Presentation at CERN, 14 Dec, 2011.

“ Software Defects, Scientific Computation
and the Scientific Method"

Les Hatton

Professor of Forensic Software Engineering
CISM, Kingston University
L.Hatton@kingston.ac.uk

Version 1.1: 14/Dec/2011

Overview

+

= Popperian deniability and software
defects

= Some early thoughts
s A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Popperian deniability

+

= Truth cannot be verified by scientific testing, it can
only be falsified.

= Falsification requires quantification of experimental
error.

= This has been at the heart of scientific progress.

= This process Is NOT generally followed In scientific
(or indeed any other kind of) computation.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

... defect

+

= On quantification

= Computer scientists have researched the average
density of defect in code extensively

= Where we have been much less successful Is In
guantifying the effects of such defect on
numerical results.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

... defect

+

= On guantification of density

= A “low defect” piece of software will exhibit less
than 1 defect per thousand executable lines of
source code In its entire lifetime.

= Average software is in the range 1-10.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

0.1

1.0

10.0

... defect.
A software quality scale based on
defect density

v

etfects/ KXLOC

NASA Shuttle software HAL (0.1) —

Linux kernel (0.14)
The best 5% of systems

Several commercial C systems (0.15-0.4)| approximately

Commercial Tcl-Tk (0.9)

NAG Fortran (2.1)

Medical app C++ (5.1)

Ada comms (7) Sources Fiedler (1989), Compton (1990), Basili
NASA Fortran (8) (1996), Hatton (2005,2007,2008)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Overview

+

= Popperian deniability and software
defect

= Some early thoughts
s A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some early thoughts

+

By 2010 | was reasonably convinced that:

= N-version experiments, although not fully independent are
exceedingly valuable at highlighting differences, (for whatever
reason), and effective at reducing those differences. (1994)

= Scientific software is littered with statically detectable faults
which fail with a certain frequency (1997-1998)

= The language does not seem to make much difference. (1999-)

= Defects appear to be fundamentally statistical rather than
predictive, (2005-8)

= Software systems exhibit implementation INdependent
behaviour (2007-10).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by

i N-version (1994)

= A comparison of 9 different commercial
seismic data processing packages
= Written to the same semi-formal specifications

= Written In the same programming language
(Fortran 77)

= Using the same input data tapes
= Using the same values of disposable parameters

= Exercised around 200,000 lines of code In each
package.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by
N-version (1994)

> 4500m

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Convergence using N-version (1994)
— but to what ?

40

AVERAGE ABSOLUTE DIFFERENCE : PASS 1

Copyright Les Hatton, 2011-.

Before

AVERAGE ABSOLUTE DIFFERENCE : PASS 2

%
_.

L L T r T T T T T r T T
1 2 3, 4 & 7 8 9 10 1" 13 14
Processing Coordinates

After

Copying freely permitted with acknowledgement

Quantification of differences by

i N-version (1994)

= Each feedback experiment confirmed ...

= ... the existence of a long-standing previously undiscovered
defect

= ... Its correction led to convergence of the 9 packages. The
offending package typically reduced its variance from 40% to
20% whilst the group variance reduced by 16% to 8% over 3
Iterations.

= |s this still relevant today ?
= Language is still in use in various dialects

= Programmers still use the same test and development
processes

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by

| N-version

= Note the strong analogue between
= N Independent version run-time comparison

= Open source facilitating M independent code
reviews. (Open source / open data models are
crucial in restoring reproducibility to scientific
computation).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Are defects related to static
complexity ?

= There is little evidence that complexity measures
such as the cyclomatic complexity v(G) are of any
use at all in predicting defects

Cyclomatic Complexity v. Defects

Defects |

Cayclmalic complesity

NAG Fortran library over 25 years CyCIOmatIC number V(G)

(Hopkins and Hatton (2008))

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is there anything unusual about

‘zero’ defect ?

Cyclomatic Complexity v. Defects

14 |
12 |
+
PCA and endless 10 % % +
rummaging)
suggest not. This & °f
.) + + +
may undermine *
€ + 4+ + +
root-cause il e
3/73/)/5/.5'. 4 H HHHHH R 4 + +
H-HHHHHHE- HHHH - -+ + + g
2 HHHHHHHIRH T +H ++ + :
rHIHHHIHHHHIH'IHIIHIHIHHI- +HH +H + =+ +
Lmnnmnnmnmhm&mmw:::'::::::: L — - '
Du 7] 100 150 200 280 0
Cclmaic comp ks ity

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

... programming language and

i defect

s On static defects

= Modern programming languages are littered with many
types of statically detectable defect, (for example reliance
on evaluation order).

= These typically occur around 5-10 per 1000 lines of
executable code and fail at an unacceptably high rate.
They must be removed by tools plus inspections.
= Given the undisciplined growth of programming

languages, Its hardly surprising...

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

. programming language and

i bloat
Language Size 1 Size 2 Increase factor
Ada 270Kb 1093KDb X4
(1983) (1995)
C 191 pp. 401 pp. X2
(1990) (1999)
C++ 808 pp. 1370 pp x1.7
(1999) (2010 draft)
Fortran 134 pp. 354 pp. X2.5
(1978) (1990)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Software size distributions
appear power-law in LOC

In spite of this, languages are astonishingly
similar in their information properties ...

All size distributions

o1

Fraque noy

0ot |

IF'a:iﬂ;a;I E-”-_- = I:

oo : £t i .]
1 10 100
rank

1000

Smoothed (cdf) data for 21 systems, C,
Tcl/Tk and Fortran, combining 603,559
lines of code distributed across 6,803
components, (Hatton 2009, IEEE TSE)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A tentative model

+

We are looking for:-

Language independent behaviour
Application independent behaviour
Predicts power-law behaviour in component sizes

Predicts simple and apparently power-law behaviour in
defect, (observed frequently)

Makes other testable predictions.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

What Is power-law behaviour ?

+

Frequency of occurrence n; given by

This is usually shown as

Inn. =In(nc) — plini

which looks like
In n;,

Nnc
ni :i—p

> Ini

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is power-law behaviour

i persistent ?

= Question: Does power-law behaviour in component
size establish itself over time as a software system
matures or Is It present at the beginning ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

EaTHes W vl X

Is power-law behaviour

persistent ?

Each Fortran Mark 12-19

Esrery 3rd C vemsion 10000
100
W
E
]
&
=
]
E‘ 100 |
1
¢ P
o (hkarm)] E\ru-g-d-ﬂi Tcl weralen
-] T .
1
1
i =
£
1
i_
=]

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

=25 ¢ (hokares]

Fortran

Is power-law behaviour

i persistent ?

= Answer: Power-law behaviour in component size

appears to be present at the beginning of the
software life-cycle.

Given that this appears independent of programming
language and application area, can we explain why ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems

= When we build a system we are making choices

= Choices on functionality
= Choices on architecture
= Choices on programming language(s)

= There is a general theory of choice — Shannon
Information theory.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems

= Software component size - approximate

= Number of lines of code. This is quite dependent on the programming
language, (consider the influence of the pre-processor in C and C++
for example).

= Software component size - better
= Based on tokens of a programming language.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Building systems from tiny
pleces

= Tokens of language

= Fixed tokens. You have no choice in these. There are 49 operators
and 32 keywords in ISO C90. Examples include the following in C,
(but also in C++, PHP, Java, Perl ...):

{}[10)ifwhile*+*===//],;:
= Variable tokens. You can choose these. Examples include:-
Identifier names, constants, strings
N Every computer program IS made up of
combinations of these, (note also the Boehm-
Jacopini theorem (1966)).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
i behaviour using Shannon entropy

Suppose component i in a software system has t, tokens in
all constructed from an alphabet of a; unique tokens.

First we note that

a. =a. +a,(l)

I
Fixed tokens of a language, { Variable tokens, (id names
}L[1; while ... and constants)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
i behaviour using Shannon entropy

An example from C:
void bubble(int a[], int N)

{
“ oy . inti, j, t;
void |nt()[]{, , for(i = N;i>=1;i-)
Z)gd for = >=-- <= {for(j=2;j<=i;j++)
' - {
T If = if (a[j-1] = a[j])
{
+ }t = a[j-1]; afj-1] = a[j]; a[il = t;
}
}
variable bubble aNijt1 2 y Total
(8) (94)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size
i behaviour using Shannon entropy

For an alphabet a, the Hartley-Shannon information content
density I'. per token of component i is defined by

t1h=1,=log(aa.. &)= Iog(aiti) =1;log(a)

We think of I'; as fixed by the nature of the algorithm we
are implementing.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Consider now building a system

| as follows

Consider a general software system of T tokens divided
Into M pieces each with t; tokens, each piece having an
externally imposed information content density property I’,
associated with it. MNote: no nesting.

t

.M

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

+

The most likely distribution of the I'; (= 1./t;)subject to the
constraints of T and | held constant

M M
T=>1 and =)t
i=1 i=1
1S ;.
— ti € g
Pi =

T ZM A
e I
=1

where p, can be considered the probability of piece i
occurring with a share I, of 1. B is a constant.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

+

L[_loa(a
H li—Et_j—[ti log(ai)j log(a;)

Giving the p ~ (a)_'B
general theorem i i

This states that in any software system,
conservation of size and information (i.e. choice) Is
overwhelmingly likely to produce a power-law
alphabet distribution. (Think ergodic here).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

One last little bit of maths

+

= Note that for small components, the fixed token
overhead Is a much bigger proportion of all tokens,
ar >>a (1), SO

\ B
(3, +a,0))” = (a,)ﬁ£1+ a“(')j ~(a,)"

CY

oL
- QB

Constant

= For large components, the general rule takes over

Pi ~ (ai)_ﬂ

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Application to software systems

+

So we are looking for the following signature

log p;

log |

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Bl with sl x

Some results

10000

Il 4.68.3 {C++) Linux kemel 2639 () Open JDK b143 (Java) Ada yalidatinn mite
h-——-14
onEm -
=0
i mmb i o=} i
1 1 1
& &
E 1
1 1 1 =
P j o= I
i -
= 1:‘! -]
o fokare] b x fracorn’y X] o v ftokne]

C++ C Java Ada

40 million lines of Ada,C,C++ Fortran,Java,Tel

GCC 4.6.2 (Fortran) Nl'umn‘lnll Rﬂ:lpcainlc
== 100000
. n
i o=} %
i 2 oeml|
3 £
: £
=3
f . :
2
wan b
100 1000 h---1
a2 x [ickans) s ke 100 £

100 1000
5126 5 [ickems)

Fortran C Numerical 40 million lines of Ada, C, C++,
Fortran, Java, Tcl in 78 systems.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some model predictions

+

= Suppose there Is a constant probability P of making
a mistake on any token. The total number of defects
IS then given by d; = P.t; Then

1 B (s VP (4 VP
pi:@(ai) "“(ti) "“(di)

™ This step uses Zipf's law, Hatton (2009)

= So defects will also be distributed according to a
power-law — 1.e they will cluster.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

... programming languages
Defect clustering in the NAG Fortran
i library (over 25 years)

A simple model of Defects | components | XLOC
defects leads to the 0 2865 179947
prediction that defects 1 530 47669
will cluster 5 129 14963
3 82 13220
Zero-defect is like 4 31 °084
winning the lottery. 5 10 1195
There Is no systematic 6 4 1153
way of achieving It. 7 3 1025
> 7 5 1867

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Clustering can be exploited:
Conditional probability of

i finding defects™
Probahility of finding defects

0L -

0k -

o4 -

Frobability of finding ancihar defaq

oz

0

1 1 1 1
a 2 4 [& 10
Humbs r of defeci= =0 far

* See, Hopkins and Hatton (2008), http:/ /www.leshatton.org/NAGO01 01-08.html

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Overview

+

= Popperian deniability

= Some early thoughts

= A tentative model for defect
= Conclusions

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Conclusions

+

= N versions (or open source) both seem to offer ways of
Improving software agreement but by an as yet
unknown amount.

= Static structural relationships with defect appear to be a
blind alley, (cyclomatic complexity ...,).

= Defects cluster and this can be exploited.

= Software systems exhibit macroscopic behaviour
Independent of Implementation or language

Pi ~ (ai)_ﬂ

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

References

My writing site:-
http://www.leshatton.orq/

Specifically,
http://www.leshatton.org/variations 2010.html

Thanks for your attention.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

	Title Slide
	Overview
	Popperian deniability
	… defect
	… defect
	… defect.A software quality scale based on defect density
	Overview
	Some early thoughts
	Quantification of differences by N-version (1994)
	Quantification of differences by N-version (1994)
	Convergence using N-version (1994) – but to what ?
	Quantification of differences by N-version (1994)
	Quantification of differences by N-version
	Are defects related to static complexity ?
	Is there anything unusual about ‘zero’ defect ?
	… programming language and defect
	… programming language and bloat
	Software size distributions appear power-law in LOC
	Overview
	A tentative model
	What is power-law behaviour ?
	Is power-law behaviour persistent ?
	Is power-law behaviour persistent ?
	Is power-law behaviour persistent ?
	Building systems
	Building systems
	Building systems from tiny pieces
	A model for emergent power-law size behaviour using Shannon entropy
	A model for emergent power-law size behaviour using Shannon entropy
	A model for emergent power-law size behaviour using Shannon entropy
	Consider now building a system as follows
	General mathematical treatment
	General mathematical treatment
	One last little bit of maths
	Application to software systems
	Some results
	Some model predictions
	… programming languagesDefect clustering in the NAG Fortran library (over 25 years)
	Clustering can be exploited:Conditional probability of finding defects*
	Overview
	Conclusions
	References

