Flavour Physics and CPViolation III

AEPSHEP 2012 at Fukuoka Emi KOU (LAL/IN2P3)

Plan

- 3rd lecture: Searching new physics with flavour physics
* Flavour constraints on models beyond SM
* Some examples: 2HDM, 4th generation, SUSY
* New proposition using angular distribution measurement

The Standard Model

- $S U(3)_{c} x S U(2)_{L} x U(1)_{y}$ gauge theory
- Very concise: 19 fundamental parameters:
$\checkmark 3$ gauge coupling ($\mathrm{g}, \mathrm{g}^{\prime}, \mathrm{g}$)
$\checkmark 1$ Strong CP phase
$\checkmark 9$ fermion masses (6 quarks, 3 leptons)
$\checkmark 4$ in CKM matrix (3 mixing, 1 phase)
$\checkmark 2$ in Higgs potential (μ, λ)
Hundreds of, thousands of measurements can be consistently predicted by these small numbers of parameters!

The Standard Model

- $\operatorname{SU}(3)_{c} x S U(2)\left\llcorner x U(1)_{y}\right.$ gauge theory
- Very concise: 19 fundamental parameters:
$\checkmark 3$ gauge coupling ($\mathrm{g}, \mathrm{g}^{\prime}, \mathrm{g}$)
$\checkmark 1$ Strong CP phase
$\checkmark 9$ fermion masses (6 qu nothing outside of the
$\checkmark 4$ in CKM matrix (3 mixin! SM castle?!
$\checkmark 2$ in Higgs potential (μ, n)
Hundreds of, thousands of measurements can be consistently predicted by these small numbers of parameters!

Many propositions!

In this lecture, we learn how to reliably extend the SM and some examples of new physics searches.

Extending the SM

$$
\mathcal{L}=\mathcal{L}_{S U(3) \times S U(2) \times U(1)}^{S M}+\mathcal{L}^{\mathrm{BSM}} ? ? ?
$$

- Extending the SM: introduce new fields and new interactions according to certain rules (most fundamental: Lorentz invariance).
- We have to make sure that adding these new fields and interactions would not break the agreement of the experimental observations to the SM predictions.

SM must be the effective theory of the new theory.

SM as an effective Theory

Renormalizability

Counting rule of the level of divergence
$\int d k k^{D-I}$
$D=0$ log-div
$D=I$ linear-div
$D=2$ quad.-div

$$
D=4-\sum_{f} E_{f}\left(s_{f}+I\right)-\sum_{i} N_{i} \Delta_{i} ; \quad \Delta_{i}=4-d_{i}-\sum_{f} n_{i f}\left(s_{f}+I\right)
$$

SM is constructed by including only interactions which satisfy the renormalizability condition:

$$
\Delta_{\mathrm{i}} \geq \mathbf{0}
$$

Otherwise, SM Lagrangian could have included terms like:

Where is the scale of new physics??

Example of 5 dimensional operator (dipole operator)

$$
\frac{\mathrm{e}}{\mathrm{M}} \bar{\psi} \sigma_{\mu \nu} \psi F^{\mu \nu}
$$

This kind of operator induces anomalous magnetic moment of electron and muon, $a_{e / \mu}$

Precession measurement in the magnetic field

$$
\begin{aligned}
& a_{e}=0.00|l 59652| 8073(28) \\
& a_{\mu}=0.00\| \| 6592089(54)(33)
\end{aligned}
$$

One of the most precisely measured quantities

Theoretical prediction within SM
$\sqrt{ } a_{e}$ agrees relatively well (up to $\Delta \alpha$)
$\checkmark a_{\mu}$ is slightly smaller

$$
a_{\mu}{ }^{\exp }-a_{\mu}{ }^{S M}=(28.7 \pm 8.0) 10^{-10}
$$

Where is the scale of new physics??

Example of 5 dimensional operator (dipole operator)

$$
\frac{\mathrm{e}}{\mathrm{M}} \bar{\psi} \sigma_{\mu \nu} \psi F^{\mu \nu}
$$

$a_{\mu}=0.001 / 6592089(54)(33)$
This interaction induces an extra contribution

SM loop contribution agrees within the term
$\delta_{\mu} \sim 10^{-9} e / 2 m_{\mu}$

The indirect search of new physics through quantum loop effect: the higher precision one measure, the higher scale one can probe!

Where is the scale of new physics??

Example of 5 dimensional operator (dipole operator)

$$
\frac{e}{M} \bar{\psi} \sigma_{\mu \nu} \psi F^{\mu \nu}
$$

This interaction induces an extra contribution 4e/M

```
M~106 TeV
```

$a_{\mu}=0.00 \mid 16592089(54)(33)$

$$
\begin{aligned}
& \text { SM loop contribution } \\
& \text { agrees within the term } \\
& \delta_{\mu} \sim 10^{-9} e / 2 m_{\mu}
\end{aligned}
$$

But if the new operator obeys a symmetry $\Psi \rightarrow \gamma_{5} \Psi, \mathrm{~m} \rightarrow-\mathrm{m}$

This interaction induces an extra contribution
$4 e m_{\mu} / M^{2}$

SM loop contribution agrees within the term $\delta_{\mu} \sim 10^{-9} e / 2 m_{\mu}$

Interplay with direct/indirect searches

Where is the scale of new physics??

Example of 6 dimensional operator (four Fermi operator)

This kind of operator induces K/D/Bd/Bs mixing.
Furthermore, it could be at tree level (strong constraint on M)!
Precession measurement in the magnetic field

$$
\begin{gathered}
\Delta M_{\mathrm{d}}=(0.507 \pm 0.004) \mathrm{ps}^{-1} \\
\Delta \mathrm{M}_{\mathrm{s}}=(17.69 \pm 0.08) \mathrm{ps}^{-1} \\
\Delta \mathrm{M}_{\mathrm{k}}=(5.292 \pm 0.009) \times 10^{-3} \mathrm{ps}^{-1} \\
\sin 2 \Phi_{\mathrm{I}}=0.676 \pm 0.020 \\
\Phi \mathrm{~s}=-0.14^{+0.16}-0.11 \\
\varepsilon_{\mathrm{K}}=(2.228 \pm 0.00 \mathrm{I}) \times 10^{-3}
\end{gathered}
$$

Theoretical prediction within SM
\checkmark Agreement is relatively good, although the prediction heavily depend on lattice input CKM parameter input.A new physics contribution is still possible within those errors.

Where is the scale of new physics??

Example of K mixing $\left(\Delta M_{K}, \varepsilon_{K}\right) \quad i=2, j=I$

$$
\frac{\left(\delta_{i j}\right)^{2}}{M^{2}} \bar{\psi}_{i} \Gamma_{\mu} \psi_{i} \bar{\psi}_{j} \Gamma^{\mu} \psi_{j}
$$

SM loop contribution agrees within 10-15\% error

Where is the scale of new physics??

Example of K mixing $\left(\Delta M_{k}, \varepsilon_{K}\right) \quad i=2, j=1$

$$
\frac{\left(\delta_{i j}\right)^{2}}{M^{2}} \bar{\psi}_{i} \Gamma_{\mu} \psi_{i} \bar{\psi}_{j} \Gamma^{\mu} \psi_{j}
$$

This interaction induces an extra contribution δ_{21} / M^{2}

SM loop contribution agrees within 10-15\%
error

But if the coupling is CKM like (minimal flavour violation)

> | This interaction induces |
| :---: |
| an extra contribution |
| $\left(V_{t d} V_{t s}^{*}\right)^{2} / M^{2}$ |

SM loop contribution agrees within 10-15\% error

Interplay with direct/indirect searches

Where is the scale of new physics??

Example of K mixing $\left(\Delta M_{K}, \varepsilon_{K}\right) \quad i=2, j=1$

$$
\frac{\left(\delta_{i j}\right)^{2}}{M^{2}} \bar{\psi}_{i} \Gamma_{\mu} \psi_{i} \bar{\psi}_{j} \Gamma^{\mu} \psi_{j}
$$

This interaction induces an extra contribution δ_{21} / M^{2}

SM loop contribution agrees within 10-15\% error

But if the coundin......ation)

Thi Flavour physics provides very important guides for building a new models beyond SM!

Indirect Search of new physics effects

It is just for the matter of the time constraint, I focus on these models...

Searching new particle with loop process

B

(B)

Searching new particle with loop process

Indeed, the top quark mass was predicted to be around $>100 \mathrm{GeV}$ after the first measurement of ΔM_{d} (1987 by ARGUS Experiment)

Searching new particle with loop process

 Two Higgs doublet model (2HDM)
\checkmark The number of the Higgs particle is not restricted.
\checkmark Therefore, an extension of the Higgs sector is certainly an interesting possibility to go beyond SM. \rightarrow The Two Higgs Doublet Model (2HDM)
\checkmark 2HDM : 3 neutral and 2 charged scalar Higgs.
\checkmark In order to avoid the overproduction of the CP violation and the FCNC due to the neutral Higgs, a discrete symmetry is often imposed (according to the Weinberg-Glashow Natural Flavour Conservation).
\checkmark Three types of 2HDM are proposed according to the different coupling of the two Higgs doublets to the quarks and leptons.

Two Higgs doublet model (2HDM)

In flavour physics, a large contribution from the charged Higgs is expected.

$$
\mathcal{L}=\frac{g}{2 \sqrt{2} M_{W} H^{ \pm}}\left[V_{i j} m_{u} A_{u} \dot{y}_{i}\left(1-\gamma_{5}\right) d_{j}+V_{i j} m_{\alpha_{i}} A_{d} \dot{\psi}_{i}\left(1+\gamma_{5}\right) d_{j}\right]
$$

$$
\begin{gathered}
\Phi_{I}=\left(\Phi_{0}, \Phi^{+}\right)_{I} \rightarrow v_{1} ; \quad \Phi_{2}=\left(\Phi_{0}, \Phi^{+}\right)_{2} \rightarrow v_{2} \\
\tan \beta=v_{2} / v_{I}, v_{1}{ }^{2}+v_{1}{ }^{2}=v^{2} \\
\text { Type I: } A_{u}=\cot \beta, A_{d}=-\cot \beta \\
\text { Type II: } A_{u}=\cot \beta, A_{d}=\tan \beta
\end{gathered}
$$

In particular, we study:

- $B \rightarrow X s \gamma$
- $B \rightarrow T V$

The $b \rightarrow s \gamma$ process in 2HDM

Indirect probe of charged Higgs!

Now the loop function looks like...

$$
C_{7,8}\left(M_{W}\right)=G_{7,8}^{\mathrm{SM}}\left(\frac{m_{t}^{2}}{m_{W^{ \pm}}^{2}}\right)+\frac{1}{3 \tan ^{2} \beta} G^{7,8}\left(\frac{m_{t}^{2}}{m_{H^{ \pm}}^{2}}\right)-F_{7,8}\left(\frac{m_{t}^{2}}{m_{H^{ \pm}}^{2}}\right)
$$

So far, a large deviation from SM is not observed in branching ratio measurement of the $b s \gamma$.

The $B \rightarrow$ TV process in $2 H D M$

Indirect probe of charged Higgs!

$$
\operatorname{Br}(B \rightarrow \tau \nu)_{\mathrm{SM}}=\frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

थHDM

$$
\left.\operatorname{Br}(B \rightarrow \tau \nu)=\operatorname{Br}(B \rightarrow \tau \nu)_{\mathrm{SM}}\left(1-\tan ^{2} \beta\right) \frac{m_{B}^{2}}{m_{H^{ \pm}}^{2}}\right)^{2}
$$

A small deviation from SM has been seen though the significance is not very high so far.

The $B \rightarrow$ TV process in 2HDM

Indirect probe of charged Higgs!

$$
\operatorname{Br}(B \rightarrow \tau \nu)_{\mathrm{SM}}=\frac{G_{F}^{2} m_{B} m_{\tau}^{2}}{8 \pi}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

2HDM

A small deviation from SM has been though the significance is not very high so to

Constraints on m_{H} vs $\tan \beta$

Extra

 fermions
Models with extra fermions

in nutshell...

\checkmark Various models beyond SM require extra fermions.
\checkmark The new fermions may appear as the 4 th generation type (sequential quarks, left(right)-handed t^{\prime} and b^{\prime} being $S U(2)$ doublet (singlet)), or vector like type (one or two of $t^{\prime} b^{\prime}$ are added as both left- and right-handed being SU(2) singlet).
\checkmark In these models, the unitarity of the 3×3 CKM matrix can be broken since the 3×3 part is only a part of the full matrix (4×4 for sequential and 4×3 or 3×4 with one vector-like case)

The unitarity of the 3×3 CKM matrix can be broken.

$$
\left(\begin{array}{ccc|c}
& & & * \\
& 3 \times 3 & & * \\
& & & * \\
\hline * & * & * & *
\end{array}\right)
$$

4th generation model

In flavour physics, a large contribution from the heavy
b^{\prime} and t^{\prime} quarks are expected!
4th generation type
$\left.\binom{u}{d}_{L},\binom{c}{s}_{L},\binom{t}{b}_{L},\binom{t^{\prime}}{b^{\prime}}_{L}\right)_{R}, u_{R}, s_{R}, c_{R}, b_{R}, t_{R}, t_{R}^{\prime}, b_{R}^{\prime}$,
Vector-like quark type

In particular, we study:

- $B \rightarrow X s \gamma$
- B_{d} mixing

Extra fermions

4th generation model

Indirect probe of heavy top quark!

Extra fermions

4th generation model

Constraint on the 4×4 CKM matrix

4 th generation model

Constraint on the 4×4 CKM matrix

SUSY

\checkmark SUSY relates the particles with spin n to those with spin n $\pm 1 / 2$ (eg. the gauge bosons have their fermion superpartners and fermions have their scalar superpartners).
\checkmark SUSY has an ability to solve the so-called hierarchy problem of the SM (strong motivation for SUSY).
\checkmark If supersymmetry is exact, the masses of the SUSY particles should be the same as their partners'.
\checkmark However, no candidate for SUSY particle has been detected by experiments so far. This indicates that a more realistic model should contain the SUSY breaking terms.
\checkmark The SUSY breaking term introduces a number of free parameters corresponding to the masses and mixings of the superpartners to this model. Even in the MSSM, the number of these new parameters is more than a hundred.

SUSY breaking

Adding the soft SUSY breaking contribution, we find

SUSY breaking

Adding the soft SUSY breaking contribution, we find

SUSY breaking

Adding the soft SUSY breaking contribution, we find

$$
\mathcal{L}=\mathcal{L}_{\text {SUSY }}+\mathcal{L}_{\text {soft breaking }}
$$

$$
\left[g_{\text {soff }}\right]=[M]^{\Delta \mathrm{i}} \text { with } \Delta_{\mathrm{i}}>0
$$

$$
\mathcal{L}_{\mathrm{SOft}}^{\mathrm{MSSM}}=-\frac{1}{2}\left(M_{3} \tilde{g} \tilde{g}+M_{2} \tilde{W} \tilde{W}+M_{1} \tilde{B} \tilde{B}\right)+c . c .
$$

$$
-\left(\tilde{\bar{u}} \mathbf{a}_{\mathbf{u}} \tilde{Q} H_{u}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{Q} H_{d}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{L} H_{d}\right)+c . c .
$$

$$
-m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+c . c\right)
$$

SUSY CP/flavour problem

SM SUSY

(V) There is only one source of CP violation.
(V) FCNC is
suppressed naturally by the GIM mechanism.

VThere is too many sources of CP violation (large EDM expected). - FCNC can occur since there is, a priori, no GIM mechanism.

Avoiding SUSY CP/flavour problem

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{Soft}}^{\mathrm{MSSM}}=-\frac{1}{2}\left(M_{3} \tilde{g} \tilde{g}+M_{2} \tilde{W} \tilde{W}+M_{1} \tilde{B} \tilde{B}\right)+c . c . \\
& -\left(\tilde{\bar{u}} \mathbf{a}_{\mathbf{u}} \tilde{Q} H_{u}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{Q} H_{d}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{L} H_{d}\right)+c . c . \\
& -m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+c . c\right) \\
& -\tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{\mathbf{2}} \tilde{Q}-\tilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \tilde{L}-\tilde{\bar{u}} \mathbf{m}_{\overline{\mathbf{u}}}^{\mathbf{2}} \tilde{\bar{u}}^{\dagger}-\tilde{\bar{d}} \mathbf{m} \frac{\mathbf{2}}{\mathbf{d}} \tilde{\bar{d}}^{\dagger}-\tilde{\bar{e}} \mathbf{m}_{\overline{\mathbf{e}}}^{\mathbf{2}} \tilde{\bar{e}}^{\dagger} \\
& \mathbf{m}_{\mathbf{Q}}^{2}=m_{Q}^{2} \mathbf{1}, \mathbf{m}_{\mathbf{L}}^{2}=m_{L}^{2} \mathbf{1}, \mathbf{m}_{\overline{\mathbf{u}}}^{2}=m_{\bar{u}}^{2} \mathbf{1}, \mathbf{m}_{\mathbf{d}}^{2}=m_{\bar{d}}^{2} \mathbf{1}, \mathbf{m}_{\overline{\mathbf{e}}}^{2}=m_{\bar{e}}^{2} \mathbf{1} \\
& \text { Assumption } \quad \mathbf{a}_{\mathbf{u}}=A_{u 0} \mathbf{y}_{\mathbf{u}}, \quad \mathbf{a}_{\mathbf{d}}=A_{u 0} \mathbf{y}_{\mathbf{d}}, \quad \mathbf{a}_{\mathbf{e}}=A_{u 0} \mathbf{y}_{\mathbf{e}} \\
& \arg \left(M_{1 \sim 3}\right), \arg \left(A_{u 0}\right), \arg \left(A_{d 0}\right), \arg \left(A_{e 0}\right)=0, \text { or } \pi
\end{aligned}
$$

We often work on a simplified model e.g. mSUGRA

$m_{0}, m_{1 / 2}, A_{0}, \mu, \tan \beta$

SUSY contributions may still appear through

- Renormalization running
- Large $\tan \beta$ case (e.g. $B \rightarrow \mu^{+} \mu^{-}$)

SUSY indirect search

SUSY indirect search

SUSY indirect search

NMFV SUSY

NMFV=Non-Minimal Flavour Violating

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{Soft}}^{\mathrm{MSSM}}=-\frac{1}{2}\left(M_{3} \tilde{g} \tilde{g}+M_{2} \tilde{W} \tilde{W}+M_{1} \tilde{B} \tilde{B}\right)+c . c . \\
& -\left(\tilde{\bar{u}} \mathbf{a}_{\mathbf{u}} \tilde{Q} H_{u}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{Q} H_{d}-\tilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \tilde{L} H_{d}\right)+c . c . \\
& -m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}}^{2} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+c . c\right) \\
& -\tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{\mathbf{2}} \tilde{Q}-\tilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{\mathbf{2}} \tilde{L}-\tilde{\bar{u}} \mathbf{m}_{\overline{\mathbf{u}}}^{\mathbf{2}} \tilde{\bar{u}}^{\dagger}-\tilde{\bar{d}} \mathbf{m}_{\mathbf{d}}^{\mathbf{2}} \tilde{\bar{d}}^{\dagger}-\tilde{\bar{e}} \mathbf{m}_{\overline{\mathbf{e}}}^{\mathbf{2}} \tilde{\bar{e}}^{\dagger}
\end{aligned}
$$

Instead of (artificially) choosing the parameters, why don't we constrain them?!

NMFV SUSY

NMFV=Non-Minimal Flavour Violating

$$
\mathbf{m}_{\mathbf{A B}}^{\mathbf{2 S C K}^{2}}=\left(\begin{array}{ccc}
\left(m_{A B}^{2}\right)_{11} & \left(\Delta_{A B}\right)_{12} & \left(\Delta_{A B}\right)_{13} \\
\left(\Delta_{A B}\right)_{21} & \left(m_{A B}^{2}\right)_{22} & \left(\Delta_{A B}\right)_{23} \\
\left(\Delta_{A B}\right)_{31} & \left(\Delta_{A B}\right)_{32} & \left(m_{A B}^{2}\right)_{33}
\end{array}\right)
$$

$$
\begin{gathered}
\text { Mass Insertion } \\
\text { Parameter }
\end{gathered} \frac{\left(\Delta_{A B}\right)_{i j}}{m_{\text {squark }}} \equiv\left(\delta_{A B}\right)_{i j}
$$

$$
U_{d}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)_{\text {mass }} \quad U_{d}\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b}
\end{array}\right)_{\text {weak }}=\left(\begin{array}{c}
\tilde{d} \\
\tilde{s} \\
\tilde{b}
\end{array}\right)_{\text {mass }}
$$

Squark is not on the mass eigen-basis

Flavour mixture in the propagator

NMFV SUSY

NMFV=Non-Minimal Flavour Violating

Squark is not on the mass eigen-basis

Flavour mixture in the propagator

My favorite

NMFV SUSY search in flavour

Gluino contributions to Bs Oscillation

In the case of SUSY (non-MFV)

Gluino contributions to Bs Oscillation

In the case of SUSY (non-MFV)

$\Delta M s$ with CKM

and theoretical
uncertainties

$\beta\left(\Phi_{1}\right)$ measurements with penguin decay channels

Time dependent CP asymmetry in the B_{d} system
$\left.\begin{array}{rl} & \text { With tree process } \\ S_{J / \psi K_{s}} & =\operatorname{Im}[\underbrace{\frac{M_{12}}{M_{12}^{*}}}_{\text {oscill. }} \underbrace{\frac{A\left(\bar{B} \rightarrow J / \psi K_{S}\right)}{A\left(B \rightarrow J / \psi K_{S}\right)}}_{\text {decay }}] \\ & =\operatorname{Im}[\underbrace{\frac{V}{t b}_{V_{t d}^{*} V_{t d}^{*}}^{V_{\text {decay }}}}_{\text {oscill. }}] \\ & =\sin 2 \beta\left(2 \phi_{1}\right) \\ V_{c b}^{*} V_{c s}^{*} \\ V_{c b}^{*} V_{c s}\end{array}\right]$

$\beta\left(\Phi_{1}\right)$ measurements

with penguin decay channels

-B factories measured various channels.
-The experimental errors are statistics dominant. Thus, SuperB factories can improve the measurement significantly.
-Theoretical errors for some of the channels are still under discussions.

- Similar study can be done for the B_{s} system with, e.g. $B_{s} \rightarrow \Phi \Phi$, $B_{s} \rightarrow \eta$ ' Φ etc.
-New physics contributions for box (B_{q} oscillation) and penguin can be significantly different.

$\beta\left(\Phi_{1}\right)$ measurements with penguin decay channels

In the case of SUSY (non-MFV)

The expected precision at the SuperB factories:
$\mathrm{I}: 0.2<\Delta \mathrm{S}_{\Phi \mathrm{K}_{\mathrm{s}}}<0.3$
II: $0.1<\Delta S_{\Phi K_{s}}<0.2$
III: $0<\Delta \mathrm{S}_{\Phi K_{s}}<0.1$
IV: $-0.1<\Delta S_{\phi K_{s}}<0$
$-\quad \begin{gathered}\text { Current limit } \\ \Delta \mathrm{S}_{\Phi K_{\mathrm{s}}}=0.1 \pm 0.16\end{gathered}$

$\beta\left(\Phi_{1}\right)$ measurements with penguin decay channels

$\beta\left(\Phi_{1}\right)$ measurements with penguin decay channels

Photon polarization measurement of the $b \rightarrow s \gamma$ processes

challenge for future...

The $b \rightarrow s \gamma$ processes in SM

The $b \rightarrow s y$ process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..)
Especially, the $b \rightarrow$ sY process has a
 particular structure in SM:

$$
\bar{b} A_{\mu} s=-i V_{t b} V_{t s}^{*} \frac{G_{F}}{\sqrt{2}} \frac{\mathrm{e}}{8 \pi^{2}}[\underbrace{E_{0}\left(x_{t}\right) \bar{s}_{L}\left(q^{2} \gamma_{\mu}-q_{\mu} \not d\right) b_{L}}_{\begin{array}{r}
O_{9 \sim 10}: \text { penguin operator } \\
\text { photon off-shell } \\
\text { = not polarized }
\end{array}}-\underbrace{m_{b} E_{0}^{\prime}\left(x_{t}\right) \bar{s}_{L} \sigma_{\mu \nu} q^{\nu} b_{R}}_{\left.\begin{array}{c}
O_{7 \gamma, 8 g}: \text { magnetic operator }
\end{array}\right]}] \begin{array}{c}
\text { photon on-shell } \\
\text { and } b_{R} \rightarrow s_{L} \gamma_{L},
\end{array}]
$$

$$
\begin{aligned}
& \text { W-boson couples } \\
& \text { only left-handed } \\
& \Delta_{\mathrm{s}}^{\mathrm{b}} \rightarrow \mathrm{~s} \gamma_{L} \text { (left-handed polarization) } \\
& \text { \& } \bar{b} \rightarrow s \gamma_{R} \text { (right-handed polarization) }
\end{aligned}
$$

$m_{s} \bar{s}_{R} \sigma_{\mu \nu} q^{\nu} b_{L}$
Opposite chirality is suppressed by a factor m_{s} / m_{b}

The $b \rightarrow s \gamma$ processes in SM

The $b \rightarrow s \gamma$ process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..)
Especially, the $b \rightarrow s \gamma$ process has a
 particular structure in SM:

$$
\begin{aligned}
& \bar{b} A_{\mu} s=-i V_{t b} V_{t s}^{*} \frac{G_{F}}{\sqrt{2}} \frac{\mathrm{e}}{8 \pi^{2}}[\underbrace{E_{0}\left(x_{t}\right) \bar{s}_{L}\left(q^{2} \gamma_{\mu}-q_{\mu} \phi\right) b_{L}}_{O_{9 \sim 10}: \text { penguin operator }}-\underbrace{m_{b} E_{0}^{\prime}\left(x_{t}\right) \bar{s}_{L} \sigma_{\mu \nu} q^{\nu} b_{R}}_{O_{7 \gamma, 8 g}: \text { magnetic operator }}] \\
& \text { photon off-shell } \\
& \text { = not polarized }
\end{aligned}
$$

Right-handed: which NP model?

What types of new physics models?

For example, models with right-handed neutrino, or custodial symmetry in general
 induces the right handed current.

```
Left-Right symmetric
    model (W}\mp@subsup{W}{R}{}
```

Blanke et al. JHEP1203

Girrbach et al. JHEP1106

Which flavour structure?

The models that contain new particles which change the chirality inside of the $b \rightarrow$ sy loop can induce a large chiral enhancement!

```
Left-Right symmetric
    model: mt/mb
```

Cho, Misiak, PRD49, '94
Babu et al PLB333 ‘94

$$
\text { SUSY with } \delta_{R L} \text { mass }
$$

$$
\text { insertions: } \mathrm{m}_{\text {susy }} / \mathrm{mb}
$$

Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 ‘04

Theoretical interests in searching right-handed current using $b \rightarrow s \gamma$

Left-Right symmetry is often required for building new physics models in order to satisfy the electroweak data of rho $\simeq 1$.

B SUSY-GUT models often induces righthanded current in relation to the righthanded neutrino.
etc...
In addition, when there is a new particle in the loop which changes the chirality inside of the loop, there is chiral enhancement!

examples
Left-Right symmetric model: $\mathrm{mt} / \mathrm{mb}$
Babu, Fujikawa, Yamada PLB333 ‘94

$$
\text { SUSY with } \delta_{\text {RL }} \text { mass }
$$ insertions: $\mathrm{m}_{\text {susy }} / \mathrm{mb}$

Gabbiani, Gabrielli, Masiero, Silvestrini NPB477'96

Ball, EK, Khalil, PRD69 '04

Theoretical interests in searching right-handed current using $b \rightarrow s \gamma$

Left-Right symmetry is often required for building new physics models in order to satisfy the electroweak data of rho $\simeq 1$.

B SUSY-GUT models often induces righthanded current in relation to the righthanded neutrino.
etc...
examples
Left-Right symmetric model: $\mathrm{mt} / \mathrm{mb}$
Babu, Fujikawa, Yamada PLB333 '94

$$
\text { SUSY with } \delta_{\text {RL }} \text { mass }
$$ insertions: msusy/mb

Gabbiani, Gabrielli, Masiero Silvestrini NPB477'96

Ball, EK, Khalil, PRD69 '04

We can allow a large new physics enhancement in $\mathrm{b} \rightarrow \mathrm{s} \mathrm{\gamma} / \mathrm{b} \rightarrow \mathrm{sg}$ (on-shell s / g), despite of the strong constraints on e.g. Bs box diagram, namely ΔM_{s} and $\Phi_{\text {s. }}$

By the way...

Is a right-handed contribution still allowed in $b \rightarrow s \gamma$ from experiment?

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\prime \mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

We have a constraint from inclusive branching ratio measurement

$$
B r\left(B \rightarrow X_{S} \gamma\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}
$$

$$
\text { HFAG }(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}
$$

By the way...

Is a right-handed contribution still allowed in $b \rightarrow s \gamma$ from experiment?

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\prime \mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

We have a constraint from inclusive branching ratio measurement

$$
B r\left(B \rightarrow X_{S} \gamma\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}
$$

$$
\text { HFAG }(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}
$$

$$
\begin{array}{|c|}
\hline \text { While the polarization } \\
\text { measurement carries } \\
\text { information on } \\
\frac{\mathcal{M}_{R}}{\mathcal{M}_{L}} \simeq \frac{C_{7 \gamma}^{\mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}}
\end{array}
$$

Here we assume

By the way...

Is a right-handed contribution still allowed in $b \rightarrow s \gamma$ from experiment?

We can write the amplitude including RH contribution as:

> We have a constraint from inclusive branch $$
\operatorname{Br}\left(B \rightarrow X_{S} \gamma\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}
$$

HFAG ($3.55 \pm 0.24 \pm 0.09$) $\times 10^{-4}$
While the polarization measurement carries information on

$$
\frac{\mathcal{M}_{R}}{\mathcal{M}_{L}} \simeq \frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}}
$$

How do we measure the polarization?!

proposed methods
- Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \Pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-\gamma}\left(\right.$ called $\left.S_{K S T O \gamma}, S_{K+K-\gamma}\right)$
- Method II:Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+}\right\|^{-}$ (called $\mathrm{A}^{\left({ }^{(2)},\right.} \mathrm{A}^{\left({ }^{(\mathrm{im})}\right)}$
- Method III: $B \rightarrow K_{1}(\rightarrow$ KTT) $) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
- Method IV: $\Lambda_{b} \rightarrow \wedge^{(*)} \gamma$, ${ }_{\mathrm{b}} \rightarrow$ E* $^{*} \gamma \ldots$

Atwood et.al. PRL79
Kruger, Matias PRD7I Becirevic, Schneider, NPB854

Gronau et al PRL88
E.K. Le Yaouanc, Tayduganov PRD83
Gremm et al.'95, Mannel et
al '97, Legger et al '07, Oliver et al'l0

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$
Atwood et.al. PRL79
Flavour Non-specific mixing CPV
(CPViolation in oscillation)

Choose a final state which could come both B and Bbar!

ex: $J / \Psi K_{s}$ final state

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$
Atwood et.al. PRL79

Flavour Non-specific mixing CPV

(CPViolation in oscillation)

Choose a final state which
ex: $J / \Psi K_{s}$ final state could come both B and Bbar!

$$
\begin{aligned}
|B(t)\rangle & =f_{+}(t)|B\rangle+\frac{q}{p} f_{-}(t)|\bar{B}\rangle \\
|\bar{B}(t)\rangle & =f_{+}(t)|\bar{B}\rangle+\frac{p}{q} f_{-}(t)|B\rangle
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B(t)\rangle=f_{+}(t)\left\langle J / \psi K_{s}\right| \mathcal{H} \\
&\langle J B=1 \\
&\left.\langle J\rangle+\psi K_{s}\left|\mathcal{H}^{\Delta B=1}\right| \bar{B}(t)\right\rangle=f_{+}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}\rangle \\
& f_{-}(t)\left\langle\psi K_{s}\right| \mathcal{H} \Delta B=1 \\
&\bar{B}\rangle+\frac{p}{q} f_{-}(t)\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B\rangle
\end{aligned}
$$

We assume...

$$
\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|\bar{B}\rangle=\left\langle J / \psi K_{s}\right| \mathcal{H}^{\Delta B=1}|B\rangle \quad 12 \ll M_{12}
$$

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$

Flavour $\begin{gathered}\text { Non-specific mixiatation in oscillation) }\end{gathered}$

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$

Polarization measurement using

Time-dependent CPV of $B \rightarrow K *\left(\rightarrow K s \pi^{0}\right) \gamma$
We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\prime \mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

Constraints from Time dependent CPV of $\mathrm{S}_{\mathrm{ksTo} \mathrm{\gamma}}$

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

$$
\text { HFAG } S_{\mathrm{ksto} \mathrm{\gamma}}=-0.15 \pm 0.2
$$

Constraints from inclusive branching ratio

$$
\frac{\operatorname{Br}\left(B \rightarrow X_{S \gamma}\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2} \mid}{\text { HFAG }(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}}
$$

Current constraints on $C_{7} \& C_{7}{ }^{\prime}$

Polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254
Why do we need three body channel to start with???

Polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254
Why do we need three body channel to start with???

Right

Up-Down asymmetry
Count the number of events with photon above/below the K_{1} decay plane and subtract them.

$$
\mathcal{A}=\frac{\int_{0}^{\pi / 2} d|\mathcal{M}|^{2} d \theta-\int_{\pi / 2}^{\pi} d|\mathcal{M}|^{2} d \theta}{\int_{0}^{\pi} d|\mathcal{M}|^{2} d \theta}
$$

Polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/OI 07254

Up-Down asymmetry

Polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/OIO7254

Up-Down asymmetry

Polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0 107254
Up-Down asymmetry

We need detailed information on the hadronic amplitude of $K_{1} \rightarrow K \pi \pi$

Angular \& Dalitz
distribution of K ${ }_{1}$ decay

Circularly-polarization measurement of γ

Strong decay of $\mathrm{K}_{1} \rightarrow \mathrm{~K} \pi \pi$

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

$$
B \rightarrow J / \Psi \mathrm{K}_{1}, \mathrm{~T} \rightarrow \mathrm{~K}_{1} \mathrm{~V} \ldots
$$

2. Model dependent extraction i.e. theoretical estimate Modeling J function:
```
Assume Kl}->\textrm{K
decay, e.g. K }\mp@subsup{K}{1}{}->\mp@subsup{K}{}{*}\pi,\mp@subsup{K}{1}{}->\rhoK, then, J function can be
written in terms of:
    * form factors (S,D partial wave amplitudes)
    > couplings ( (gk*к\pi, g}\mp@subsup{g}{\rho\pi\pi}{}
    1 relative phase between two channel
```


Strong decay of $\mathrm{K}_{1} \rightarrow \mathrm{~K} \pi \pi$

Model parameters are extracted by fitting to data:

$$
\begin{aligned}
& \checkmark \quad \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right) / \operatorname{Br}\left(K_{(1270)} \rightarrow \varrho K\right)=0.24 \pm 0.09 \\
& \checkmark \quad \operatorname{Br}\left(K_{1}(1400) \rightarrow \varrho K\right) / B r\left(K_{1}(1400) \rightarrow K^{*} \pi\right)=0.01 \pm 0.01 \\
& \checkmark \operatorname{Br}\left(K_{1}(1400) \rightarrow K^{*} \pi\right)_{\text {-wver }} / \operatorname{Br}\left(K_{1(1400)} \rightarrow K^{*} \pi\right)_{\text {s-wve }}=0.04 \pm 0.01 \\
& \checkmark \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right)_{0 \text {-wve }} / \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right)_{s \text {-wve }}=2.67 \pm 0.95
\end{aligned}
$$

Brandenburg et al,
Phys Rev Lett, 36 (‘76) Otter et al,
Nucl Phys, B106 (‘77)
Daum et al,
Nucl Phys, B187 ('81)

Recent Belle measurement of $B \rightarrow J / \Psi K_{1}$ fixed the relative phase!!

Strong decay of $\mathrm{K}_{1} \rightarrow \mathrm{~K} \pi \pi$

Model parameters are extracted by fitting to data:

$$
\begin{aligned}
& \checkmark \quad \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right) / \operatorname{Br}\left(K_{(1270)} \rightarrow \varrho K\right)=0.24 \pm 0.09 \\
& \checkmark \quad \operatorname{Br}\left(K_{1}(1400) \rightarrow \varrho K\right) / B r\left(K_{1}(1400) \rightarrow K^{*} \pi\right)=0.01 \pm 0.01 \\
& \checkmark \operatorname{Br}\left(K_{1(1400)} \rightarrow K^{*} \pi\right)_{- \text {-wve }} / \operatorname{Br}\left(K_{1(1400)} \rightarrow K^{*} \pi\right)_{s-\text { wove }}=0.04 \pm 0.01 \\
& \checkmark \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right)_{- \text {-wve }} / \operatorname{Br}\left(K_{1(1270)} \rightarrow K^{*} \pi\right)_{s \text {-wve }}=2.67 \pm 0.95
\end{aligned}
$$

Brandenburg et al,
Phys Rev Lett, 36 (‘76) Otter et al,
Nucl Phys, B106 ('77)
Daum et al,
Nucl Phys, B187 ('81)

Recent Belle measurement of $B \rightarrow J / \Psi K_{1}$ fixed the relative phase!!

Reducing hadronic uncertainty is important. Model independent analysis is ideal...

Comparison of the three methods

```
proposed methods
```

\rightarrow Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{\mathrm{KST}} \mathrm{TOY}, \mathrm{S}_{\mathrm{K}+\mathrm{K}-\gamma}$)

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

\rightarrow Method II:Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+}+-\left(\right.$called $\mathrm{A}_{T}{ }^{(2)}, \mathrm{A}_{T^{(i m)}}$)

$$
\mathcal{A}_{T}^{(2)}\left(q^{2}=0\right)=\frac{2 \operatorname{Re}\left[C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}} \quad \mathcal{A}_{T}^{(i m)}\left(q^{2}=0\right)=\frac{2 \operatorname{Im}\left[C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}}
$$

- Method III: $\mathrm{B} \rightarrow \mathrm{K}_{\mathrm{I}}\left(\rightarrow \mathrm{K} \pi \Pi\right.$) Y (called $\boldsymbol{\lambda}_{\mathrm{Y}}$) $\begin{array}{l}\text { Assumption for } \mathrm{Y}^{*} / \text { Z penguin } \\ \text { (} \boldsymbol{9}_{9}, C_{10} \text { contributions) necessary! }\end{array}$

$$
\lambda=\frac{\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}-\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}{\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}
$$

Comparison of the three methods

```
proposed methods
```

\rightarrow Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{c \rightarrow T} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{\mathrm{KS} \pi \mathrm{r}}, \mathrm{S}_{\mathrm{K}+\mathrm{K}-\gamma}$)

$$
\begin{gathered}
\text { ed S SSTo } \left., S_{K+K-\gamma}\right) \\
S_{K_{S} \pi^{0} \gamma}=\frac{2 \mid C_{7 \gamma}^{\mathrm{SM}}}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+}\left[\begin{array}{c}
\text { super Flavour Factories } \\
\sigma_{S k s m y}(0.02)
\end{array}\right] \arg \left[\begin{array}{c}
C_{7 \gamma}^{\prime \mathrm{NP}} \\
C_{7 \gamma}^{\mathrm{SM}}
\end{array}\right]
\end{gathered}
$$

- Method II: Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+}+-\left(\right.$called $\left.\mathrm{A}_{T}{ }^{(2)}, \mathrm{A}^{(\text {(mm })}\right)$
\rightarrow Method III: $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
super Flavour Factory/LHCb

Comparison of the three methods

Comparison of the three methods

Comparison of the three methods

Comparison of the three methods

Method I \& Method III

Comparison of the three methods

Assumption for γ^{*} / Z penguin (C_{9}, C_{10} contributions) necessary!

Comparison of the three methods

```
proposed methods
```

\rightarrow Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{c \rightarrow T} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{\mathrm{KS} \pi \mathrm{r}}, \mathrm{S}_{\mathrm{K}+\mathrm{K}-\gamma}$)

$$
\begin{gathered}
\text { ed S SSTo } \left., S_{K+K-\gamma}\right) \\
S_{K_{S} \pi^{0} \gamma}=\frac{2 \mid C_{7 \gamma}^{\mathrm{SM}}}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+}\left[\begin{array}{c}
\text { super Flavour Factories } \\
\sigma_{S k s m y}(0.02)
\end{array}\right] \arg \left[\begin{array}{c}
C_{7 \gamma}^{\prime \mathrm{NP}} \\
C_{7 \gamma}^{\mathrm{SM}}
\end{array}\right]
\end{gathered}
$$

- Method II: Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+}+-\left(\right.$called $\left.\mathrm{A}_{T}{ }^{(2)}, \mathrm{A}^{(\text {(mm })}\right)$
\rightarrow Method III: $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
super Flavour Factory/LHCb

Extra-dimension model with Flavour

\square Set-up: one extra dimension (usual 4D x^{μ} plus one extra dimension y).

[^0]Introduction: RS model with bulk fermions
\square Once fermions are put in the bulk, their couplings to the Higgs and KK modes are given by their distance to the TeV brane.

\star_{0} The fermion masses hierarchy (e.g. $m_{t} \simeq 10^{5} m_{u}$) can be solved by the same exponential factor.

Extra-

Extra-dimension model with Flavour

The coupling constants for fermions to the Higgs/KK modes
\square The 4 dimensional Yuakawa coupling (fermion-Higgs coupling):
$\int d^{4} x \int_{-\pi R}^{\pi R} \frac{d y}{2 \pi R} \lambda^{5 \mathrm{D}} e^{-\sigma} \underbrace{H(y)}_{\text {Higgs }} \times \underbrace{f_{L}^{0}(y)}_{\text {LHfermion }} \times \underbrace{f_{R}^{0}(y)}_{\text {RHfermion }} \times v_{0} \bar{\Psi}_{L}^{0}(x) \Psi_{R}^{0}(x)$
4 4D Yukawa coupling is given by the overlap of the fermion and the Higgs wavefunctions (with some assumption for $\lambda^{5 D}$).
\square The 4 dimensional fermion- K^{1} gauge boson coupling:

$$
\int d^{4} x \int_{-\pi R}^{\pi R} \frac{d y}{2 \pi R} g e^{-\sigma} \underbrace{\chi^{1}(y)}_{\text {KKgauge }} \times \underbrace{f_{A}^{0}(y)}_{\text {fermion }} \times \underbrace{f_{B}^{0}(y)}_{\text {fermion }} \times \bar{\Psi}_{A}^{0}(x) \Psi_{B}^{0}(x)
$$

\star_{0} The KK coupling constant is given by the overlap of the fermion and the KK gauge boson wavefunction (with the usual $g, g_{s} \ldots$)
\longrightarrow KK gauge coupling is stronger for the heavy fermions
\longrightarrow Iarge FCNC for heavy (top/bottom) sector!

Extradimension

Extra-dimension model with Flavour

Breaking of GIM mechanism in the bulk flavour RS model ... nutshell...

a FCNC occurs at tree level since the fermions couple to the KK gauge bosons with different strengths.

Let us define fermion eigenstates as:

$\&_{\Delta}$ Then, GIM mechanism in the SM comes from $K_{i j} K_{i j}^{\dagger}=1$

$$
J_{\text {neutral }}^{\mu} \propto \bar{\Psi}_{i} \gamma^{\mu} \Psi_{i}, \quad \longrightarrow \quad \bar{\Psi}_{i} \gamma^{\mu} \widehat{\Psi}_{i}
$$

While in the bulk flavour RS model, the non-universal coupling C_{i} (larger for heavier i) leads to the non-zero offdiagonal elements (FCNC at tree level):

$$
J_{\text {neutral-KK }}^{\mu} \propto C_{i} \bar{\Psi}_{i} \gamma^{\mu} \Psi_{i}, \quad \longrightarrow \underbrace{K_{j i} C_{i} K_{i k}^{\dagger}}_{\equiv D_{j i}} \bar{\Psi}_{j} \gamma^{\mu} \widehat{\Psi}_{k}
$$

Extra-dimension model with Flavour

in nutshell...

$$
B_{d, s}-\bar{B}_{d, s} \text { oscillation from tree level } g^{\mathrm{KK}} \text { diagram }
$$

ㄱ A rough estimate predicts large effects

\square The ΔM_{d} and also the recent ΔM_{s} measurements do not show such a large deviation: HFAG

$$
\begin{aligned}
& \Delta M_{d}=0.507 \pm 0.005 \mathrm{ps}^{-1} \\
& \Delta M_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}
\end{aligned}
$$

[^0]: Hierarchy problem is solved by the exponential factor. The Planck scale $10^{19} \mathrm{GeV}$ fixes the geometric parameter $k R \simeq 11$.

