ILC(International Linear Collider) Asian Region Mechanical Design

2012.3.21

ILC Mechanical & Electrical Review and CFS Baseline Technical Review

1 Cooling Water System

2 HVAC System

3 Plumbing System

Cooling Water System Heat Load Summary

Cooling Water Load (MW)

LCW	AH1	Al	1 2	Al	H3	Al	H4	PMC-0	PMB-0	PXB-0	Α	H5	Al	H6	Α	H7	AH8	Total
Source e-											2.88							2.88
Source e+							5.53											5.53
DR								11.8575	2.0925									13.95
RTML		2.9295					0.3255				0.3255					2.9295		6.51
ML		5.591655	5.591655	5.591655	5.591655	5.03385						4.65291	5.591655	5.591655	5.591655	5.591655		54.42
BDS							4.6				4.6							9.2
Dumps										39.95								39.95
IR(DH)										0.2								0.2
subTotal	0	8.521155	5.591655	5.591655	5.591655	5.03385	10.4555	11.8575	2.0925	40.15	7.8055	4.65291	5.591655	5.591655	5.591655	8.521155	0	132.64
Cryogenics	0	7.	37	7.	37	7.	96	2.52		1.73	7.	96	7.	37	7.	37	0	49.65
Total	0	21.4	8281	18.5	5331	23.4	4935	14.3775	2.0925	41.88	20.4	1841	18.5	5331	21.4	8281	0	182.3

Air+Chw	AH1	Al	H2	Al	H3	Al	- 14	PMC-0	PMB-0	PXB-0	Α	H5	A	H6	Α	H7	AH8	Total
Source e-											1.42							1.42
Source e+							0.72											0.72
DR								0.7395	0.1305									0.87
RTML		0.945					0.105				0.105					0.945		2.1
ML		1.201148	1.201148	1.201148	1.201148	1.081325						0.999495	1.201148	1.201148	1.201148	1.201148		11.69
BDS							0.615				0.615							1.23
Dumps										0								0
IR(DH)										0.38								0.38
subTotal	0	2.146148	1.201148	1.201148	1.201148	1.081325	1.44	0.7395	0.1305	0.38	2.14	0.999495	1.201148	1.201148	1.201148	2.146148	0	
Total	0	3.34	7295	2.40	2295	2.52	1325	0.7395	0.1305	0.38	3.13	9495	2.40	2295	3.34	7295	0	18.41

Cooling Water System 3 Types of Cooling Tower

A Closed-circuit Air-cooled Type

B Closed-circuit Cooling Tower

C Open Type Cooling Tower

Cooling Water System 3 Types of Cooling Tower

```
Filling water for 200MW cooling

Evaporation WE=288m<sup>3</sup>/h

Carry over WC=47m<sup>3</sup>/h

Blow down WB=241m<sup>3</sup>/h

=WE+WC+WB

=576m<sup>3</sup>/h
```

- < Ground water
 - =1m³/km/min*30km*60min/h
 - $=1800 \text{m}^3/\text{h}$

Cooling Water System 2-Loop vs 3-Loop System

Cooling Water System Comparison of 2-Loop and 3-Loop

	2-Loop System	3-Loop System
Cost	3,423M¥	2,943M¥
(AH-3)		
Water leakage	If there would be some troubleat the thin pipe around accelerator, 5km(total 650m3) de ionized cooling water would be run over.	
Evaluation	Δ	0

Cooling Water System 3-Loop Chw System (AH-3)

Cooling Water System Inverter turbo refrigerator

HVAC System Tunnel Ventilation System in RDR

HVAC System Tunnel Ventilation System

HVAC System Tunnel Ventilation System

HVAC System Tunnel Ventilation System

HVAC System Tunnel Ventilation Rate

High velocity (>1.0m/s) cause vibration!

 $28,800 \text{m}3/\text{h} \div (16 \text{m}2 \times 5000 \text{m}) = 0.36 \text{N/h}$

Plumbing System Drainage System

Cooling water leakage:
Need RI monitoring

Ground water:
Flow down drainage ditch to the Access Hall

Plumbing System Water Supply and Drainage System

