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Outline
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Two most important observables
“Large” collective flow
Jet quenching

Other important observables
Constituent quark scaling
Ratios of particle abundances
Sequential melting of heavy quarkonia
Strangeness enhancement

Role of fluid dynamics — Fluctuating initial conditions

RHIC and LHC comparison

LHC heavy-ion highlights

Take-home message
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Fascinating area of research

At the interface of particle physics & high-energy nuclear physics

Draws heavily from QCD: pert as well as non-pert

Overlaps with thermal field theory, relativistic fluid dynamics, kinetic
or transport theory, quantum collision theory, apart from statistical
mechanics & thermodynamics

QGP at high T & vanishing µB is of cosmological interest

QGP at low T & large µB is of astrophysical interest

Black hole - fluid dynamics connection: String theory
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The science of the “small” – the elementary particle physics –

is deeply intertwined with

the science of the “large” – cosmology – the study of the origin and
evolution of the universe.
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The Big Bang and The Little Bang

Temperature history of the universe
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QGP Definition

Quark-Gluon Plasma (QGP): This is defined as a (locally) thermally
equilibrated state of matter in which quarks and gluons are deconfined
from hadrons, so that they propagate over nuclear, rather than merely
nucleonic, volumes.

Two essential ingredients:

1. Degrees of freedom should be quarks and gluons
2. Matter should have attained (local) thermal equilibrium
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Big idea: To map out (quantitatively) QCD phase diagram.

Theoretical tools: Lattice QCD, phenomenological models, effective
theories.

Experimental tools: Relativistic heavy-ion collisions:
SPS (CERN), RHIC (BNL), LHC (CERN). Upcoming lower-energy
facilities: FAIR (GSI) & NICA (JINR).
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Lattice QCD result for EOS
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Nearly realistic u, d , s masses. From Cheng et al. (2008).
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Ultrarelativistic Heavy-Ion Collisions

General Philosophy

Collision of two nuclei or two CGC plates

Deposition of kinetic energy & formation of glasma

Liberation of partons from glasma

(Near) thermalization of partons: Formation of QGP

Hydrodynamic expansion, cooling, dilution

Hadronization — Kinetic theoretical expansion

Chemical freezeout: inelastic processes stop

Kinetic freezeout: elastic scatterings stop

Detection of particles — Extraction of QGP properties

Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 13 of 50



Standard Model of URHICs

Initial state: Glauber model or Colour-Glass Condensate

Intermediate evolution: Rel. second-order hydrodynamics

End evolution: Rel. transport theory leading to a freeze-out

Final state: Detailed measurements (single-particle inclusive,
two-particle correlations, etc.) are available.

Aim: To achieve a quantitative understanding of the properties of
quark-gluon plasma (QGP), e.g., its EOS, Transport coeffs.

Major problems: Correct initial-state model? Event-by-event fluctuations
in the initial state.
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Two most important observables in rhics

(1) Elliptic flow and (2) Jet quenching.

Observation of a “large” elliptic flow led to the claim of formation of an
almost perfect fluid – strongly coupled QGP (sQGP) – at RHIC ⇒ (local)
equilibration of matter.

A natural explanation of the observed jet quenching is in terms of a dense
& coloured (hence partonic, not hadronic) medium.

Recall the definition of QGP.
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Meaning of “the most perfect fluid”

Constant-pressure curves

Meson gas: χPT
(50 % error not shown)

QGP: LGT calc. of
Nakamura & Sakai

From Lacey et al.
(PRL 2007).

Note: η/s. Note: Liquids & gases behave differently.
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Non-central Collision & Reaction Plane

Beam or longitudinal direction: z , Impact parameter vector: x ,
Reaction plane: xz , Transverse or azimuthal plane: xy .
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Non-central Collision & Anisotropic Flow
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where y : rapidity, φ: measured w.r.t. the reaction plane.
v1: Directed Flow, v2: Elliptic Flow.

Fluctuations ⇒ Eq. (1) needs generalization. Later.
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Why “Directed Flow” ?
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Polar plot r = 1 + 2v1 cosφ for a small (a few %) v1.
Appears shifted in one direction. Hence Directed Flow.
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Why “Elliptic Flow” ?
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Polar plot r = 1 + 2v2 cos 2φ for a small (a few %) v2.
Looks like an ellipse. Hence Elliptic Flow.
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Importance of the anisotropic or azimuthal flow

Sensitive to the early history of the collision because of the
self-quenching expansion.

Signature of pressure at early times, or

Measure of the degree of thermalization of the quark-gluon matter
formed in rhics – (central issue).

Observation of a “large” elliptic flow at RHIC led to the claim of
formation of an almost perfect fluid.
Strongly coupled QGP ⇒ (local) equilibration of matter.
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“Large” Elliptic Flow — Success of Ideal Hydro
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Jet Quenching

• Jet quenching is seen in inclusive
single-particle spectra and in
dihadron correlations.

• Direct jet reconstruction is
possible but very difficult at RHIC,
relatively easy at LHC.
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Jet Quenching (single-particle inclusive yield)

RAA vs pT . Central collisions. Suppression is a final-state effect. Energetic
partons lose energy as they traverse the medium. Calc. by Gyulassy, Levai,
Vitev. dNg/dy = 1150.
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Jet Quenching (dihadron angular correlations)
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Trigger particle pT > 4 GeV. Associated particle pT > 2 GeV.
[nucl-ex/0306024].

Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 25 of 50



Jet Quenching (dihadron angular correlations)

Broadened jet shape due to medium-induced gluon radiation
[nucl-ex/0501016].
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Jet Quenching at CMS – Unbalanced-dijet event

Pb-Pb,
√
sNN = 2.76 TeV. Summed ET in e.m. and hadron calorimeters.

[nucl-ex/1102.1957]
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Various pT regimes and corresponding observables

Low-pT regime: 0 <∼ pT <∼ 1.5 GeV/c
Collective flows

Medium-pT regime: 1.5 <∼ pT <∼ 5 GeV/c
Constituent quark scaling

High-pT regime: pT ≫ 5 GeV/c
Jet quenching
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Constituent Quark Scaling

Left: 2 distinct branches. Right: universal curve.
Flow is developed at the quark level.
Hadronization occurs by quark recombination or coalescence.

Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 29 of 50



Other important observables

Ratios of particle abundances: constrain models of particle
production.

Strangeness enhancement: (1) Although ms ≫ mu,d , production of
s, s̄ becomes easy at T > ms (2) Large gluon density in QGP helps
gḡ → ss̄ (3) Mass of the lightest strange hadron ≫ ms . Hence mass
threshold for strangeness production is much higher in the hadron
scenario than in the QGP scenario.

Sequential melting of heavy quarkonia: Colour Debye screening of
attraction between Q and Q̄ in QGP.
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Fluid Dynamics / Hydrodynamics — what, where, why

Kinetic/Transport Theory: Microscopic theory.

Fluid Dynamics: Effective theory that describes the slow,
long-wavelength motion of a fluid close to equilibrium.

A set of coupled partial differential equations for n, ǫ, P , uµ,
dissipative fluxes. In addition: transport coefficients & relaxation
times also occur.

Powerful technique: Given initial conditions & EoS, hydro predicts
evolution of the matter.

Limitation: applicable at or near (local) thermodynamic equilibrium
only.

Applications in cosmology, astrophysics, physics of high-energy
heavy-ion collisions, ...
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Hydrodynamics in HE Heavy-Ion Collisions

Calc. of charge multiplicity, pT spectra of hadrons, anisotropic flows
vn, and femtoscopic radii.

Also calc. of jet quenching, J/ψ melting, thermal γ, ℓ2, etc.

Thus hydro plays a central role in modeling rhics.
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Coarse-Graining of the Boltzmann equation
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2: Currently under intense investigation
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Zeroth-, First-, Second-Order Hydrodynamics

The theory is formulated as an order-by-order expansion in gradients
of hydrodynamic velocity uµ.

Zeroth order: Ideal hydrodynamics.

First order: Relativistic Navier-Stokes theory — parabolic equation —
acausal behaviour — rectified in second-order Israel-Stewart theory.

Second order: Israel-Stewart
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Traditional Hydrodynamic Calculations
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Shaded area: overlap of two (smooth) Woods-Saxon distributions.

Initial energy (or entropy) density ǫ(x , y): Smooth.

Single-particle spectra, directed & elliptic flows are calculated
assuming smooth initial conditions.

v1(y) = −v1(−y). Hence v1 vanishes at mid-rapidity.

Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 35 of 50



However, the reality is not so simple.

Initial geometry is not smooth.

Why?
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Event-to-event fluctuations in nucleon positions

Basic idea: Collision time-scale is so short that each
incoming nucleus sees nucleons in the other nucleus in a

frozen configuration.

Fluctuations in N positions (and hence in NN collision
points) result in fluctuations in the shape & orientation of
the overlap zone.
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Event-to-event fluctuations in nucleon positions

x

y

x’

y’

“Snapshot” of nucleon positions at the instant of collision. Due to
event-to-event fluctuations, the overlap zone could be shifted & tilted
w.r.t. the (x , y) frame. x ′y ′: principal axes of inertia.
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Fluctuating Initial Geometry & “New” Flows

Ellipse
→ elliptic flow v2(pT , y)

Triangle
→ triangular flow v3(pT , y)
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Fluctuating Initial Geometry & “New” Flows

Systematic harmonic decomposition of the initial geometry

Dipole asymmetry
→ dipolar flow v1(pT , y)

Triangularity
→ triangular flow v3(pT , y)
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Ridge and Shoulder

R(∆η,∆φ): Inclusive two-particle correlation function

η∆-5

0

5

φ∆ 0

100

200

)φ∆,η∆
R

(

-2
0
2
4

pp, 200 GeV

η∆-5

0

5

φ∆ 0

100

200

)φ∆,η∆
R

(

-5
0
5

10
15

PHOBOS preliminary
0-10%

PHOBOS preliminary

Central Au-Au, 200 GeV

Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 41 of 50



Ridge and Shoulder

“New” collective flows explain the structure seen in AA colli.Rajeev S. Bhalerao Relativistic Heavy-Ion Collisions Slide 42 of 50



Ridge and Shoulder — Explanation
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Ridge and Shoulder — Explanation
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Ridge and Shoulder — Explanation
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“Old” and “New” flows

Unlike the “old” directed flow v1, the “new” v1 arises due to
fluctuations in the initial geometry, does not vanish at mid-rapidity,
and is predicted to have no correlation with the reaction plane.

Triangular flow makes a significant contribution to the “ridge” and
“shoulder”.

Evidence for the “new” v1 has been seen in the first harmonic,
〈cos∆φ〉 of the dihadron correlations at STAR @ RHIC.

All this provides a strong support to hydrodynamics as the
appropriate effective theory for rhics.
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Various Planes

x

y

x’

y’

Reaction Plane: xz plane: Plane determined by the impact parameter
vector and the beam axis.

Participant Plane: x ′z plane, where x ′y ′ are the principal axes of
inertia. (Defn can be generalized to arbitrary n)

Event Plane: Estimate of the PP, obtained using the final-state
momentum distribution (Qz plane):

Q cosΨ =
∑

i

wi cosφi , Q sinΨ =
∑

i

wi sinφi .

(Defn can be generalized to arbitrary n)
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Non-central Collision & Anisotropic Flow

Thus each harmonic n may have its own reference angle in the transverse
plane. Hence the generalized distribution of particles emitted in |f 〉 is

dN

dφ
=

N

2π

(

1 +
∞
∑

1

2vn cos n(φ−Ψn)

)

.
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Recent Hydrodynamic Calculations

Initial energy density: inhomogeneous and fluctuating from event to
event. Not smooth.

Hydrodynamics with smooth initial conditions → Hydrodynamics with
fluctuating initial conditions. Event-by-event hydrodynamics

Instead of averaging over initial conditions and then applying hydro,
apply hydro first and then average over all outputs.
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Comparison of RHIC & LHC heavy-ion collision expts

RHIC (Au-Au) LHC (Pb-Pb) Increase√
sNN (GeV) 200 2760 14

dNch/dη/
(

<Npart>

2

)

3.76 8.4 2.2

ǫBjτi (GeV/fm
2) 16/3 16 3

ǫBj (GeV/fm
3) 10 30 3

Ti (MeV) 360 470 30%

Vf .o. (fm
3) 2500 5000 2

Lifetime (fm) 8.4 10.6 30%

vflow 0.6 0.66 10%

< pT >π 0.36 0.45 25%

Diffl. v2(pT ) unchanged

pT -integrated v2 30%

Hotter, Larger, Longer-Lasting
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