Flavour Physics and CPViolation I

AEPSHEP 2012 at Fukuoka Emi KOU (LAL/IN2P3)

Flavour physics

Lepton mass

Matter Anti-Matter Asymmetry (CP violation)

Plan

- Ist lecture: Introduction to flavour physics
* Weak interaction processes: historical review
* Discovery of CP violation in the K system
* Charged/Neutral processes and GIM mechanism
- 2nd lecture: Describing flavour physics and CP violation within SM
* Charged/Neutral current and CP violation in SM
* Measuring CP violating phase in B factories
\star Testing the unitarity of the CKM matrix

Plan

- 3rd lecture: Searching new physics with flavour physics
* Some examples in the past
* Some examples in the future

What kind of weak interaction processes do you know?

Discovery of Parity Violation in beta decays

Beta decay: continuous spectrum

Fermi's theory of beta decay (1933)

Fermi, postulation of

neutrino

The spectrum of beta decay is continuous not like gamma ray. This is because in beta decay, zero mass, zero charge neutrinos are emitted together with the electrons/positrons.

Three body
decay

$E\left(H^{3}\right)=E\left(H e^{3}\right)+E\left(e^{-}\right)+E(\nu)$

Emitted energy is shared by $\mathrm{e}^{ \pm}$and v. As a result, the spectrum becomes continuous.
$E\left(G e^{4+}\right)=E\left(G e^{2+}\right)+E(\gamma)$
The emitted energy is fixed for given nucleus.

t- θ puzzle

In early '50's, In cosmic ray, two particles which have an identical mass while, decaying into two and three pions were observed.

Possibility of broken

 Parity in weak decay? Lee \& Yang '56
Observation of parity violation

$$
\mathrm{Co}^{60} \rightarrow \mathrm{Ni}^{60}+\mathrm{e}^{-}+\overline{\mathrm{V}}
$$

Observation of parity violation

$$
\mathrm{Co}^{60} \rightarrow \mathrm{Ni}^{60}+\mathrm{e}^{-}+\overline{\mathrm{V}}
$$

Observation of parity violation by Mme.Wu '56

V-A theory for weak interaction

Electro-magnetic interaction

$$
\mathcal{M}=\left(e \bar{u}_{p} \gamma^{\mu} u_{p}\right)\left(\frac{1}{q^{2}}\right)\left(-e \bar{u}_{e} \gamma_{\mu} u_{e}\right)
$$

Vector coupling
Weak interaction

V-A theory: ‘57

$$
\begin{gathered}
\mathcal{M}=\frac{G_{F}}{\sqrt{2}}\left(\bar{u}_{n} \gamma^{\mu}\left(1-\gamma^{5}\right) u_{p}\right)\left(\bar{u}_{\nu_{e}} \gamma_{\mu}\left(1-\gamma_{5}\right) u_{e}\right) \\
\text { V-A coupling }
\end{gathered}
$$

Discovery of CPViolation in K decays

CP transformation in a few words

C: Charge transformation

P: Parity transformation

A few key equations...

$$
\begin{array}{rlrl}
\mathcal{C P}\left|K^{0}\right\rangle & =\left|\bar{K}^{0}\right\rangle & & K^{0}=\bar{s} d \\
\mathcal{C P}\left|\bar{K}^{0}\right\rangle & =\left|K^{0}\right\rangle & & \bar{K}^{0}=\bar{d} s \\
\hline
\end{array}
$$

$$
\begin{array}{lr}
\mathcal{C P}\left|\pi^{0}\right\rangle=-\left|\pi^{0}\right\rangle & \pi^{0}=u \bar{u}-d \bar{d} \\
\mathcal{C P}\left|\pi^{+} \pi^{-}\right\rangle=+\left|\pi^{+} \pi^{-}\right\rangle & \pi^{+}=u \bar{d}, \pi^{-}=d \bar{u} \\
\mathcal{C P}\left|\left(\pi^{+} \pi^{-}\right)_{l} \pi^{0}\right\rangle=(-)^{l+1}\left|\left(\pi^{+} \pi^{-}\right)_{l} \pi^{0}\right\rangle &
\end{array}
$$

CP "invariance" of K system

Two decay channels of K are observed... ($\theta-\mathrm{T}$ puzzle)

CP "invariance" of K system

Two decay channels of K are observed... ($\theta-\mathrm{T}$ puzzle)

$$
\mathcal{C P}\left|\pi^{+} \pi^{-}\right\rangle=+\left|\pi^{+} \pi^{-}\right\rangle
$$

 CP EVEN

It's not convenient that the same K decays to TWO DIFFERENT CP eigen-states!!!

CP "invariance" of K system

17
How can we make two CP (+ and -) states from K^{0} and K^{0} ?
$\mathcal{C P}\left|K^{0}\right\rangle=\left|\bar{K}^{0}\right\rangle$
$K^{0}=\bar{s} d$
$\mathcal{C P}\left|\bar{K}^{0}\right\rangle=\left|K^{0}\right\rangle$
$\bar{K}^{0}=\bar{d} s$

ANSWER If the K is a mixed state of K^{0} and $\overline{K^{0}}$ in nature...

$$
\begin{aligned}
&\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) \\
&\left|K_{2}\right\rangle=\frac{\mathcal{C P}\left|K_{1}\right\rangle}{}=+\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) \\
&=\left|K_{1}\right\rangle \quad \text { CP EVEN } \\
& \mathcal{C P}\left|K_{2}\right\rangle=-\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right) \\
&=-\left|K_{2}\right\rangle \quad \text { CP ODD }
\end{aligned}
$$

CP "invariance" of K system

Distinguishing K_{1} and K_{2}
By the decay channel
By the life-time

$\begin{aligned} M_{k} & =498 \mathrm{MeV} \\ M_{\pi} & =140 \mathrm{MeV}\end{aligned}$
Phase space for 2π is about 600 larger than for 3π

$$
\begin{aligned}
& \tau\left(K_{1}\right) \simeq 0.90 \times 10^{-10} s \\
& \tau\left(K_{2}\right) \simeq 5.1 \times 10^{-8} s
\end{aligned}
$$

Accidental phase space suppression:
short-lived K is K_{1} and longlived one is K_{2}

CP non-invariance of K system

Cabibbo (1966)

CP non-invariance of K system

First observation of the CP violation

CP non-invariance of K system

We thought...

$$
\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right)
$$

$$
\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right)
$$

$$
\begin{aligned}
\mathcal{C P}\left|K_{1}\right\rangle & =+\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) \\
& =\left|K_{1}\right\rangle \quad \text { CP EVEN } \\
\mathcal{C P}\left|K_{2}\right\rangle & =-\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right)
\end{aligned}
$$

$$
=-\left|K_{2}\right\rangle \quad \mathbf{C P ~ O D D}
$$

But, actually... K^{0} and \bar{K}^{0} can mix through box diagram. Thus, they are not mass eigenstate.

$$
\begin{aligned}
&\left|K_{S}\right\rangle=\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle\right) \\
&\left|K_{L}\right\rangle=\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle\right) \\
& \text { If } \mathbf{q} / \mathbf{p} \neq \mathbf{I}, \\
& \text { the mass eigenstate } \mathbf{K}_{\mathbf{s} / \mathbf{L}} \\
& \text { are not CP eigen state } \\
& \text { CP violation!! }
\end{aligned}
$$

CP non-invariance of K system

So the mass eigenstate is a mixture of two CP eigenstate!

$$
\begin{aligned}
\left|K_{S}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle\right) \\
& \left.=\frac{p}{2}\left[\left(1+\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1-\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right] \\
\left|K_{L}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle\right) \\
& \left.=\frac{p}{2}\left[\left(1-\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1+\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right]
\end{aligned}
$$

\Leftrightarrow At $p=q=I$, we recover the previous result.
The CP violation comes from $q / p \neq \mid$!!!

Mass matrix of the K system

$$
\mathcal{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}=\left(\begin{array}{ll}
M_{11}-\frac{i}{2} \Gamma_{11} & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{21}-\frac{i}{2} \Gamma_{21} & M_{22}-\frac{i}{2} \Gamma_{22}
\end{array}\right)
$$

Using CPT invariance ($M_{1 /}=M_{22}, \Gamma_{1 /}=\Gamma_{22}$) and \boldsymbol{M} and Γ being Hermitian, we find the eigensystem of this matrix:

$$
\begin{array}{ll}
M_{1}+\frac{i}{2} \Gamma_{1} \equiv M_{11}-\frac{i}{2} \Gamma_{11}+\frac{q}{p}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) ; & \binom{p}{q} \\
M_{2}+\frac{i}{2} \Gamma_{2} \equiv M_{11}-\frac{i}{2} \Gamma_{11}-\frac{q}{p}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) ; \quad\binom{p}{-q}
\end{array}
$$

Thus, the mass eigenstate of K is obtained as:

$$
\begin{aligned}
\left|K_{1}\right\rangle & =p|K\rangle+q|\bar{K}\rangle \\
\left|K_{2}\right\rangle & =p|K\rangle-q|\bar{K}\rangle
\end{aligned} \quad \text { with } \quad \frac{q}{p}= \pm \sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}}
$$

It is clear here that $q / p \neq 1$ occurs
when M_{12} and/or Γ_{12} are complex number.

CP non-invariance of K system

So the mass eigenstate is a mixture of two CP eigenstate!

$$
\begin{aligned}
\left|K_{S}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle\right) \\
& \left.=\frac{p}{2}\left[\left(1+\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1-\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right] \\
\left|K_{L}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle\right) \\
& \left.=\frac{p}{2}\left[\left(1-\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1+\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right]
\end{aligned}
$$

The box diagram induces an oscillation.
But the CP violation can occur only if there is a complex number in the weak interaction

BARYON ASYMMETRY

~ When did the anti-matter disappeared?!

Our universe was born 13.7 billion years ago Extremely high temperature $\left(4000 \mathrm{~K}=10^{19} \mathrm{GeV}\right)$ As the universe expanded, the temperature rapidly decreased. During the first few seconds...

At the beginning, it was in the thermal equilibrium.

ㅃ. $\begin{aligned} & \text { proton } \\ & \text { anti-proton }\end{aligned}$
$\oplus \underset{\text { electron }}{\text { positron }}$
(1) neutron $\begin{aligned} & \text { anti-neutron }\end{aligned}$

BARYON ASYMMETRY

~ When did the anti-matter disappeared?!

Our universe was born 13.7 billion years ago
Extremely high temperature $\left(4000 \mathrm{~K}=10^{19} \mathrm{GeV}\right)$
As the universe expanded, the temperature rapidly decreased.
In reality, a tiny number of particles remained for some reason!
Then, the remaining particles created Helium!

But why?!

This question is still a mystery in particle physics...

BARYON ASYMMETRY

~ When did the anti-matter disappeared?!~

Our universe was born 13.7 billion years ago

Extremely high temperature $\left(4000 \mathrm{~K}=10^{19} \mathrm{GeV}\right)$
As the universe expanded, the temperature rapidly decreased.

In reality, a tiny number of particles remained for some reason!

Then, the remaining particles created Helium!

So far, what we know is
When the temperature is about $10^{15} \mathrm{GeV}$, number of particle exceeded to number of anti-particle. In order to this to happen, the following three condition has to be satisfied:
1, Baryon number violating reaction to occur
2, C and CP violation to occur
3, Non-equilibrium state to occur
| This question is still a mystery in particle physics...

Charged Current

Different strength for different flavours?!

$$
\begin{gathered}
\binom{d^{\prime}}{s^{\prime}} \downarrow\left(\begin{array}{cc}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)\binom{d}{s} \\
J_{\mu}^{\text {hadron }}=\cos \theta_{c} \bar{y} \gamma^{\mu}\left(1-\gamma_{5}\right) d+\sin \theta_{c} \bar{\theta} y^{\mu}\left(1-\gamma_{5}\right) s \\
\sin \theta_{c}=0.22, \cos \theta_{c}=0.98 \quad \text { Cabibbo angle '63 }
\end{gathered}
$$

Neutral Current

* Actually forbidden...

Forbidding the FCNC
 ~ GIM mechanism ~

If $S U(2)$ doublet is

$$
\begin{gathered}
\binom{\nu_{e}}{e},\binom{\nu_{\mu}}{\mu},\binom{u}{d \cos \theta_{c}+s \sin \theta_{c}},\binom{c}{-d \cos \theta_{c}+s \sin \theta_{c}} \\
\text { The cross-term would cancel out! }
\end{gathered}
$$

Glashow, Illiopolous, Maiani (GIM mechanism '70)

Forbidding the FCNC at loop level ~ GIM mechanism 2~

Forbidding the FCNC at loop level ~ GIM mechanism 2~

At the limit of mu=mc, two diagrams exactly cancel!!!

Forbidding the FCNC at loop level ~ GIM mechanism 2~

Forbidding the FCNC at loop level ~ GIM mechanism 2~

Again, at the limit of mu=mc, three diagrams exactly cancel.

Theoretical description of Electroweak Interaction of SM

Electroweak interaction

$$
q_{L}=\frac{\left(1-\gamma_{5}\right)}{2} q, \quad q_{R}=\frac{\left(1+\gamma_{5}\right)}{2} q, \quad, l_{L}=\frac{\left(1-\gamma_{5}\right)}{2} l, \quad l_{R}=\frac{\left(1+\gamma_{5}\right)}{2} l
$$

$$
E_{1 L}=\binom{\nu_{e}}{e^{-}}_{L}, E_{2 L}=\binom{\nu_{\mu}}{\mu^{-}}_{L}, E_{3 L}=\binom{\nu_{\tau}}{\tau^{-}}_{L^{2}}, Q_{1 L}=\binom{u}{d}_{L}, Q_{2 L}=\binom{v}{d}_{L}, Q_{3 L}=\binom{t}{b}_{L}
$$

$$
u_{1 R}=u_{R}, u_{2 R}=c_{R}, u_{3 R}=t_{R}, d_{1 R}=d_{R}, d_{2 R}=s_{R}, d_{3 R}=b_{R}, l_{1 R}=e_{R}, l_{2 R}=\mu_{R}, l_{3 R}=\tau_{R}
$$

$$
\begin{aligned}
& \mathcal{L}=\sum_{i}\left[\overline{E_{i L}}(i \not \nexists) E_{i L}+\overline{l_{i R}}(i \not \partial) l_{i R}+\overline{Q_{i L}}(i \not \partial) Q_{i L}+\overline{u_{i R}}(i \not \partial) u_{i R}+\overline{d_{i R}}(i \not \nexists) d_{i R}\right. \\
& \left.+g\left(W_{\mu}^{+} J_{W}^{\mu+}+W_{\mu}^{-} J_{W}^{\mu-}+Z_{\mu}^{0} J_{Z}^{\mu}\right)+e A_{\mu} J_{E M}^{\mu}\right] \\
& \mathcal{L}_{Y}=\sum_{i j} Y_{i j}^{u} \overline{Q_{i L}}\binom{\phi^{0}}{\phi^{-}} u_{j R}+\sum_{i j} Y_{i j}^{d} \overline{Q_{i L}}\binom{-\phi^{-\dagger}}{\phi^{0 \dagger}} d_{j R}+\sum_{i j} m_{i j}^{l} \overline{L_{i L}}\binom{-\phi^{-\dagger}}{\phi^{0 \dagger}} l_{j R}+h . c .
\end{aligned}
$$

Charged and Neutral Currents

$$
\begin{aligned}
J_{W}^{\mu+}= & \frac{1}{\sqrt{2}}\left(\overline{\nu_{i L}} \gamma^{\mu} L_{i L}+\overline{U_{i L}} \gamma^{\mu} D_{i L}\right) \\
J_{W}^{\mu-}= & \frac{1}{\sqrt{2}}\left(\overline{\left.\overline{L_{i L}} \gamma^{\mu} \nu_{i L}+\overline{D_{i L}} \gamma^{\mu} U_{i L}\right)}\right. \\
J_{Z}^{\mu}= & \frac{1}{\sqrt{\cos \theta_{w}}}\left[\overline{\overline{\nu i L}^{\prime}} \gamma^{\mu}\left(\frac{1}{2}\right) \nu_{i L}+\overline{L_{i L}} \gamma^{\mu}\left(-\frac{1}{2}+\sin ^{2} \theta_{w}\right) L_{i L}+\overline{l_{i R} \gamma} \gamma^{\mu}\left(\sin ^{2} \theta_{w}\right) l_{i R}\right. \\
& +\overline{U_{i L}} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) U_{i L}+\overline{u_{i R}} \gamma^{\mu}\left(-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{i R} \\
& \left.+\overline{\bar{D}_{i L}} \gamma^{\mu}\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{w}\right) D_{i L}+\overline{{d_{i R}} \gamma^{\mu}}\left(\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{i R}\right] \\
J_{\text {EM }}^{\mu}= & \overline{\bar{l}_{i}} \gamma^{\mu}(-1) l_{i}+\overline{u_{i}} \gamma^{\mu}\left(+\frac{2}{3}\right) u_{i}+\overline{d_{i} \gamma^{\mu}}\left(-\frac{1}{3}\right) d_{i}
\end{aligned}
$$

Yukawa Interaction (quark)

$$
\mathcal{L}_{Y}=\sum_{i \jmath} Y_{i j}^{u} \overline{Q_{2} L}\binom{\phi^{0}}{\phi^{-}} u_{j R}+\sum_{i j} Y_{i j}^{d} \bar{Q}_{i j}\binom{-\phi^{-\dagger}}{\phi^{0 \dagger}} d_{j R}+\text { h.c. }
$$

$$
\mathcal{L}_{Y}=\sum_{i j} m_{i j}^{u} \overline{U_{i L}} u_{j R}+\sum_{i j} m_{i j}^{d} \overline{D_{i_{L}}} d_{j R}+h . c .
$$

$$
\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right)\left(\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & m_{i j}^{u} & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right) \quad\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right)\left(\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & m_{i j}^{d} & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)
$$

Yukawa Interaction (quark)

Mass eigen-basis

$$
\begin{gathered}
\hat{u}_{L}=K_{L}^{u} \hat{u}_{L}^{\prime}, \quad \hat{u}_{R}=K_{R}^{u} \hat{u}_{R}^{\prime} \quad \hat{d}_{L}=K_{L}^{d} \hat{d}_{L}^{\prime}, \quad \hat{d}_{R}=K_{R}^{d} \hat{d}_{R}^{\prime} \\
m_{\text {diag }}^{u \prime}=K_{L}^{u \dagger} m^{u} K_{R}^{u}, \quad m_{\text {diag }}^{d \prime}=K_{L}^{d \dagger} m^{d} K_{R}^{d}
\end{gathered}
$$

ex. down-type

$$
\begin{aligned}
& \text { type }\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right)\left(\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & m_{i j}^{d} & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right) \\
&=\underbrace{\left(\bar{d}_{L}, \bar{s}_{L}, \bar{b}_{L}\right) K_{L}^{d}}_{\overline{\hat{d}}_{L}^{\prime}}
\end{aligned} \underbrace{\underbrace{\text { Insertin }}_{\left.K_{L}^{d}\right)^{\dagger}\left(\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & m_{i j}^{d} & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right) K_{R}^{d}} \underbrace{\left(K_{R}^{d}\right)^{\dagger}\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right)}_{\hat{d}_{R}^{\prime}}}_{\left(\begin{array}{ccc}
m_{d} & 0 & 0 \\
0 & m_{s} & 0 \\
0 & 0 & m_{b}
\end{array}\right)}
$$

CKM matrix elements

Strength of the weak couplings between different flavours

$$
J_{W}^{\mu+}=\left(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}}\right)\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)
$$

It contains many information. Ex) the life time difference of $K, D, B:$

$$
T_{D} \ll T_{K}, \quad T_{D}<T_{B}
$$

CKM matrix elements

Strength of the weak couplings between different flavours

$$
J_{W}^{\mu+}=\left(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}}\right)\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)
$$

It provides a source of CP violation!

It took nearly 10 years to find the solution for this complex coupling since discovery of CP violation...

Parameter counting of the unitary matrix to go to diagonalize the Yukawa coupling

Unitarity condition $U U^{\dagger}=1 \longrightarrow 2 n^{2}-n^{2}=n^{2}$
\downarrow
Phase convention $n^{2}-(2 n-1)=(n-1)^{2}$

CKM matrix elements

Strength of the weak couplings between different flavours

$$
J_{W}^{\mu+}=\left(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}}\right)\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)
$$

For two generation, only I rotation remains while for three generation, 3 rotations plus I phase remains (prediction of the 3rd generation). Kobayashi, Maskawa
Unitarity condition $U U^{\dagger}=1 \longrightarrow 2 n^{2}-n^{2}=n^{2}$
\downarrow

$$
\text { Phase convention } n^{2}-(2 n-1)=(n-1)^{2}
$$

3 mixings and I phase

phase. The rotation is defined as follows:

$$
\begin{align*}
\omega\left(\theta_{12}, 0\right) & =\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \tag{1}\\
\omega\left(\theta_{13}, \delta_{1}\right) & =\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta_{1}} \\
0 & 1 & 0 \\
-\sin \theta_{13} s e^{-i \delta_{1}} & 0 & \cos \theta_{13}
\end{array}\right) \tag{2}\\
\omega\left(\theta_{23}, 0\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right) \tag{3}
\end{align*}
$$

Then, the standard CKM matrix is obtained by choosing to multiply these matrices in the following order:

$$
\begin{equation*}
V_{\mathrm{CKM}}^{3 \times 3}=\omega\left(\theta_{23}, 0\right) \omega\left(\theta_{13}, \delta_{1}\right) \omega\left(\theta_{12}, 0\right) \tag{4}
\end{equation*}
$$

$$
V=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

We need experimental verifications that all 9 complex elements can be explained by the 4 input parameters.

A new parameterization

phase. The rotation is defined as follows:

$$
\omega\left(\theta_{12}, 0\right)=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \tag{1}\\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We re-parametrize in terms of λ, A, ρ and η : $\sin \theta_{12}=\lambda, \sin \theta_{13}=A(\rho-i \eta) \lambda^{3}, \sin \theta_{23}=A \lambda^{2}$

Realizing the hierarchy in the matrix, we expand in terms of $\lambda \sim=0.22$:
order:
$\sin \theta_{12}=\mathcal{O}(\lambda), \sin \theta_{23}=\mathcal{O}\left(\lambda^{2}\right), \sin \theta_{13}=\mathcal{O}\left(\lambda^{3}\right)$

$$
V=\left(\begin{array}{ccc}
c_{12}^{c} 13 & { }^{c} 12{ }^{c} 13 & { }^{{ }^{c} 13}{ }^{c} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

We need experimental verifications that all 9 complex elements can be explained by the 4 input parameters.

Wolfenstein's parameterization

$$
\begin{aligned}
& V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & A \lambda^{2} \\
A \lambda^{3}(1-\rho(-i \eta) & 1-\lambda^{2} / 2 & \text { Expansion in } \\
-A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \\
& =\left(\begin{array}{ccc}
1-\lambda^{2} / 2-\lambda^{4} / 8 \\
-\lambda \\
A \lambda^{3}(1-\rho(-i \eta) & \lambda \lambda^{3} \\
\mathcal{O}\left(\lambda^{5}\right)
\end{array}\right.
\end{aligned}
$$

Computing q / p for B system

In the B system, we have $M_{12} \gg \Gamma_{12}$, thus

$$
\frac{q}{p}=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}} \simeq \sqrt{\frac{M_{12}^{*}}{M_{12}}} \equiv e^{i \phi}
$$

Loop function
dominant=top quark

$$
M_{12}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}}\left(V_{t b} V_{t d}^{*}\right)^{2} S_{0}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)
$$

$$
\times \eta_{\mathrm{QCD}} \frac{\left\langle B^{0}\right|(\bar{d} b)_{\mathrm{V}-\mathrm{A}}(\bar{d} b)_{\mathrm{V}_{\mathrm{A}}}\left|\bar{B}^{0}\right\rangle}{m_{B}}
$$

$$
\begin{gathered}
V_{t d}=A \lambda^{3}(1-\rho-i \eta) \\
V_{t b}=1
\end{gathered} \Rightarrow \frac{q}{p}=e^{-2 i \arg \left(V_{t b}^{*} V_{t d}\right)}
$$

Strong interaction part

DONE!

Computing q / p for B system

In the B system, we have $M_{12} \gg \Gamma_{12}$, thus

CP violation in K system vs B system

$$
\begin{aligned}
\mathcal{C P}\left|K_{1}\right\rangle & =+\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) & \left|K_{S}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle\right) \\
& =\left|K_{1}\right\rangle\langle\text { CP EVEN } & & \left.=\frac{p}{2}\left[\left(1+\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1-\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right] \\
\mathcal{C P}\left|K_{2}\right\rangle & =-\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right) & \left|K_{L}\right\rangle & =\frac{1}{\sqrt{2}}\left(p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle\right) \\
& =-\left|K_{2}\right\rangle \text { CP ODD } & & \left.=\frac{p}{2}\left[\left(1-\frac{q}{p}\right)\left|K_{1}\right\rangle+\left(1+\frac{q}{p}\right)\left|K_{2}\right\rangle\right)\right]
\end{aligned}
$$

CP violation in K system vs B system

Time evolution formula

Let us describe the time evolution, in terms of the Hilbert space:

$$
|\Psi(t)\rangle=a(t)|B\rangle+b(t)|\bar{B}\rangle
$$

The time dependence can be described by the Schroedinger equation:

$$
i \nVdash \frac{\partial}{\partial t} \Psi(t)=\mathcal{H} \Psi(t) ; \quad \Psi(t)=\binom{a(t)}{b(t)}
$$

where the Hamiltonian is given as

$$
\mathcal{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}=\left(\begin{array}{ll}
M_{11}-\frac{i}{2} \Gamma_{11} & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{21}-\frac{i}{2} \Gamma_{21} & M_{22}-\frac{i}{2} \Gamma_{22}
\end{array}\right)
$$

Time evolution formula

$$
\mathcal{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}=\left(\begin{array}{ll}
M_{11}-\frac{i}{2} \Gamma_{11} & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{21}-\frac{i}{2} \Gamma_{21} & M_{22}-\frac{i}{2} \Gamma_{22}
\end{array}\right)
$$

Using CPT invariance ($M_{1 /}=M_{22}, \Gamma_{1 /}=\Gamma_{22}$) and \boldsymbol{M} and Γ being Hermitian, we find the eigensystem of this matrix:

$$
\begin{array}{lll}
M_{1}+\frac{i}{2} \Gamma_{1} & \equiv M_{11}-\frac{i}{2} \Gamma_{11}+\frac{q}{p}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) ; & \binom{p}{q} \\
M_{2}+\frac{i}{2} \Gamma_{2} \equiv M_{11}-\frac{i}{2} \Gamma_{11}-\frac{q}{p}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right) ; & \binom{p}{-q}
\end{array}
$$

Thus, the mass eigenstate of K is obtained as:

$$
\begin{aligned}
\left|B_{1}\right\rangle & =p|B\rangle+q|\bar{B}\rangle
\end{aligned} \quad \text { with } \quad \frac{q}{p}= \pm \sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}} \begin{aligned}
& \left|B_{2}\right\rangle=p|B\rangle-q|\bar{B}\rangle
\end{aligned}
$$

Time evolution formula

Now, we obtain the time evolution of the B states:

$$
\begin{aligned}
& \begin{array}{l}
\text { These states were } \begin{array}{l}
|B(t)\rangle \\
\begin{array}{l}
B \text { or Bbar at } \mathrm{t}=0 .
\end{array} \\
|\bar{B}(t)\rangle
\end{array}=f_{+}(t)|B\rangle+\frac{q}{p} f_{-}(t)|\bar{B}\rangle \\
|\bar{B}\rangle+\frac{p}{q} f_{-}(t)|B\rangle
\end{array} \\
& \text { where } \quad f_{ \pm}=\frac{1}{2} e^{-i M_{1} t} e^{-\frac{1}{2} \Gamma_{1} t}\left[1 \pm e^{-i \Delta M t} e^{\frac{1}{2} \Delta \Gamma t}\right] \\
& \text { with } \quad \Delta M \equiv M_{2}-M_{1}, \quad \Delta \Gamma \equiv \Gamma_{1}-\Gamma_{2} \quad+\text { sign for } q / p
\end{aligned}
$$

If $p / q \neq I, B$ and Bbar states behave differently.

Flavour specific mixing $C P$ violation

 (CPViolation in oscillation)

Flavour specific mixing $C P$ violation

(CPViolation in oscillation)

Flavour specific mixing CP violation

(CPViolation in oscillation)

If one of them decays semi-leptonically, we can tell if it was B^{0} or $\overline{B^{0}}$ on one side at given time, which allows us to tell about the other side.

Flavour specific mixing CP violation

(CPViolation in oscillation)

Flavour specific mixing $C P$ violation

(CPViolation in oscillation)

Flavour specific mixing $C P$ violation

(CPViolation in oscillation)

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
|B(t)\rangle=f_{+}(t)|B\rangle+\frac{q}{p} f_{-}(t)|\bar{B}\rangle \\
|\bar{B}(t)\rangle=f_{+}(t)|\bar{B}\rangle+\frac{p}{q} f_{-}(t)|B\rangle
\end{array}\right. \\
& \left\langle l^{-} X\right| \mathcal{H}^{\Delta B=1}|B(t)\rangle=f_{+}(t)\left\langle l^{-} X\right| \psi^{\Delta B},
\end{aligned}
$$

Flavour Non-specific mixing CPV

(CPViolation in oscillation)

Choose a final state which could come both B and Bbar!

ex: $J / \Psi K_{s}$ final state

Flavour Non-specific mixing CPV (CPViolation in oscillation)

Choose a final state which could come both B and Bbar!

ex: $J / \Psi K_{s}$ final state

$$
\begin{aligned}
|B(t)\rangle & =f_{+}(t)|B\rangle+\frac{q}{p} f_{-}(t)|\bar{B}\rangle \\
|\bar{B}(t)\rangle & =f_{+}(t)|\bar{B}\rangle+\frac{p}{q} f_{-}(t)|B\rangle
\end{aligned}
$$

$$
\begin{aligned}
\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B(t)\rangle & =f_{+}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B\rangle+\frac{q}{p} f_{-}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}\rangle \\
\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}(t)\rangle & =f_{+}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}\rangle+\frac{p}{q} f_{-}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B\rangle
\end{aligned}
$$

We assume...

$$
\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}\rangle=\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B\rangle \quad \Gamma_{12} \ll M_{12}
$$

Flavour Non-specific mixing CPV

(CPViolation in oscillation)

Choose a final state which could come both B and Bbar!

ex: $J / \Psi K_{s}$ final state

$$
\mathcal{A}=\frac{\Gamma\left(\bar{B}^{0} \rightarrow J / \psi K_{s}\right)-\Gamma\left(B^{0} \rightarrow J / \psi K_{s}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow J / \psi K_{s}\right)-\Gamma\left(B^{0} \rightarrow J / \psi K_{s}\right)}=\sin (\Delta M t) \operatorname{Im}\left(\frac{q}{p}\right)
$$

Flavour Non-specific mixing CPV

Test of Unitarity of CKM

$$
\begin{aligned}
& V_{C K M}^{\dagger} V_{C K M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& V_{C K M} V_{C K M}^{\dagger}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Test of Unitarity

$$
\begin{aligned}
& V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
\end{aligned}
$$

Unitarity: 9 complex numbers can be replaced by the 4 real number parameters
[1)

We must test at which extent this is satisfied!

Unitarity triangles

$$
\begin{aligned}
& \underbrace{V_{u d} V_{u s}^{*}}_{\mathcal{O}(\lambda)}+\underbrace{V_{c d} V_{c s}^{*}}_{\mathcal{O}(\lambda)}+\underbrace{V_{t d} V_{t s}^{*}}_{\mathcal{O}\left(\lambda^{5}\right)}=0 \\
& \underbrace{V_{u s} V_{u b}^{*}}_{\mathcal{O}\left(\lambda^{4}\right)}+\underbrace{V_{c s} V_{c b}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}+\underbrace{V_{t s} V_{t b}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}=\left(\begin{array}{l}
\mathbf{s b}
\end{array}\right. \\
& \underbrace{V_{t d} V_{c d}^{*}}_{\mathcal{O}\left(\lambda^{4}\right)}+\underbrace{V_{t s} V_{c s}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}+\underbrace{V_{t b} V_{c b}^{*}}_{\mathcal{O}\left(\lambda^{2}\right)}=- \\
& \underbrace{V_{u d}^{*} V_{u b}}_{\mathcal{O}\left(\lambda^{3}\right)}+\underbrace{V_{c d}^{*} V_{s b}}_{\mathcal{O}\left(\lambda^{3}\right)}+\underbrace{V_{t d}^{*} V_{t b}}_{\mathcal{O}\left(\lambda^{3}\right)}=\mathrm{db} \\
& \underbrace{V_{u d} V_{u b}^{*}}_{\mathcal{O}\left(\lambda^{3}\right)}+\underbrace{V_{c d} V_{c b}^{*}}_{\mathcal{O}\left(\lambda^{3}\right)}+\underbrace{V_{t d} V_{t b}^{*}}_{\mathcal{O}\left(\lambda^{3}\right)}
\end{aligned}
$$

Unitarity triangles

Unitarity triangles

The Unitarity Triangle

$$
\underbrace{V_{u d} V_{u b}^{*}}_{A \lambda^{3}(\rho+i \eta)}+\underbrace{V_{c d} V_{c b}^{*}}_{-A \lambda^{3}}+\underbrace{V_{t d} V_{t b}^{*}}_{A \lambda^{3}(1-\rho-i \eta)}=0
$$

IT

divide by $A \lambda^{3}$

$$
\arg \left(\frac{V_{b t}^{*} V_{t d}}{V_{c b}^{*} V_{c s}}\right) \equiv-\phi_{1}
$$

$\phi_{3}(\gamma) \quad \phi_{1}(\beta)$
\longrightarrow

$$
\arg \left(\frac{V_{t b}^{*} V_{t d}}{V_{u b}^{*} V_{u d}}\right) \equiv-\phi_{2}
$$

$(0,0) \quad V_{c d} V_{c b}^{*} \quad(1,0)$

$$
\arg \left(\frac{V_{c b}^{*} V_{c s}}{V_{u b}^{*} V_{u d}}\right) \equiv-\phi_{3}
$$

B_{d} physics

Determination of the CKM matrix

Determination of the CKM matrix: $\sin 2 \Phi_{I}(\beta)$ (phase)

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c i} & V_{c s} & V_{d} \\
V_{t a t} & V_{t s} & V_{t b}
\end{array}\right)
$$

CP asymmetry in $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K}_{\mathrm{s}}$

$$
A_{J / \psi K_{S}}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{S}\right)-\Gamma\left(B^{0}(t) \rightarrow J / \psi K_{S}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{S}\right)+\Gamma\left(B^{0}(t) \rightarrow J / \psi K_{S}\right)}=S_{J / \psi K_{s}} \sin \Delta M_{B} t
$$

$S_{J / \psi K_{s}}$	$=\operatorname{Im}[\underbrace{\frac{M_{12}}{M_{12}^{*}}}_{\text {oscill. }} \underbrace{\frac{A\left(\bar{B} \rightarrow J / \psi K_{S}\right)}{A\left(B \rightarrow J / \psi K_{S}\right)}}_{\text {decay }}]$
	$=\operatorname{Im}[\underbrace{\frac{V_{t b} V_{t d}^{*}}{V_{t b}^{*} V_{t d}} \underbrace{\frac{V_{c b} V_{c s}^{*}}{V_{c b}^{*} V_{c s}}}_{\text {decay }}]}_{\text {oscill. }}$
	$=\sin 2 \phi_{1}$

Determination of the CKM matrix:

 $\sin 2 \Phi_{2}(\alpha)$ (phase)$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{\text {sub }} \\
V_{\text {ol }} & V_{c s} & V_{b s} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CP asymmetry in $B \rightarrow \pi^{+} \pi^{-}$

$$
A_{\pi^{+} \pi^{-}}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}=S_{\pi^{+} \pi^{-}} \sin \Delta M_{B} t
$$

$$
\begin{aligned}
S_{\pi^{+} \pi^{-}} & =\operatorname{Im}[\underbrace{\frac{M_{12}}{M_{12}^{*}}}_{\text {oscill. }} \underbrace{\frac{A\left(\bar{B} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(B \rightarrow \pi^{+} \pi^{-}\right)}}_{\text {decay }}] \\
& =\operatorname{Im}[\underbrace{\frac{V_{t b} V_{t d}^{*}}{V_{t b}^{*} V_{t d}}}_{\text {oscill. }} \underbrace{\frac{V_{u b} V_{u d}^{*}}{V_{u b}^{*} V_{u d}}}_{\text {decay }}] \\
& =\sin 2 \phi_{2}(\alpha)
\end{aligned}
$$

CP asymmetry in $B \rightarrow \pi^{+} \pi^{-}$

$$
A_{\pi^{+} \pi^{-}}(t)=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}=S_{\pi^{+} \pi^{-}} \sin \Delta M_{B} t
$$

Determination of the CKM matrix: $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$ $V_{C K M}=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{\text {obs }} \\ V_{c d} & V_{c s} & V_{t o b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$

Determination of the CKM matrix: |Vub

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \quad * \text { Similar in }\left|V_{c b}\right|
$$

Exclusive process

$$
\begin{gathered}
\mathcal{A}(B \rightarrow \pi l \nu) \propto\left|V_{u b}\right| F^{B \rightarrow \pi}\left(q^{2}\right) \\
\left|V_{u b}\right|=(3.89 \pm 0.44) / 0^{-3}
\end{gathered}
$$

Inclusive process

$\sum\left|\mathcal{A}\left(B \rightarrow X_{u} l \nu\right)\right|^{2} \propto\left|V_{u b}\right|^{2} f\left(q^{2}, \mu_{\pi}, \ldots\right)$
$\left|V_{u b}\right|=(4.27 \pm 0.38) / 0^{-3}$

Determination of the CKM matrix: $\left|\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}{ }^{*}\right|$
 $V_{C K M}=\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{\text {co }} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)$

Determination of the CKM matrix: $\left|\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}{ }^{*}\right|$

$\Delta M_{d} \Rightarrow\left|V_{\mathrm{td}} V_{\mathrm{tb}}{ }^{*}\right|$

> Main source of the hadronic uncertainties in determining |Vtb|:
> Lattice QCD computation very important!

Determination of the CKM matrix:

$$
\left|\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}}{ }^{*}\right| \text { and }\left|\mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}{ }^{*}\right|
$$

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Combining the constry wamis

http://ckmfitter.in2p3.fr/

http://www.utfit.org/UTfit/

We can say that the main part of the CP violation comes from the complex phase in the CKM matrix. However, there is still a possibility that the unitarity is not exact for
a certin extent. Our challenges for more precise experiemental data as well as improvements in the theoretical predcitions continue!!!

