Chapter 2: Physics Motivation A. Dainese, G. Usai (INFN) #### Chapter authors: G.E. Bruno, A. Dainese, C. Di Giglio, M. Kweon, M. Mager, A. Mastroserio, S. Moretto, A. Rossi, C. Terrevoli, G. Usai ## **Chapter Outline** | 2 | Phy | nysics Motivation | | | | | | | | |---|------|-------------------|--|----|--|--|--|--|--| | | 2.1 | Currer | nt experimental situation and impact of the ITS upgrade | 2 | | | | | | | | | 2.1.1 | Heavy flavour energy loss: present status and further measurements | 2 | | | | | | | | | 2.1.2 | Heavy flavour thermalization and coalescence: present status and | | | | | | | | | | | further measurements | 9 | | | | | | | | 2.2 | Physic | es performance studies for the ITS upgrade | 12 | | | | | | | | | 2.2.1 | Possible measurements and expected yields | 12 | | | | | | | | | 2.2.2 | Simulation method | 15 | | | | | | | | | 2.2.3 | D^0 meson reconstruction as a benchmark for detector performance . | 18 | | | | | | | | | 2.2.4 | Charm baryons: $\Lambda_c \to pK^-\pi^+$ as a benchmark case | 24 | | | | | | | | | 2.2.5 | Prospects for B mesons at central rapidity | 28 | | | | | | | | | | 2.2.5.1 B meson production via displaced D^0 | 28 | | | | | | | | | | 2.2.5.2 B meson production via displaced J/ψ | 32 | | | | | | | | | | 2.2.5.3 B meson production via displaced electrons | 34 | | | | | | | | 2.3 | Comp | etitiveness and unicity of ALICE with upgraded ITS | 38 | | | | | | | | | 2.3.1 | With respect to STAR at RHIC | 38 | | | | | | | | | 2.3.2 | With respect to CMS and ATLAS at the LHC | 38 | | | | | | | | Refe | rences | | 39 | | | | | | #### **Physics Motivation** - Study properties of QCD in extended high-density systems via the probe-medium interaction - Interaction depends on colour charge and mass - Heavy quarks test both these aspects - Do we observe this pattern? $$\Delta E_g > \Delta E_{c \approx q} > \Delta E_b$$ $$R_{AA}^{\rho} < R_{AA}^{D} < R_{AA}^{B} ?$$ - Study the QGP thermalization and collectivity via heavy quark hadronization and flow - Are the quenched heavy quarks thermalized in the system? - Do they carry elliptic flow? - Do they hadronize via recombination? $$v_{2,q} = v_{2,c} = v_{2,b}$$? ### **Energy Loss** Goal: measure charm and beauty separately with high accuracy over a broad p_t range ### **Energy Loss** - Current capability: - \bullet ALICE uniqueness: PID (\rightarrow charm); low p_t (low material and field); - ALICE limits: B/D separation difficult, especially at low p_t (electron PID + vertexing); indirect B measurement via electrons; charm difficult for p_t→0 (background is too large); - CMS has measured J/psi from B starting from 6.5 GeV/c #### Hadronization and Flow Goal: measure v₂ and R_{CP} for HF mesons and baryons v_2 constituent scaling and baryon/meson for charm (beauty?) $\rightarrow \Lambda_c$ m_c~1.5 GeV Λ_c and D elliptic flow Λ_c/D in central and periph. m_h~5 GeV $\Lambda_{\rm h}$ vs B? #### Hadronization and Flow #### Current capability: - ALICE uniqueness: PID; low p_t (low material and field); - \bullet ALICE limits: resolution not sufficient (Λ_c cτ = 1/2 D⁰ = 1/5 D⁺); Λ_c at the limit in pp (only high p_t), impossible in Pb; - CMS limits: no PID \rightarrow no Λ_c ?; no dramatic resolution improvement with upgrade (25%?) Hint of D meson flow from Pb 2010 Λ_c signal above 3 GeV in pp 2001 # Possible measurements and expected yields - Start to put together some numbers on the possibility to trigger - Compute the expected raw yields (after selections) - Estimate the signal yields for two cases: - Dedicated trigger running - Minimum bias running #### Caveats: - Acc x Eff from current data analysis + hydrid sim + guesses - Assume we can do at the trigger level the same selections done offline (PID + topology) - And that they have the same efficiency and bkg-rej. power ## Yields and possible channels | Particle | Yield | $\mathrm{d}N/\mathrm{d}y _{y=0}$ | $c\tau$ [μ m] | decay channel | B.R. | Acc. | |-------------|-------------|----------------------------------|--------------------|--------------------------------------|---------------------------------|------| | | m.b., 0–10% | m.b., 0–10% | | | | | | D^0 | 23, 110 | 2.3, 11 | ≈ 120 | $K^-\pi^+$ | 3.8% | 1 | | Λ_c | 2.9, 14 | 0.29, 1.4 | ≈ 60 | $pK^-\pi^+$ | 5.0% | 1 | | B | 1.3, 6.2 | 0.2, 0.9 | ≈ 500 | $J/\psi(o e^+e^-)$ | $1.2\% \times 6\%$ | 1 | | | | | | $D^0(o K^-\pi^+)$ | $60\% \times 3.8\%$ | 1 | | | | | | e^+ | 10.9% | 1.8 | | B^+ | 0.6, 2.7 | 0.1, 0.4 | ≈ 500 | $J/\psi(o e^+e^-)K^+$ | $0.1\% \times 6\%$ | 1 | | B_s^0 | 0.2, 0.9 | 0.03, 0.13 | ≈ 500 | $J/\psi(\to e^+e^-)\phi(\to K^+K^-)$ | $0.14\% \times 6\% \times 50\%$ | 1 | | Λ_b | 0.1, 0.5 | 0.015, 0.07 | ≈ 400 | $\Lambda_c(o pK^-\pi^+) + e^-$ | $9.9\% \times 5\%$ | 1 | | | | | | $\Lambda_c(o pK^-\pi^+) + h^-$ | 90%(guess)×5% | 1 | #### Pb-Pb running scenario We consider the following running scenario for Pb–Pb, as a working hypothesis: - instantaneous luminosity: 10^{27} cm⁻²s⁻¹, which (using $\sigma_{PbPb}^{hadronic} = 8$ b) gives a hadronic interaction rate of 8 kHz (0.8 kHz in the 0–10% centrality class); - effective running time: 5×10^5 seconds (20 days \times 30% of time with stable beams); - sustainable rate of collection of minimum-bias collisions (0-100%): 520 Hz (determined by the TPC readout time), out of which 52 Hz in the centrality class 0-10%; - sustainable rate for rare triggers (per trigger): no limitation; currently this figure is about 100 Hz, but here we consider it as arbitrarily high, in order to estimate the maximum possible benefit of dedicated triggers. Within the Upgrade Strategy task-force, a more ambitious scenario is being defined, which corresponds to a LHC luminosity increased by $x10 \rightarrow \sim 10^{28}$ cm⁻²s⁻¹ i.e. $\sim 50-80$ kHz This could be added to the section for December release # Signal statistics: Pb-Pb m.b. 8 kHz | Particle | Eff | S/ev | S/B | trigger | S | S | |----------------------------------|------|----------------------|------|-----------|---------------------|---------------------| | 1 al ticle | 1211 | D/6 v | D/D | | | | | | | | | rate (Hz) | without trigger | with trigger | | D^0 | 0.01 | 0.8×10^{-3} | 0.06 | 340 | 2.2×10^{5} | 3.2×10^{6} | | Λ_c | 0.01 | 1.4×10^{-4} | 0.01 | 340 | 3.8×10^{4} | $5.6 imes 10^5$ | | " | " | " | 0.1 | 34 | 3.8×10^{4} | 2.8×10^{5} | | $B o D^0 (o K^-\pi^+)$ | 0.01 | 0.4×10^{-4} | 0.06 | 18 | 1.0×10^{4} | 1.6×10^{5} | | $B o J/\psi (o e^+e^-)$ | 0.1 | 1.3×10^{-5} | 0.01 | 32 | 2.7×10^{3} | 5.2×10^{4} | | $B ightarrow e^+$ | 0.05 | 1.3×10^{-2} | 0.2 | 520 | 3.4×10^{6} | 5.2×10^{7} | | $B^+ o J/\psi K^+$ | 0.01 | 0.5×10^{-7} | 0.01 | 0.05 | 1.0×10^{1} | 5.0×10^{1} | | $B_s^0 o J/\psi \phi$ | 0.01 | 1.1×10^{-8} | 0.01 | 0.02 | 2.0×10^{0} | 1.0×10^{1} | | $\Lambda_b(o\Lambda_c+e^-)$ | 0.01 | 0.7×10^{-6} | 0.01 | 2 | 1.8×10^{2} | 2.8×10^{3} | | $\Lambda_b(\to \Lambda_c + h^-)$ | 0.01 | 0.7×10^{-5} | 0.01 | 18 | 1.6×10^{3} | 2.6×10^{4} | - The trigger rates are in the range 10⁻²-10² Hz - Factor 15 more signal with trigger - Λ_b and reco-B signals interesting in view of 50 kHz or higher efficiency... - To be continued: - Minimum p₁ threshold - Realistic cut and PID efficiencies and bkg rejection # Ongoing update: trigger rates vs p_t - Add a set of figures with rate, purity, yield vs. p_t^{min} - for the D⁰ as an example D⁰, 5.5 TeV PbPb m.b. 8 kH + Add the cases Pb-Pb minimum-bias at 50 kHz? (80 kHz?) ### "Hybrid" simulation method M. Mager Baseline upgrade scenario: "AllNew", 7 layers of pixels with resolution 4x4μm² and thickness 0.3% x/X₀ Impact parameter and p_t resolutions from Fast Estimation Tool applied to existing ALICE simulations by rescaling the track parameter residuals With partial #### Do as a benchmark channel A. Rossi, S. Moretto $D^0 \rightarrow K\pi$ in Pb-Pb: \rightarrow ~0 p_t \rightarrow S/B x10 With partial ### Charm baryons: Λ_c C. Terrevoli, M. Mager ITS Upgrade, AllNew 2.32 Invariant Mass pKπ (GeV/c²) 2.34 $\Lambda_c \rightarrow pK\pi$: → p_t>4 in Pb-Pb \rightarrow p_t>3 in pp # Ongoing updates: D^0 and Λ_c with other scenarios - Show the dependence of the performance on the detector thickness. Consider a case with 0.1% x/X₀ instead of 0.3% - Consider a "high-rate" scenario in which tracking and PID are performed without TPC (ITS+TRD+TOF) - ◆ This configuration could run with L~10²⁸ cm⁻²s⁻¹ - Try to include Λ_c results from the new dedicated simulations at 5.5 TeV, with enhanced Λ_c signal (cuts tuning), and ITS fully active (no dead areas) ## Beauty via displaced D⁰ A. Rossi - Measure prompt charm - And measure beauty production ### Beauty via displaced J/ψ C. Di Giglio - Measure prompt J/ψ - And measure beauty production #### Beauty via displaced electrons M. Kweon - The impact of the ITS upgrade is two-fold: - Reduced x/X₀ decreases γ conversions, one of the main background sources - Better impact parameter resolution improves the separation of displaced electrons (from B)