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Data, Data, Everywhere 

 Data explosion 
• Web 2.0  more user data 

• More devices that sense data 

• More equipment that produce data at extraordinary 
rates (e.g. high throughput sequencing) 

• More interactions being tracked (e.g. clickstream data) 

• More business processes are being digitized 

• More history being kept 

 Data becoming core to decision making, 
operational activites, and scientific process 
• Want raw data (not aggregated version) 

• Want to run complex, ad-hoc analytics (in addition to 
reporting) 

 



System Design for the Data Deluge 

 Shared-memory does not scale nearly well 
enough for petascale analytics 

 Shared-disk is adequate for many 
applications, especially for CPU intensive 
applications, but can have scalability 
problems for data I/O intensive workloads 

 For scan performance, nothing beats 
putting CPUs next to the disks 
• Partition data across CPUs/disks 

• Shared-nothing designs increasingly being 
used for petascale analytics 



Parallel Database Systems 

 Shared-nothing implementations existed 

since the 80’s 

• Plenty of commercial options (Teradata, 
Microsoft PDW, IBM Netezza, HP Vertica,    

EMC Greenplum, Aster Data, many more) 

• SQL interface, with UDF support 

• Excels at managing and processing structured, 
relational data 

• Query execution via relational operator 

pipelines (select, project, join, group by, etc) 



MapReduce 
 Data is partitioned across N machines 

• Typically stored in a distributed file system (GFS/HDFS) 

 
 On each machine n, apply a function, Map, to each 

data item d  
• Map(d)  {(key1,value1)}  “map job” 
• Sort output of all map jobs on n by key 
• Send (key1,value1) pairs with same key value to same 

machine (using e.g., hashing) 

 

 On each machine m, apply reduce function to (key1, 
{value1}) pairs mapped to it 
• Reduce(key1,{value1})  (key2,value2)  “reduce job” 

 
 Optionally, collect output and present to user 



Map Workers 

Example 

 Count occurrences of the word “cern” and “france” in all 
documents 
 

map(d): 
 words = split(d,’ ‘) 
 foreach w in words: 
  if w == ‘cern’ 
    emit (‘cern’, 1) 
  if w == ‘france’ 
    emit (‘france’, 1) 
 
reduce(key, valueSet): 
 count = 0 
 for each v in valueSet: 
  count += v 
 emit (key,count) 

Data Partitions 

Reduce Workers 
CERN 
Reducer 

France 
Reducer 

(france,1)    (cern, 1) 



Relational Operators In MR 

 Straightforward to implement 
relational operators in MapReduce 
• Select: simple filter in Map Phase 

• Project: project function in Map Phase 

• Join: Map produces tuples with join key 
as key; Reduce performs the join 

 Query plans can be implemented as 
a sequence of MapReduce jobs (e.g 
Hive) 



Overview of Talk 

 Compare these two approaches to 
petascale data analysis 

 Discuss a hybrid approach called 
HadoopDB 



Similarities 

 Both are suitable for large-scale data 
processing 

• I.e. analytical processing workloads 

• Bulk loads 

• Not optimized for transactional workloads 

• Queries over large amounts of data 

• Both can handle both relational and 
nonrelational queries (DBMS via UDFs) 

 



Differences 

 MapReduce can operate on in-situ data, 
without requiring transformation or loading 

 Schemas: 
• MapReduce doesn’t require them, DBMSs do 
• Easy to write simple MR programs 

 Indexes 
• MR provides no built in support 

 Declarative vs imperative programming 
 MapReduce uses a run-time scheduler for 

fine-grained load balancing 
 MapReduce checkpoints intermediate results 

for fault tolerance 



Key (Not Fundamental) Difference 

 Hadoop 

• Open source implementation of 

MapReduce 

 There exists no widely used open 
source parallel database system 

• Commercial systems charge by the 

Terabyte or CPU 

• Big problem for “big data” companies 

like Facebook 

 



Goal of Rest of Talk 

 Discuss our experience working with 
these systems 

• Tradeoffs 

• Include overview of SIGMOD 2009 

benchmark paper 

 Discuss a hybrid system we built at 
Yale (HadoopDB) 

• VLDB 2009 paper plus quick overviews 

of two 2011 papers 

 



Three Benchmarks 

 Stonebraker Web analytics 
benchmark (SIGMOD 2009 paper) 

 TPC-H 

 LUBM 



Web Analytics Benchmark 

 Goals 

• Understand differences in load and 

query time for some common data 

processing tasks 

• Choose representative set of tasks that: 

Both should excel at 

MapReduce should excel at 

Databases should excel at 

 

 

 



Hardware Setup 

 100 node cluster 

 Each node 

• 2.4 GHz Code 2 Duo Processors 

• 4 GB RAM 

• 2 250 GB SATA HDs (74 MB/Sec sequential 

I/O) 

 Dual GigE switches, each with 50 nodes 

• 128 Gbit/sec fabric 

 Connected by a 64 Gbit/sec ring 



Benchmarked Software 

 Compare: 

• Popular commercial row-store parallel 

database system 

• Vertica (commercial column-store 

parallel database system) 

• Hadoop 

 



Grep 

 Used in original MapReduce paper 
 

 Look for a 3 character pattern in 90 byte field of 100 
byte records with schema: 

key VARCHAR(10) PRIMARY KEY 

field VARCHAR(90) 

• Pattern occurs in .01% of records 

 SELECT * FROM T WHERE field LIKE ‘%XYZ%’ 

 

 1 TB of data spread across 25, 50, or 100 nodes 
• ~10 billion records, 10–40 GB / node 

 
 Expected Hadoop to perform well 

 
 

 
 



1 TB Grep – Load Times 
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1TB Grep – Query Times 
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•All systems scale linearly (to 100 
nodes) 
•Database systems have better 
compression (and can operate 
directly on compressed data) 
•Vertica’s compression works 
better than DBMS-X 



Analytical Tasks 

CREATE TABLE UserVisits (  

 sourceIP VARCHAR(16), 

 destURL VARCHAR(100),  

 visitDate DATE, adRevenue FLOAT,  

 userAgent VARCHAR(64),  

 countryCode VARCHAR(3),  

 languageCode VARCHAR(6),  

 searchWord VARCHAR(32),  

 duration INT   );  

• Simple web processing 
schema 
 

• Task mix both relational and 
non-relational 
 

• 600,000 randomly generated 
documents /node  
• Embedded URLs 

reference documents on 
other nodes 

 
• 155 million user visits / node 

• ~20 GB / node 
 

• 18 million rankings / node 
• ~1 GB / node 

CREATE TABLE Documents (  

 url VARCHAR(100) PRIMARY KEY,  

 contents TEXT   ); 

CREATE TABLE Rankings ( 

 pageURL VARCHAR(100) PRIMARY KEY,  

 pageRank INT,  

 avgDuration INT   );  



Loading – User Visits 
Other tables show similar trends 
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Aggregation Task 

 Simple aggregation query to find 
adRevenue by IP prefix 

SELECT SUBSTR(sourceIP, 1, 7), sum(adRevenue) 

FROM userVistits GROUP BY SUBSTR(sourceIP, 1, 7) 

 

 Parallel analytics query for DBMS 

• (Compute partial aggregate on each node, 
merge answers to produce result) 

• Yields 2,000 records (24 KB) 



Aggregation Task Performance 
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Join Task 

 Join rankins and userVisits for sourceIP 
analysis and revenue attribution 

SELECT sourceIP, AVG(pageRank), SUM(adRevenue) 

FROM rankings, userVistits  

WHERE pageURL=destURL 

AND visitData BETWEEN 2000-1-15 AND 2000-1-22 

GROUP BY sourceIP 

 



Join Task 
Database systems can co-
partition by join key! 
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UDF Task 
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DBMS clearly doesn’t scale  Calculate 
PageRank 

over a set 
of HTML 
documents 

 Performed 

via a UDF 



Scalabilty 

 Except for DBMS-X load time and 
UDFs all systems scale near linearly  

 BUT: only ran on 100 nodes 

 As nodes approach 1000, other 
effects come into play 

• Faults go from being rare, to not so rare 

• It is nearly impossible to maintain 

homogeneity at scale 



Fault Tolerance and Cluster 

Heterogeneity Results 
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Database systems restart entire 
query upon a single node failire, 
and do not adapt if a node is 
running slowly 



Benchmark Conclusions 

 Hadoop is consistently more scalable 
• Checkpointing allows for better fault tolerance 

• Runtime scheduling allows for better tolerance of 
unexpectedly slow nodes 

• Better parallelization of UDFs 

 Hadoop is consistently less efficient for 
structured, relational data 
• Reasons both fundamental and non-fundamental 

• Needs better support for compression and direct 
operation on compressed data 

• Needs better support for indexing 

• Needs better support for co-partitioning of datasets 



Best of Both Worlds Possible? 

 Many of Hadoop’s deficiencies not 
fundamental 
• Result of initial design for unstructured data 

 HadoopDB: Use Hadoop to coordinate 
execution of multiple independent 
(typically single node, open source) 
database systems 
• Flexible query interface (accepts both SQL and 

MapReduce) 

• Open source (built using open source 
components) 



HadoopDB Architecture 



SMS Planner 



HadoopDB Experiments 

 VLDB 2009 paper ran same 
Stonebraker Web analytics 
benchmark 

 Used PostgreSQL as the DBMS 
storage layer 



Join Task 
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•HadoopDB must faster than Hadoop 
•Doesn’t quite match the database 
systems in performance 
•Hadoop start-up costs 
•PostgreSQL join performance 
•Fault tolerance/run-time scheduling 



UDF Task 
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Fault Tolerance and Cluster 

Heterogeneity Results 
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HadoopDB: Current Status 

 Recently commercialized by Hadapt 

• Raised $9.5 million in venture capital 

SIGMOD  2011 paper benchmarking 

HadoopDB on TPC-H data 

• Added various other techniques 

Column-store storage 

4 different join algorithms 

Referential partitioning 

VLDB 2011 paper on using 
HadoopDB for graph data (with RDF-
3X for storage) 

 



TPC-H Benchmark Results 



Graph Experiments 

 



Invisible Loading 

 Data starts in HDFS 

 Data is immediately available for 
processing (immediate gratification 
paradigm) 

 Each MapReduce job causes data 
movement from HDFS to database 
systems 

 Data is incrementally loaded, sorted, and 
indexed 

 Query performance improves “invisibly”  



Conclusions 

 Parallel database systems can be used for many data 
intensive tasks 
• Scalability can be an issue at extreme scale 
• Parallelization of UDFs can be an issue 

 Hadoop is becoming increasingly popular and more robust 
• Free and open source 
• Great scalability and flexibility 
• Inefficient on structured data 

 HadoopDB trying to get best of worlds 
• Storage layer of database systems with parallelization and job 

scheduling layer of Hadoop 

 Hadapt is improving the code with all kinds of stuff that 
researchers don’t want to do 
• Full SQL support (via SMS planner) 
• Speed up (and automate) replication and loading 
• Easier deployment and managing 
• Automatic repartitioning about node addition/subtraction 


