Tradeefis BetweenrRParallel
Datapase Systems, Hacdoep; and
HadoopDB' as Platierms 1o
Petabyte-Scale Analysis

Daniel Abadi
Yale University
November 237, 2011

Data, Data, EVenanere

+ Data explosion

Web 2.0 > more user data
More devices that sense data

More equipment that produce data at extraordinary.
rates (e.g. high throughput sequencing)

More interactions being tracked (e.g. clickstream data)
More business processes are being digitized
More history being kept

+ Data becoming core to decision making,
operational activites, and scientific process
e \Want raw data (not aggregated version)
o Want to run complex, ad-hoc analytics (in addition to

reporting)

System; Designiierthe Datar Dellge

o S

hared-memory does not scale nearly well

enough for petascale analytics

e S
a
d

nared-disk is adequate for many
pplications, especially for CPU intensive

oplications, but can have scalability

problems for data I/O intensive workloads

¢ For scan performance, nothing beats
putting CPUs next to the disks
e Partition data across CPUs/disks
e Shared-nothing designs increasingly being

used for petascale analytics

Parallelf DatalkaserSYStemis

¢+ Shared-nothing implementations existed
since the 80's

o Plenty of commercial options (Teradata,
Microsoft PDW, IBM Netezza, HP Vertica,
EMC Greenplum, Aster Data, many more)

o SQL interface, with UDF support

e Excels at managing and processing structured,
relational data

e Query execution via relational operator
pipelines (select, project, join, group by, etc)

*

¢

2

¢

MapReduce

Data is partitioned across N machines
o Typically stored in a distributed file system (GES/HDES)

On each machine n, apply: a function, Map, to each
data item d

e Map(d) > {(key;,value;); “map job”
o Sort output of all map jobs on n by key

e Send (keyq,value,) pairs with same key value to same
machine (using e.g., hashing)

On each machine m, apply reduce function to (key;,
{value; }) pairs mapped to it

e Reduce(key,{value;}) > (key,,value,) “reduce job”

Optionally, collect output and present to user

Example

¢ Count occurrences of the word “cern” and “france” in all

documents
map(d): _ B HE

words = split(d,”)
foreach w in words:

If w == “cern’
emit (‘cern’, 1)
If w == ‘france’

emit (‘france’, 1) (cem 1) rance,1)

reduce(key, valueSet):

count = 0
for each v in valueSet:

count += v CERN France
emit (key,count) Reducer Reducer

Relational Operatersiin ViR

¢ Straightforward to implement
relational operators in MapReduce
o Select: simple filter in Map Phase
e Project: project function in Map Phase

e Join: Map produces tuples with join key
as key; Reduce performs the join

¢ Query plans can be implemented as
a sequence of MapReduce jobs (e.g
Hive)

Ovenrnview o lralk

¢ Compare these two approaches to
petascale data analysis

¢ Discuss a hybrid approach called
HadoopDB

Similanties

¢ Both are suitable for large-scale data
Processing
o [.e. analytical processing workloads
e Bulk loads
e Not optimized for transactional workloads
e Queries over large amounts of data

e Both can handle both relational and
nonrelational queries (DBMS via UDFs)

DIfferences

S MaRReduce can operate on /n-situ data,
without requiring transformation or loading

¢ Schemas:
e MapReduce doesn't require them, DBMSs do
e Easy to write simple MR programs

+ Indexes
e MR provides no built in support

¢ Declarative vs imperative programming

+ MapReduce uses a run-time scheduler for
fine-grained load balancing

+ MapReduce checkpoints intermediate results
for fault tolerance

Key: (Net Funeamental) Difference

¢ Hadoop
e Open source implementation of
MapReduce
¢ [here exists no widely used open
source parallel database system

e Commercial systems charge by the
Terabyte or CPU

e Big problem for “big data” companies
like Facebook

Goal of Rest of Tralk

¢ Discuss our experience working with
these systems
o [radeoffs
e [nclude overview of SIGMOD 2009
benchmark paper
¢ Discuss a hybrid system we built at
Yale (HadoopDB)

o \/LDB 2009 paper plus quick overviews
of two 2011 papers

T'hree Benchmarks

¢ Stonebraker Web analytics
benchmark (SIGMOD 2009 paper)

o TPC-H
s LUBM

WehrAnalytics Benchmeark

¢ Goals

e Understand differences in load and
guery time for some common data
processing tasks

e Choose representative set of tasks that:
Both should excel at

MapReduce should excel at
Databases should excel at

Hardwaire Setup

+ 100 node cluster

¢ Each node
e 2.4 GHz Code 2 Duo Processors
o 4 GB RAM
o 2 250 GB SATA HDs (74 MB/Sec sequential
I/0)
¢ Dual GigE switches, each with 50 nodes
e 128 Gbit/sec fabric

+ Connected by a 64 Gbit/sec ring

Benchmarked Soeitware

¢ Compare:

e Popular commercial row-store parallel
database system

o \/ertica (commercial column-store
parallel database system)

e Hadoop

¢

*

¢

¢

Grep

Used in original MapReduce paper

Look for a 3 character pattern in 90 byte field of 100
byte records with schema:

key VARCHAR (10) PRIMARY KEY
field VARCHAR (90)

e Pattern occurs in .01% of records
SELECT * FROM T WHERE field LIKE ‘SXYZ2’

1 TB of data spread across 25, 50, or 100 nodes
e ~10 billion records, 10-40 GB / node

Expected Hadoop to perform well

1. TB Grep — Lead Inmes

B Vertica
O DBMS-X
O Hadoop

7
T 20000
@)
o
& 15000
o
£ 10000
i—

25 nodes 50 nodes 100 nodes

UERY TIMES

B Vertica
O DBMS-X
B Hadoop

~
2
o
c
)
&)
Qo
2
~
)
S
|_

-

25 nodes 50 nodes 100 nodes

Analytical Fasks

Simple web processing CREATE TABLE Documents (
schema url VARCHAR(100) PRIMARY KEY,
contents TEXT),

Task mix both relational and CREATE TABLE UserVisits (
non-relational sourcelP VARCHAR (16),

destURL VARCHAR (100),
visitDate DATE, adRevenue FLOAT,

600,000 randomly generated
userAgent VARCHAR (64),

docurnents/node countryCode VARCHAR (3),

* Embedded URLs languageCode VARCHAR (6),

reference documentson searchWord VARCHAR (32),
other nodes duration INT) ;

CREATE TABLE Rankings (

155 million user visits / node pageURL VARCHAR (100) PRIMARY KEY,
* ~20 GB / node pageRank INT,

avgDuration INT) ;

18 million rankings / node
e ~1 GB/node

Leading = User Visits

Other tables show similar trends

50000
45000 O Vertica

40000 B DBMS-X

35000 i
30000 Hadoop

25000
< 20000
15000

10000

~
2

o
c
o
&)
(b
2

TIim

10 nodes 25 nodes 50 nodes 100
nodes

Aggregation rask

¢ Simple aggregation query. to find
adRevenue by IP prefix

SELECT SUBSTR (sourcelIP, 1, 7), sum(adRevenue)
FROM userVistits GROUP BY SUBSTR (sourcelP, 1, 7)

+ Parallel analytics query for DBMS

o (Compute partial aggregate on each node,
merge answers to produce result)

e Yields 2,000 records (24 KB)

Aggregation Traski PEferiance

O Vertica

B DBMS-X

| O Hadoop

~—~
)
k=)
c
)
&)
)
2
~
)
£
=

A

10 nodes

= I

25 nodes

A

50 nodes

—B

100 nodes

Join lfask

¢ Join rankins and userVisits for sourcelP

anhalysis and revenue attribution
SELECT sourcelP, AVG (pageRank), SUM(adRevenue)

FROM rankings, userVistits

WHERE pageURL=destURL
AND visitData BETWEEN 2000-1-15 AND 2000-1-22

GROUP BRY sourcelP

Join lfask

Database systems can co-
partition by join key!

O Vertica
B DBMS-X
O Hadoop

=
o
o
o

@)}
o
o

‘»
o
c
@)
@
$ 800
b
E
|_

| = N e I&_

10 nodes 25 nodes 50 nodes 100 nodes

UDF Task

+ Calculate DBMS clearly doesn’t scale
PageRank
over a set
of HTML 8 Hadoop
D
documents S 800
¢ Performed S
via a UDF =
S
|_

10 nodes 25 nodes 50 nodes 100
nodes

Scalanity

+ Except for DBMS-X load time and
UDFs all systems scale near linearly.

¢ BUT: only ran on 100 nodes
¢ As nodes approach 1000, other
effects come into play

e Faults go from being rare, to not so rare

o [t is nearly impossible to maintain
homogeneity at scale

Fault TTelerance: and ClUStern
[Heterogeneity: Results

Database systems restart entire
query upon a single node failire,

and do not adapt if a node is _ O DBMS
running slowly

B Hadoop

Percentage Slowdo

Fault tolerance Slowdown tolerance

Benchmark Concliusions

¢+ Hadoop is consistently more scalable
o Checkpointing allows for better fault tolerance

e Runtime scheduling allows for better tolerance of:
unexpectedly slow nodes

o Better parallelization of UDFs

+ Hadoop is consistently less efficient for
structured, relational data
e Reasons both fundamental and non-fundamental

o Needs better support for compression and direct
operation on compressed data

o Needs better support for indexing
o Needs better support for co-partitioning of datasets

Best of Both Werlds Pessiple?

+ Many of Hadoop’s deficiencies not
fundamental

e Result of initial design for unstructured data

+ HadoopDB: Use Hadoop to coordinate
execution of multiple independent
(typically single node, open source)
database systems

e Flexible query interface (accepts both SOQOL ana
MapReduce)

e Open source (built using open source
components)

HadeepbB Architecture

MapReduce Job

MapReduce

Hadoop core
r
Mast
aster node MapReduce
HDFS Framework

InputFormat Implementations

Task with
InputFormat

SMS Planner

Hive SMS

Select Operator ‘

Select Operator
dummy

Group By Operator Group By Operator
re-sum by year Reduce rc sum by year

durmrmy

‘ Reduce Sink Operator l Map Reduce Sink Operator
partition by year partition by year

Group By Operator
SUM FevVenue
' Table Scan Operat
Select Operator able 3can Qperator
SQL query
Year, revenue

' Table Scan Operator
sales

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

IHadeepbDB EXPENMERLS

+ VLDB 2009 paper ran same
Stonebraker Web analytics
benchmark

¢ Used PostgreSQL as the DBMS
storage layer

O Vertica

B DBMS-X

| O Hadoop

| 0 HadoopDB

) Il—— Il__

10 nodes 25 nodes 50 nodes

UDF Task

B Hadoop

O HadoopDB

(spuodas) swi]

50 nodes

7p)
)
o
@)
c
L0
9\

10 nodes

Fault TTelerance: and ClUStern
[Heterogeneity: Results

B8 DBMS
B Hadoop
O HadoopDB

-
=
@)
I®)
=
O
p]
Q
(@)
©
]
c
Q
&
| -
()
o

Fault tolerance Slowdown tolerance

HadeepbB: CUHEREStatls

+ Recently commercialized by Hadapt
e Raised $9.5 million in venture capital

w SIGMOD 2011 paper benchmarking
HadoopDB on TPC-H data

e Added various other techniques
. Column-store storage
4 different join algorithms
. Referential partitioning

 VLDB 2011 paper on using
HadoopDB for graph data (with RDF-
3X for storage)

TPC-H Benchmark Results

35000
30000
24000
20000

o
_

2
@ 15000

E.I_I.JJI-J all I...JII_JJ.J_J LJ

3 4 5 B 7 a8 4 10 11 12 13 14 14 16 17 18 18 20
W oeEns B HDE+PSOL O HDB+MY I Hy e

Graph EXpenments

?
]
)
7]
g
i
t
=
£
=
)
i=]
7
™
z

7 8
LUBM gueries

Single-node RDF-3X oo Graph Partitioning (2-hop) s
SHARD woooom Graph Partitioning (1-hop) w=omam
Hash Partitioning e

Invisiple Leading

¢ Data starts in HDES

¢ Data is immediately available for
Drocessing (immediate gratification
Daradigm)

o Each MapReduce job causes data

movement from HDES to database
systems

+ Data is incrementally loaded, sorted, and
iIndexed

¢+ Query performance improves “invisibly”

Conclusions

Parallel database systems can be used for many data
intensive tasks

e Scalability can be an issue at extreme scale

o Parallelization of UDFs can be an issue

Hadoop Is becoming increasingly popular and more robust
e Free and open source

o Great scalability and flexibility.

o Inefficient on structured data

HadoopDB trying to get best of worlds

e Storage layer of database systems with parallelization and job
scheduling layer of Hadoop

Hadapt is improving the code with all kinds of stuff that
researchers don't want to do

o Full SQL support (via SMS planner)

e Speed up (and automate) replication and loading

e Easier deployment and managing

e Automatic repartitioning about node addition/subtraction

