
Title Slide

“Software Defects, Scientific Computation
and the Scientific Method"

Les Hatton

Professor of Forensic Software Engineering
CISM, Kingston University
L.Hatton@kingston.ac.uk

Version 1.1: 14/Dec/2011

Presentation at CERN, 14 Dec, 2011.
.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability and software
defects
Some early thoughts
A tentative model for defect
Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Truth cannot be verified by scientific testing, it can
only be falsified.
Falsification requires quantification of experimental
error.
This has been at the heart of scientific progress.
This process is NOT generally followed in scientific
(or indeed any other kind of) computation.

Popperian deniability

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

On quantification
Computer scientists have researched the average
density of defect in code extensively
Where we have been much less successful is in
quantifying the effects of such defect on
numerical results.

… defect

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

On quantification of density
A “low defect” piece of software will exhibit less
than 1 defect per thousand executable lines of
source code in its entire lifetime.
Average software is in the range 1-10.

… defect

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… defect.
A software quality scale based on

defect density
0.1

1.0

10.0

NASA Shuttle software HAL (0.1)

Linux kernel (0.14)

Several commercial C systems (0.15-0.4)
The best 5% of systems
approximately

Defects/KXLOC

Commercial Tcl-Tk (0.9)

NAG Fortran (2.1)

Medical app C++ (5.1)

Ada comms (7)
NASA Fortran (8)

Sources Fiedler (1989), Compton (1990), Basili
(1996), Hatton (2005,2007,2008)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability and software
defect
Some early thoughts
A tentative model for defect
Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

By 2010 I was reasonably convinced that:
N-version experiments, although not fully independent are
exceedingly valuable at highlighting differences, (for whatever
reason), and effective at reducing those differences. (1994)
Scientific software is littered with statically detectable faults
which fail with a certain frequency (1997-1998)
The language does not seem to make much difference. (1999-)
Defects appear to be fundamentally statistical rather than
predictive, (2005-8)
Software systems exhibit implementation INdependent
behaviour (2007-10).

Some early thoughts

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A comparison of 9 different commercial
seismic data processing packages

Written to the same semi-formal specifications
Written in the same programming language
(Fortran 77)
Using the same input data tapes
Using the same values of disposable parameters
Exercised around 200,000 lines of code in each
package.

Quantification of differences by
N-version (1994)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by
N-version (1994)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Convergence using N-version (1994)
– but to what ?

Before After

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Each feedback experiment confirmed …
… the existence of a long-standing previously undiscovered
defect
… its correction led to convergence of the 9 packages. The
offending package typically reduced its variance from 40% to
20% whilst the group variance reduced by 16% to 8% over 3
iterations.

Is this still relevant today ?
Language is still in use in various dialects
Programmers still use the same test and development
processes

Quantification of differences by
N-version (1994)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Note the strong analogue between
N independent version run-time comparison
Open source facilitating M independent code
reviews. (Open source / open data models are
crucial in restoring reproducibility to scientific
computation).

Quantification of differences by
N-version

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Are defects related to static
complexity ?

There is little evidence that complexity measures
such as the cyclomatic complexity v(G) are of any
use at all in predicting defects

Defects

Cyclomatic number v(G)NAG Fortran library over 25 years
(Hopkins and Hatton (2008))

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is there anything unusual about
‘zero’ defect ?

PCA and endless
rummaging
suggest not. This
may undermine
root-cause
analysis.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

On static defects
Modern programming languages are littered with many
types of statically detectable defect, (for example reliance
on evaluation order).
These typically occur around 5-10 per 1000 lines of
executable code and fail at an unacceptably high rate.
They must be removed by tools plus inspections.

Given the undisciplined growth of programming
languages, its hardly surprising…

… programming language and
defect

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming language and
bloat

Language Size 1 Size 2 Increase factor
Ada 270Kb

(1983)
1093Kb
(1995)

x4

C 191 pp.
(1990)

401 pp.
(1999)

x2

C++ 808 pp.
(1999)

1370 pp
(2010 draft)

x1.7

Fortran 134 pp.
(1978)

354 pp.
(1990)

x2.5

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Software size distributions
appear power-law in LOC

Smoothed (cdf) data for 21 systems, C,
Tcl/Tk and Fortran, combining 603,559
lines of code distributed across 6,803
components, (Hatton 2009, IEEE TSE)

In spite of this, languages are astonishingly
similar in their information properties …

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability
Some early thoughts
A tentative model for defect
Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

We are looking for:-
Language independent behaviour
Application independent behaviour
Predicts power-law behaviour in component sizes
Predicts simple and apparently power-law behaviour in
defect, (observed frequently)
Makes other testable predictions.

A tentative model

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

What is power-law behaviour ?

Frequency of occurrence ni given by
pi i

ncn =

This is usually shown as

ipncni ln)ln(ln −=

which looks like
ln ni

ln i

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Question: Does power-law behaviour in component
size establish itself over time as a software system
matures or is it present at the beginning ?

Is power-law behaviour
persistent ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is power-law behaviour
persistent ?

C Fortran

Tcl

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Answer: Power-law behaviour in component size
appears to be present at the beginning of the
software life-cycle.

Is power-law behaviour
persistent ?

Given that this appears independent of programming
language and application area, can we explain why ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

When we build a system we are making choices
Choices on functionality
Choices on architecture
Choices on programming language(s)

Building systems

There is a general theory of choice – Shannon
information theory.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Software component size - approximate
Number of lines of code. This is quite dependent on the programming
language, (consider the influence of the pre-processor in C and C++
for example).

Building systems

Software component size - better
Based on tokens of a programming language.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Tokens of language
Fixed tokens. You have no choice in these. There are 49 operators
and 32 keywords in ISO C90. Examples include the following in C,
(but also in C++, PHP, Java, Perl …):

{ } [] () if while * + *= == // / , ; :
Variable tokens. You can choose these. Examples include:-

identifier names, constants, strings

Building systems from tiny
pieces

Every computer program is made up of
combinations of these, (note also the Boehm-
Jacopini theorem (1966)).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
behaviour using Shannon entropy

Suppose component i in a software system has ti tokens in
all constructed from an alphabet of ai unique tokens.

First we note that)(iaaa vfi +=

Fixed tokens of a language, {
} [] ; while …

Variable tokens, (id names
and constants)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
behaviour using Shannon entropy

An example from C:

void int () [] { , ;
for = >= -- <=
++ if > -

bubble a N i j t 1 2

void bubble(int a[], int N)
{

int i, j, t;
for(i = N; i >= 1; i--)
{

for(j = 2; j <= i; j++)
{

if (a[j-1] > a[j])
{
t = a[j-1]; a[j-1] = a[j]; a[j] = t;

}
}

}
}

Fixed
(18)

Variable
(8)

+

Total
(94)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
behaviour using Shannon entropy

For an alphabet ai the Hartley-Shannon information content
density I’i per token of component i is defined by

)log()log()...log(' ii
t

iiiiii ataaaaIIt i

i
===≡

We think of I’i as fixed by the nature of the algorithm we
are implementing.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Consider now building a system
as follows

Consider a general software system of T tokens divided
into M pieces each with ti tokens, each piece having an
externally imposed information content density property I’i
associated with it. Note: no nesting.

1 2 3 ….

ti,I’i

… M

∑
=

=
M

i
itT

1

i

M

i
i ItI '

1
∑

=

=

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

The most likely distribution of the I’i (= Ii/ti)subject to the
constraints of T and I held constant

∑
=

−

−

=≡ M

i

I

I
i

i
i

i

e

e
T
tp

1

'

'

β

β

∑
=

=
M

i
itT

1
and i

M

i
i ItI '

1
∑

=

=

is

where pi can be considered the probability of piece i
occurring with a share Ii of I. β is a constant.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

However

() β−
ii ap ~Giving the

general theorem

)log()log(' ii
i

i

i

i
i aa

t
t

t
II =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

This states that in any software system,
conservation of size and information (i.e. choice) is
overwhelmingly likely to produce a power-law
alphabet distribution. (Think ergodic here).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Note that for small components, the fixed token
overhead is a much bigger proportion of all tokens,
af >>av(i), so

One last little bit of maths

() () () β

β

ββ

β
−

−

−− ≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≈+= f

f

v
fvfi a

a
iaaiaa

Q
p)(1)(

)(
1

Constant

For large components, the general rule takes over

() β−
ii ap ~

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Application to software systems

So we are looking for the following signature

log pi

log i

() β−
ii ap ~

() β−
fa

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some results

AdaC Java

40 million lines of Ada, C, C++,
Fortran, Java, Tcl in 78 systems.

C++

Fortran C Numerical

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Suppose there is a constant probability P of making
a mistake on any token. The total number of defects
is then given by di = P.ti Then

Some model predictions

() () () βββ

β
−−− ≈≈= iiii dta

Q
p

)(
1

So defects will also be distributed according to a
power-law – i.e they will cluster.

This step uses Zipf’s law, Hatton (2009)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

… programming languages
Defect clustering in the NAG Fortran

library (over 25 years)

Defects components XLOC
0 2865 179947

1 530 47669

2 129 14963

3 82 13220

4 31 5084

5 10 1195

6 4 1153

7 3 1025

> 7 5 1867

A simple model of
defects leads to the
prediction that defects
will cluster

Zero-defect is like
winning the lottery.
There is no systematic
way of achieving it.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Clustering can be exploited:
Conditional probability of

finding defects*

* See, Hopkins and Hatton (2008), http://www.leshatton.org/NAG01_01-08.html

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability
Some early thoughts
A tentative model for defect
Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Conclusions

N versions (or open source) both seem to offer ways of
improving software agreement but by an as yet
unknown amount.
Static structural relationships with defect appear to be a
blind alley, (cyclomatic complexity …,).
Defects cluster and this can be exploited.
Software systems exhibit macroscopic behaviour
independent of implementation or language

() β−
ii ap ~

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

References

My writing site:-
http://www.leshatton.org/

Specifically,
http://www.leshatton.org/variations_2010.html

Thanks for your attention.

	Title Slide
	Overview
	Popperian deniability
	… defect
	… defect
	… defect.A software quality scale based on defect density
	Overview
	Some early thoughts
	Quantification of differences by N-version (1994)
	Quantification of differences by N-version (1994)
	Convergence using N-version (1994) – but to what ?
	Quantification of differences by N-version (1994)
	Quantification of differences by N-version
	Are defects related to static complexity ?
	Is there anything unusual about ‘zero’ defect ?
	… programming language and defect
	… programming language and bloat
	Software size distributions appear power-law in LOC
	Overview
	A tentative model
	What is power-law behaviour ?
	Is power-law behaviour persistent ?
	Is power-law behaviour persistent ?
	Is power-law behaviour persistent ?
	Building systems
	Building systems
	Building systems from tiny pieces
	A model for emergent power-law size behaviour using Shannon entropy
	A model for emergent power-law size behaviour using Shannon entropy
	A model for emergent power-law size behaviour using Shannon entropy
	Consider now building a system as follows
	General mathematical treatment
	General mathematical treatment
	One last little bit of maths
	Application to software systems
	Some results
	Some model predictions
	… programming languagesDefect clustering in the NAG Fortran library (over 25 years)
	Clustering can be exploited:Conditional probability of finding defects*
	Overview
	Conclusions
	References

