states
- Naïve perturbation applies

$$\sigma_{\text{tot}}(q^2) = N(4\pi\alpha^2/3q^2) \sum_f Q_f^2 [1 + (\alpha_s/\pi)_4^3 C_2(F)]$$

Used to determine the coupling constant

DIS and collinear factorization

Deep inelastic scattering

- Electron-proton DIS I(k)+N(p) -> I(k')+X
- Large momentum transfer -q²=(k-k')²=Q²
- Calculation of cross section suffers IR divergence --- nonperturbative dynamics in the proton
- Factor out nonpert part from DIS, and leave it to other methods?

Structure functions for DIS

Standard example for factorization theorem

$$d\sigma = \frac{d^3k'}{2s|\vec{k'}|} \frac{1}{(q^2)^2} L^{\mu\nu}(k,q) W_{\mu\nu}^{\gamma N}(p,q)$$

$$L^{\mu\nu} \equiv \frac{e^2}{8\pi^2} tr \left[k \gamma^{\mu} k' \gamma^{\nu} \right]$$

$$W_{\mu\nu}^{\gamma N} \equiv \frac{1}{8\pi} \sum_{\text{spins } \sigma} \sum_{X} \langle N(p,\sigma) \mid J_{\mu}(0) \mid X \rangle \qquad \text{amplitude}$$

$$\times \langle X \mid J_{\nu}(0) \mid N(p,\sigma) \rangle (2\pi)^4 \delta^4(p_X - q - p)$$

$$W_{\mu\nu}^{\gamma N} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right) W_1^{\gamma N}(x,q^2)$$

$$+ \left(p_{\mu} + q_{\mu}\left(\frac{1}{2x}\right)\right) \left(p_{\nu} + q_{\nu}\left(\frac{1}{2x}\right)\right) W_2^{\gamma N}(x,q^2)$$

$$x = -\frac{q^2}{2p \cdot q} \equiv \frac{Q^2}{2p \cdot q}$$

NLO diagrams

NLO total cross section

$$\begin{split} F_1^{\gamma N}(x,Q^2) &\equiv W_1^{\gamma N}, \qquad F_2^{\gamma N}(x,Q^2) = p \cdot q \ W_2^{\gamma N} \\ F_2^{\gamma q_f}(x,Q^2) &= Q_f^2 \ x \left\{ \begin{array}{l} \delta(1-x) \\ \text{LO term} \end{array} \right. \\ &+ \left. \frac{\alpha_s}{2\pi} \ C_F \left[\frac{1+x^2}{1-x} \left(\ln \frac{(1-x)}{x} - \frac{3}{4} \right) + \frac{1}{4} \left(9 + 5x \right) \right]_+ \\ &+ \left. \frac{\alpha_s}{2\pi} \ C_F \left[\frac{1+x^2}{1-x} \right]_+ \left(4\pi \mu^2 \mathrm{e}^{-\gamma_E} \right)^\varepsilon \int_0^{Q^2} \frac{dk_T^2}{k_T^{2+2\varepsilon}} \ \right\} + \cdots \\ &\text{plus function} \qquad \text{infrared divergence} \end{split}$$

$$\int_0^1 dx \, \frac{f(x)}{(1-x)_+} \quad \equiv \int_0^1 dx \, \frac{f(x) - f(1)}{(1-x)} \quad \int_0^{Q^2} \frac{dk_T^2}{k_T^{2+2\varepsilon}} = \frac{1}{-\varepsilon} \, Q^{-2\varepsilon}$$

IR divergence is physical!

- It's a long-distance phenomenon, related to confinement.
- All physical hadronic high-energy processes involve both soft and hard dynamics.

Collinear divergence

- Integrated over final state kinematics, but not over initial state kinematics. KLN theorem does not apply
- Collinear divergence for initial state quark exists. Confinement of initial bound state
- Soft divergences cancel between virtual and real diagrams (proton is color singlet)
- Subtracted by PDF, evaluated in perturbation hard kernel or Wilson coefficient

$$F_2^{\gamma q_f}(x, Q^2) = C_2^{(0)} \otimes \phi^{(0)} + \frac{\alpha_s}{2\pi} C_2^{(1)} \otimes \phi^{(0)} + \frac{\alpha_s}{2\pi} C_2^{(0)} \otimes \phi^{(1)} + \dots$$

Assignment of IR divergences

$$\begin{split} F_2^{\gamma q_f}(x,Q^2) &= C_2^{(0)} \otimes \phi^{(0)} + \frac{\alpha_s}{2\pi} C_2^{(1)} \otimes \phi^{(0)} + \frac{\alpha_s}{2\pi} C_2^{(0)} \otimes \phi^{(1)} + \dots \\ F_2^{\gamma q_f}(x,Q^2) &= Q_f^2 x \left\{ \delta(1-x) \right\} \\ &+ \frac{\alpha_s}{2\pi} C_F \left[\frac{1+x^2}{1-x} \left(\ln \frac{(1-x)}{x} - \frac{3}{4} \right) + \frac{1}{4} (9+5x) \right]_+ \\ &+ \frac{\alpha_s}{2\pi} C_F \left[\frac{1+x^2}{1-x} \right]_+ \left(4\pi \mu^2 \mathrm{e}^{-\gamma_E} \right)^\varepsilon \int_0^{Q^2} \frac{dk_T^2}{k_T^{2+2\varepsilon}} \right\} + \dots \\ &\phi_{q/q'}^{(0)}(\xi) &= \delta_{qq'} \delta(1-\xi) \qquad C_{1,2}^{\gamma q(0)} \left(\frac{x}{\xi} \right) = Q_q^2 \delta(1-x/\xi) \\ &\int_x^1 d\xi \ \delta(1-x/\xi) \ \delta(1-\xi) &= \delta(1-x) \end{split}$$

Parton distribution function

Assignment at one loop

$$\overline{\rm MS}: \qquad \qquad \phi_{q/q}^{(1)}(x,\mu^2) = \left(4\pi\mu^2{\rm e}^{-\gamma_E}\right)^{\varepsilon} \, P_{qq}(x) \, \int_0^{\mu^2} \frac{dk_T^2}{k_T^{2+2\varepsilon}} \\ C_2^{(1)}(x)_{\overline{\rm MS}} = P_{qq}(x) \ln(Q^2/\mu^2) + \mu - {\rm independent}$$

 PDF in terms of hadronic matrix element reproduces IR divergence at each order

$$\phi_{f/N}(\xi,\mu^2) \qquad \qquad P_{qq}^{(1)}(x) = C_F \left[\frac{1+x^2}{1-x}\right]_+$$

$$= \int \frac{dy^-}{2\pi} \exp(-i\xi P^+ y^-) \qquad \qquad \text{splitting kernel}$$

$$\times \frac{1}{2} \sum_{\sigma} \langle N(P,\sigma) | \bar{q}_f(0,y^-,0_T) \frac{1}{2} \gamma^+ W(y^-,0) q_f(0,0,0_T) | N(P,\sigma) \rangle$$
 Wilson links

Factorization at diagram level Eikonal approximation

$$\approx P_{q} \gamma^{-} \frac{P_{q} + l}{(P_{q} + l)^{2}} \gamma^{\mu} \frac{k + l}{(k + l)^{2}} \gamma^{+}, \quad l \propto l^{+}$$

$$\approx P_{q} \gamma^{-} \frac{P_{q}}{2 R_{q} l} \gamma^{\mu} \frac{k + l}{(l + l)^{2}} \gamma^{+}$$

$$\approx P_q \gamma^{-} \frac{P_q}{2P_q \cdot l} \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{+}$$

$$\approx P_q \frac{2P_q^- - P_q \gamma^-}{2P_q \cdot l} \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{\nu}, \quad P_q P_q = P_q^2 = 0$$

$$\approx P_q \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{\nu} \frac{n_{-\nu}}{n_{-} \cdot l}$$

Effective diagrams

- Factorization of collinear gluons at leading power leads to Wilson line W(y⁻,0) necessary for gauge invariance
- Collinear gluons also change parton momentum

Wilson links

$$W(y^{-},0) = W(0)W^{\dagger}(y^{-})$$

$$W(y^{-}) = \mathcal{P}\exp\left[-ig\int_{0}^{\infty}d\lambda n_{-}\cdot A(y+\lambda n_{-})\right]$$

loop momentum flows through the hard kernel

loop momentum does not flow through the hard kernel

Factorization in fermion flow

 To separate fermion flows for H and for PDF, insert Fierz transformation

$$I_{ij}I_{lk} = \frac{1}{4}I_{ik}I_{lj} + \frac{1}{4}(\gamma_5)_{ik}(\gamma_5)_{lj} \cdot + \frac{1}{4}(\gamma_\alpha)_{ik}(\gamma^\alpha)_{lj} + \frac{1}{4}(\gamma_5\gamma_\alpha)_{ik}(\gamma^\alpha\gamma_5)_{lj}$$

$$+ \frac{1}{8}(\sigma_{\alpha\beta})_{ik}(\sigma^{\alpha\beta})_{lj}$$

$$k$$

$$+ \frac{1}{8}(\sigma_{\alpha\beta})_{ik}(\sigma^{\alpha\beta})_{lj}$$

• $(\gamma^{\alpha})_{lj}/2 \approx (\gamma^{+})_{lj}/2$ goes into definition of PDF. Others contribute at higher powers

Factorization in color flow

 To separate color flows for H and for PDF, insert Fierz transformation

$$I_{ij}I_{lk} = \frac{1}{N_c}I_{lj}I_{ik} + 2\sum_c (T^c)_{lj}(T^c)_{ik},$$
 for color-octet state, namely for three-parton PDF

• I_{lj}/N_C goes into definition of PDF

Parton model

- The proton travels huge space-time, before hit by the virtual photon
- As Q² >>1, hard scattering occurs at point space-time
- The quark hit by the virtual photon behaves like a free particle
- It decouples from the rest of the proton
- Cross section is the incoherent sum of the scattered quark of different momentum

Incoherent sum

holds after collinear factorization

Factorization formula

 DIS factorized into hard kernel (infrared finite, perturbative) and PDF (nonperturbative)

$$F(x) = \sum_{f} \int_{x}^{1} (d\xi/\xi) H_{f}(x/\xi) \phi_{f/N}(\xi)$$

- Universal PDF describes probability of parton f carrying momentum fraction ξ in nucleon N
- PDF computed by nonpert methods, or extracted from data

Expansion on light cone

- Operator product expansion (OPE): expansion in small distance y^{μ}
- Infrared safe $e^+e^- \to X \Rightarrow \Sigma_i C_i(y)O_i(0)$

- Factorization theorem: expansion in y^2
- Example: Deeply inelastic scattering (DIS)
- Collinear divergence in longitudinal direction exists \Rightarrow (particle travels) finite y^-

Factorization scheme

- Definition of an IR regulator is arbitrary, like an UV regulator:
 φ⁽¹⁾ ~1/ε_{IR}+finite part
- Different inite parts shift between φ and H correspond to different factorization schemes
- Extraction of a PDF depends not only on powers and orders, but on schemes.
- Must stick to the same scheme. The dependence of predictions on factorization schemes would be minimized.

RG evolution

- $\phi(Q)$ is related to $\phi(\mu_0)$, $\mu_0=2$ GeV, through a RG evolution equation.
 - μ_0 is the (arbitrary) initial scale for RG evolution.
- RG improved (more reliable in perturbation) factorization formula, F(Q)=φ(Q,μ₀) H(Q)
- What is extracted (or derived from QCD sum rules) is the initial condition $\phi(\mu_0, \mu_0)$.
- Predictions will depend on powers, orders, factorization schemes, factorization scales, and initial scale μ₀ inevitably.

Extraction of PDF

• Fit the factorization formula $F=H^{DIS} \phi_{f/N}$ to data. Extract $\phi_{f/N}$ for f=u, d, g(luon), sea

CTEQ-TEA PDF

NNLO: solid color

NLO: dashed

NLO, NNLO means

Accuracy of H

Nadolsky et al. 1206.3321

PDF with RG

Application of factorization theorem

Hard kernel

- PDF is infrared divergent, if evaluated in perturbation confinement
- Quark diagram is also IR divergent.
- Difference between the quark diagram and PDF gives the hard kernel HDIS

Drell-Yan process

 Derive factorization theorem for Drell-Yan process N(p₁)+N(p₂)->μ⁺μ⁻(q)+X

Hard kernel for DY

- Compute the hard kernel H^{DY}
- IR divergences in quark diagram and in PDF must cancel. Otherwise, factorization theorem fails

Same as in DIS

Prediction for DY

• Use $\sigma^{DY} = \phi_{f1/N} \otimes H^{DY} \otimes \phi_{f2/N}$ to make predictions for DY process

Predictive power

 Before adopting PDFs, make sure at which power and order, and in what scheme they are defined
 Nadolsky et al.

k_T factorization

Collinear factorization

- Factorization of many processes investigated up to higher twists
- Hard kernels calculated to higher orders
- Parton distribution function (PDF)
 evolution from low to high scale derived
 (DGLAP equation)
- PDF database constructed (CTEQ)
- Logs from extreme kinematics resummed
- Soft, jet, fragmentation functions all studied

Why k_T factorization

- k_T factorization has been developed for small x physics for some time
- As Bjorken variable $x_B = -q^2/(2p.q)$ is small, parton momentum fraction $x > x_B$ can reach $xp \sim k_T$. k_T is not negligible.
- xp ~ k_T also possible in low q_T spectra, like direct photon and jet production
- In exclusive processes, x runs from 0 to 1.
 The end-point region is unavoidable
- But many aspects of k_T factorization not yet investigated in detail

Condition for k_T factorization

- Collinear and k_T factorizations are both fundamental tools in PQCD
- x ≠ 0 (large fractional momentum exists) is assumed in collinear factorization.
- If small x not important, collinear factorization is self-consistent
- If small x region is important
- $x \approx 0 \Leftrightarrow y^- \approx \infty$, expansion in y^2 fails
- k_T factorization is then more appropriate

Parton transverse momentum

- Keep parton transverse momentum in H
- k_T dependence introduced by gluon emission
- Need to describe distribution in k_T

$$F(x) = \sum_{f} \int_{x}^{1} (d\xi/\xi) \int d^{2}k_{T} H_{f}(x/\xi, k_{T}) \Phi_{f/N}(\xi, k_{T})$$

$$\xi \leftrightarrow l^+, \quad k_T \leftrightarrow l_T$$

Eikonal approximation

$$\approx P_q \gamma^{-} \frac{P_q + l}{(P_q + l)^2} \gamma^{\mu} \frac{k + l}{(k + l)^2} \gamma^{+}, \quad l \propto l^{+}$$

$$\approx P_q \gamma^{-} \frac{P_q}{2P_q \cdot l} \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{+} \qquad \text{drop It in numera}$$
to get Wilson line

drop l_T in numerator

$$\approx P_q \frac{2P_q - P_q \gamma}{2P_q \cdot l} \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{\nu}, \quad P_q P_q = 0$$

$$\approx P_q \gamma^{\mu} \frac{k+l}{(k+l)^2} \gamma^{\nu} \frac{n_{-\nu}}{n_{-} \cdot l}$$

Effective diagrams

- Parton momentum $k = (\xi P^+, 0, k_T)$
- Only minus component is neglected
- k_T appears only in denominator
- Collinear divergences regularized by k_T^2
- Factorization of collinear gluons at leading power leads to Wilson links W(y⁻,0)

Wilson links

loop momentum I flows through the hard kernel

Factorization in k_T space

Universal transverse-momentum-dependent (TMD) PDF $\Phi_{f/N}(\xi,k_T)$ describes probability of parton carrying momentum fraction and transverse momentum

If neglecting k_T in H, integration over k_T can be worked out, giving

$$\int d^2k_T \Phi_{f/N}(\xi, k_T) \Longrightarrow \phi_{f/N}(\xi)$$

Summary

- Despite of nonperturbative nature of QCD, theoetical framework with predictive power can be developed
- It is based on factorization theorem, in which nonperturbative PDF is universal and can be extracted from data, and hard kernel can be calculated pertuebatvely
- k_T factorization is more complicated than collinear factorization, and has many difficulties