
Tradeoffs Between Parallel

Database Systems, Hadoop, and

HadoopDB as Platforms for

Petabyte-Scale Analysis

Daniel Abadi

Yale University

November 23rd, 2011

Data, Data, Everywhere

 Data explosion
• Web 2.0  more user data

• More devices that sense data

• More equipment that produce data at extraordinary
rates (e.g. high throughput sequencing)

• More interactions being tracked (e.g. clickstream data)

• More business processes are being digitized

• More history being kept

 Data becoming core to decision making,
operational activites, and scientific process
• Want raw data (not aggregated version)

• Want to run complex, ad-hoc analytics (in addition to
reporting)

System Design for the Data Deluge

 Shared-memory does not scale nearly well
enough for petascale analytics

 Shared-disk is adequate for many
applications, especially for CPU intensive
applications, but can have scalability
problems for data I/O intensive workloads

 For scan performance, nothing beats
putting CPUs next to the disks
• Partition data across CPUs/disks

• Shared-nothing designs increasingly being
used for petascale analytics

Parallel Database Systems

 Shared-nothing implementations existed

since the 80’s

• Plenty of commercial options (Teradata,
Microsoft PDW, IBM Netezza, HP Vertica,

EMC Greenplum, Aster Data, many more)

• SQL interface, with UDF support

• Excels at managing and processing structured,
relational data

• Query execution via relational operator

pipelines (select, project, join, group by, etc)

MapReduce
 Data is partitioned across N machines

• Typically stored in a distributed file system (GFS/HDFS)

 On each machine n, apply a function, Map, to each

data item d
• Map(d)  {(key1,value1)} “map job”
• Sort output of all map jobs on n by key
• Send (key1,value1) pairs with same key value to same

machine (using e.g., hashing)

 On each machine m, apply reduce function to (key1,
{value1}) pairs mapped to it
• Reduce(key1,{value1})  (key2,value2) “reduce job”

 Optionally, collect output and present to user

Map Workers

Example

 Count occurrences of the word “cern” and “france” in all
documents

map(d):
 words = split(d,’ ‘)
 foreach w in words:
 if w == ‘cern’
 emit (‘cern’, 1)
 if w == ‘france’
 emit (‘france’, 1)

reduce(key, valueSet):
 count = 0
 for each v in valueSet:
 count += v
 emit (key,count)

Data Partitions

Reduce Workers
CERN
Reducer

France
Reducer

(france,1) (cern, 1)

Relational Operators In MR

 Straightforward to implement
relational operators in MapReduce
• Select: simple filter in Map Phase

• Project: project function in Map Phase

• Join: Map produces tuples with join key
as key; Reduce performs the join

 Query plans can be implemented as
a sequence of MapReduce jobs (e.g
Hive)

Overview of Talk

 Compare these two approaches to
petascale data analysis

 Discuss a hybrid approach called
HadoopDB

Similarities

 Both are suitable for large-scale data
processing

• I.e. analytical processing workloads

• Bulk loads

• Not optimized for transactional workloads

• Queries over large amounts of data

• Both can handle both relational and
nonrelational queries (DBMS via UDFs)

Differences

 MapReduce can operate on in-situ data,
without requiring transformation or loading

 Schemas:
• MapReduce doesn’t require them, DBMSs do
• Easy to write simple MR programs

 Indexes
• MR provides no built in support

 Declarative vs imperative programming
 MapReduce uses a run-time scheduler for

fine-grained load balancing
 MapReduce checkpoints intermediate results

for fault tolerance

Key (Not Fundamental) Difference

 Hadoop

• Open source implementation of

MapReduce

 There exists no widely used open
source parallel database system

• Commercial systems charge by the

Terabyte or CPU

• Big problem for “big data” companies

like Facebook

Goal of Rest of Talk

 Discuss our experience working with
these systems

• Tradeoffs

• Include overview of SIGMOD 2009

benchmark paper

 Discuss a hybrid system we built at
Yale (HadoopDB)

• VLDB 2009 paper plus quick overviews

of two 2011 papers

Three Benchmarks

 Stonebraker Web analytics
benchmark (SIGMOD 2009 paper)

 TPC-H

 LUBM

Web Analytics Benchmark

 Goals

• Understand differences in load and

query time for some common data

processing tasks

• Choose representative set of tasks that:

Both should excel at

MapReduce should excel at

Databases should excel at

Hardware Setup

 100 node cluster

 Each node

• 2.4 GHz Code 2 Duo Processors

• 4 GB RAM

• 2 250 GB SATA HDs (74 MB/Sec sequential

I/O)

 Dual GigE switches, each with 50 nodes

• 128 Gbit/sec fabric

 Connected by a 64 Gbit/sec ring

Benchmarked Software

 Compare:

• Popular commercial row-store parallel

database system

• Vertica (commercial column-store

parallel database system)

• Hadoop

Grep

 Used in original MapReduce paper

 Look for a 3 character pattern in 90 byte field of 100
byte records with schema:

key VARCHAR(10) PRIMARY KEY

field VARCHAR(90)

• Pattern occurs in .01% of records

 SELECT * FROM T WHERE field LIKE ‘%XYZ%’

 1 TB of data spread across 25, 50, or 100 nodes
• ~10 billion records, 10–40 GB / node

 Expected Hadoop to perform well

1 TB Grep – Load Times

0

5000

10000

15000

20000

25000

30000

25 nodes 50 nodes 100 nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Vertica

DBMS-X

Hadoop

1TB Grep – Query Times

0

200

400

600

800

1000

1200

25 nodes 50 nodes 100 nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Vertica

DBMS-X

Hadoop

•All systems scale linearly (to 100
nodes)
•Database systems have better
compression (and can operate
directly on compressed data)
•Vertica’s compression works
better than DBMS-X

Analytical Tasks

CREATE TABLE UserVisits (

 sourceIP VARCHAR(16),

 destURL VARCHAR(100),

 visitDate DATE, adRevenue FLOAT,

 userAgent VARCHAR(64),

 countryCode VARCHAR(3),

 languageCode VARCHAR(6),

 searchWord VARCHAR(32),

 duration INT);

• Simple web processing
schema

• Task mix both relational and
non-relational

• 600,000 randomly generated
documents /node
• Embedded URLs

reference documents on
other nodes

• 155 million user visits / node

• ~20 GB / node

• 18 million rankings / node
• ~1 GB / node

CREATE TABLE Documents (

 url VARCHAR(100) PRIMARY KEY,

 contents TEXT);

CREATE TABLE Rankings (

 pageURL VARCHAR(100) PRIMARY KEY,

 pageRank INT,

 avgDuration INT);

Loading – User Visits
Other tables show similar trends

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10 nodes 25 nodes 50 nodes 100

nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Vertica

DBMS-X

Hadoop

Aggregation Task

 Simple aggregation query to find
adRevenue by IP prefix

SELECT SUBSTR(sourceIP, 1, 7), sum(adRevenue)

FROM userVistits GROUP BY SUBSTR(sourceIP, 1, 7)

 Parallel analytics query for DBMS

• (Compute partial aggregate on each node,
merge answers to produce result)

• Yields 2,000 records (24 KB)

Aggregation Task Performance

0

200

400

600

800

1000

1200

1400

1600

10 nodes 25 nodes 50 nodes 100 nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Vertica

DBMS-X

Hadoop

Join Task

 Join rankins and userVisits for sourceIP
analysis and revenue attribution

SELECT sourceIP, AVG(pageRank), SUM(adRevenue)

FROM rankings, userVistits

WHERE pageURL=destURL

AND visitData BETWEEN 2000-1-15 AND 2000-1-22

GROUP BY sourceIP

Join Task
Database systems can co-
partition by join key!

0

200

400

600

800

1000

1200

1400

1600

10 nodes 25 nodes 50 nodes 100 nodes

T
im

e
 (

s
e

c
o

n
d

s
)

Vertica

DBMS-X

Hadoop

UDF Task

0

200

400

600

800

1000

1200

10 nodes 25 nodes 50 nodes 100

nodes

T
im

e
 (

s
e

c
o

n
d

s
)

DBMS

Hadoop

DBMS clearly doesn’t scale  Calculate
PageRank

over a set
of HTML
documents

 Performed

via a UDF

Scalabilty

 Except for DBMS-X load time and
UDFs all systems scale near linearly

 BUT: only ran on 100 nodes

 As nodes approach 1000, other
effects come into play

• Faults go from being rare, to not so rare

• It is nearly impossible to maintain

homogeneity at scale

Fault Tolerance and Cluster

Heterogeneity Results

0

20

40

60

80

100

120

140

160

180

200

Fault tolerance Slowdown tolerance

P
e

rc
e

n
ta

g
e

 S
lo

w
d

o
w

n

DBMS

Hadoop

Database systems restart entire
query upon a single node failire,
and do not adapt if a node is
running slowly

Benchmark Conclusions

 Hadoop is consistently more scalable
• Checkpointing allows for better fault tolerance

• Runtime scheduling allows for better tolerance of
unexpectedly slow nodes

• Better parallelization of UDFs

 Hadoop is consistently less efficient for
structured, relational data
• Reasons both fundamental and non-fundamental

• Needs better support for compression and direct
operation on compressed data

• Needs better support for indexing

• Needs better support for co-partitioning of datasets

Best of Both Worlds Possible?

 Many of Hadoop’s deficiencies not
fundamental
• Result of initial design for unstructured data

 HadoopDB: Use Hadoop to coordinate
execution of multiple independent
(typically single node, open source)
database systems
• Flexible query interface (accepts both SQL and

MapReduce)

• Open source (built using open source
components)

HadoopDB Architecture

SMS Planner

HadoopDB Experiments

 VLDB 2009 paper ran same
Stonebraker Web analytics
benchmark

 Used PostgreSQL as the DBMS
storage layer

Join Task

0

200

400

600

800

1000

1200

1400

1600

10 nodes 25 nodes 50 nodes

Vertica

DBMS-X

Hadoop

HadoopDB

•HadoopDB must faster than Hadoop
•Doesn’t quite match the database
systems in performance
•Hadoop start-up costs
•PostgreSQL join performance
•Fault tolerance/run-time scheduling

UDF Task

0

100

200

300

400

500

600

700

800

10 nodes 25 nodes 50 nodes

T
im

e
 (

s
e

c
o

n
d

s
)

DBMS

Hadoop

HadoopDB

Fault Tolerance and Cluster

Heterogeneity Results

0

20

40

60

80

100

120

140

160

180

200

Fault tolerance Slowdown tolerance

P
e

rc
e

n
ta

g
e

 S
lo

w
d

o
w

n

DBMS

Hadoop

HadoopDB

HadoopDB: Current Status

 Recently commercialized by Hadapt

• Raised $9.5 million in venture capital

SIGMOD 2011 paper benchmarking

HadoopDB on TPC-H data

• Added various other techniques

Column-store storage

4 different join algorithms

Referential partitioning

VLDB 2011 paper on using
HadoopDB for graph data (with RDF-
3X for storage)

TPC-H Benchmark Results

Graph Experiments

Invisible Loading

 Data starts in HDFS

 Data is immediately available for
processing (immediate gratification
paradigm)

 Each MapReduce job causes data
movement from HDFS to database
systems

 Data is incrementally loaded, sorted, and
indexed

 Query performance improves “invisibly”

Conclusions

 Parallel database systems can be used for many data
intensive tasks
• Scalability can be an issue at extreme scale
• Parallelization of UDFs can be an issue

 Hadoop is becoming increasingly popular and more robust
• Free and open source
• Great scalability and flexibility
• Inefficient on structured data

 HadoopDB trying to get best of worlds
• Storage layer of database systems with parallelization and job

scheduling layer of Hadoop

 Hadapt is improving the code with all kinds of stuff that
researchers don’t want to do
• Full SQL support (via SMS planner)
• Speed up (and automate) replication and loading
• Easier deployment and managing
• Automatic repartitioning about node addition/subtraction

