Introduction to Accelerators Elena Wildner AT/MCS

Introduction to Accelerators, July 10 and 11, 2007, Elena Wildner

Contents

1. INTRODUCTION
2. THE ACCELERATOR CHAIN

3. HOW TO KEEP THE BEAM IN PLACE
4. Steering
5. Focusing
6. Acceleration
7. HOW TO SERVE THE EXPERIMENTS
8. Targets, Colliders
9. Luminosity
10. ACCELERATORTECHNOLOGI
11. Vacuum
12. Superconducting Magnets
13. REFERENCES

Application Areas

- In your old TV set: Cathode Tube
- Material Physics
- Photons from Electrons, Synchrotron Light
- Material Surface

INTRODUCTION Medicine

- X-rays, synchrotron Radiation
- Protons and Ions
- Food treatment
- Physics

Nuclear physics

- Isotope production
- High energy physics
- Etc.

Accelerators and LHC experiments at CERN

LHC: Large Hadron Collider SPS: Super Proton Synchrotron AD: Antiproton Decelerator ISOLDE: Isotope Separator OnLine DEvice PSB: Proton Synchrotron Booster PS: Proton Synchrotron LINAC: LINear ACcelerator LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso
Start the protons out here

$$
\begin{aligned}
& \text { 0. Mandani, fs Dix } \mathrm{Cx} \text {. }
\end{aligned}
$$

Energies:
Linac 50 MeV
PSB 1.4 GeV
PS 28 GeV
SPS 450 GeV
LHC 7 TeV

Units: Electronvolt

Relativity

When particles are accelerated to velocities (v) coming close to the velocity of light (c):
then we must consider relativistic effects

$$
\begin{array}{r}
\gamma=1 / \sqrt{1-\beta^{2}} ; \beta=v / c \\
\text { Total Energy } \\
E=m c^{2} ; m=\gamma^{*} m_{o} \\
\text { Rest Mass }
\end{array}
$$

Particle Sources and acceleration

- Natural Radioactivity: alfa particles and electrons. Alfa particles have an energy of around 5 MeV (corresponds to a speed of $\sim 15,000 \mathrm{~km} / \mathrm{s}$).
- Production of particles: Particle sources
- Electrostatic fields are used for the first acceleration step after the source
- Linear accelerators accelerate the particles using Radio Frequency (RF) Fields
- Circular accelerators use RF and electromagnetic fields. Protons are today (2007+) accelerated to an energy of 7 TeV
- The particles need to circulate in vacuum (tubes or tanks) not to collide with other particles disturbing their trajectories.

Introduction to Accelerators, July 10 and 11, 2007, Elena Wildner

Simplified Linac

Wideroe

1928.

The particles are grouped together to make sure that the field has the correct direction at the time the particle group passes the gap.

The speed of the particles increases and the length of the modules change so that the particle's arrival in the gap is synchronized with the field direction in the gap

Alvarez: Resonance tank

The Cyclotron

Centripetal force=-Centrifugal force:

$$
\begin{gathered}
\frac{m v^{2}}{r}=B q v \\
\text { Reorganizing: }
\end{gathered}
$$

$$
\begin{aligned}
& \frac{v}{r}=\frac{B q}{m} \\
& \downarrow \\
& \omega=\frac{B q}{m} \\
& f=\frac{\omega}{2 \pi} \\
& f=\frac{B q}{2 m \pi}
\end{aligned}
$$

The frequency does not depend on the radius, if the mass is contant. When the particles become relativistic this is not valid any more. The frequency must change with the particle velocity: synchrcyclotron. The field can also change with
 the radius: isochronous cyclotron

Synchrotrons at CERN

The Synchrotron

$\exists ว \forall า d N I W \forall \exists \exists \exists H \perp d \exists \exists \gg 人 \perp \mathrm{MOH}$
Groups of particles are circulating synchronously with the RF field in the accelerating cavities

Each particle is circulating around an ideal (theoretical) orbit: for this to work out, acceleration and magnet fields must obey stability criteria!!

Forces on the particles

sTEERING

The Dipole
Dipole Magnet, bends the particle trajectory in the horizontal plane (vertical field). Exception: correctors...

$$
\begin{aligned}
& F_{x}=-e v_{s} B_{y} \\
& F_{r}=m v_{s}^{2} / \rho \\
& p=m v_{s} \\
& \frac{1}{\rho(x, y, s)}=\frac{e}{p} B_{y}(x, y, s) \\
& B \rho=\frac{p}{e}
\end{aligned}
$$

"Magnetic rigidity"

Focusing: The Quadrupole 1

The particles need to be focussed to stay in the accelerator. Similar principle as in optical systems.
-9NISกコO

Positiv particle moving towards us:
Defocussing in the horizontal plane, focussing the the vertical plane.

$$
\frac{\mathbf{d} \overrightarrow{\mathbf{p}}}{\mathbf{d t}}=\mathbf{Q} *(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathrm{B}})
$$

The Quadrupole 2

$$
\begin{aligned}
B_{x} & =-g \cdot y \\
B_{y} & =-g \cdot x \\
F_{x} & =g \cdot x \\
F_{y} & =-g \cdot y
\end{aligned}
$$

The force is proportional to x and to y :
Particles far from the center of the magnet are bent more, they get a more important correction.

The Focusing System

"Alternate gradient focusing" gives an overall focusing effect (compare for example optical systems in cameras)

The beam takes up less space in the vacuum chamber, the amplitudes are smaller and for the same magnet aperture the field quality is better (cost optimization)

Synchrotron design: The magnets are of alternating field (focusing-defocusing)

The Oscillating Particles

The following kind of differential equations can be derived, compare the simple pendulum:

$$
\begin{aligned}
& x^{\prime \prime}(s)+\left(\frac{1}{\rho^{2}(s)}-k(s)\right) \cdot x(s)=\frac{1}{\rho(s)} \Delta p / p: k=\frac{e}{p} \frac{\partial B_{z}}{\partial x} \\
& z^{\prime \prime}(s)+k(s) \cdot z(s)=0 \\
& x(s)=\sqrt{\varepsilon \beta_{x}}(s) \cos \left(\frac{2 \pi}{L} Q \cdot s+\delta\right)
\end{aligned}
$$

Oscillating movement with varying amplitude!
The number of oscillations the particle makes in one turn is called the "tune" and is denoted Q. The Q-value is slightly different in two planes (the horizontal and the vertical planes). L is the circumference of the ring.

The Beta Function

All particle excursions are confined by a function: the square root of the the beta function and the emmittance.

$$
x(s)=\sqrt{\varepsilon \beta_{x}}(s) \cos \left(\frac{2 \pi}{L} Q \cdot s+\delta\right)
$$

FOCUSING

The emmittance, a measure of the beam size and the particle divirgences, cannot be smaller than after injection into the accelerator (normalized)

Closed orbit, and field errors

Theoretically the particles oscillate around a nominal, calculated orbit

The magnets are not perfect, in addition they cannot be perfectly aligned.

For the quadrupoles for example this means that the force that the particles feel is either too large or too small with respect to the theoretically calculated force. Effect: the whole beam is deviated.

$$
\begin{aligned}
& F_{x}=g \cdot x \\
& F_{y}=-g \cdot y
\end{aligned}
$$

Effects from other particles: example, space charge

The field felt by a particle may come not only from the magnetic elements but also from the other particles.

If the beam is dense the influence of the coulomb field of other particles may be important.

Correction of the field in the quadrupoles may be needed.

Correctors

Beam Position Monitors are used to measure the center of the beam near a quadrupole, the beam should be in the center at this position.
Small dipole magnets are used to correct possible beam position errors.

Other types of magnets are used to correct other types of errors for example non perfect magnetic fields.

Possible errors 1

The Q-value gives the number of oscillations the particles make in one turn. If this value in an integer, the beam "sees" the same magnet-error over and over again and we may have a resonance phenomenon. (Resonance) Therfore the Q-value is not an integer.

The magnets have to be good enough so that resonance phenomena do not occur. Non wanted magnetic field components (sextupolar, octupolar etc.) are comparable to 10^{-4} relative to the main component of a magnet (dipole in a bending magnet, quadrupole in a focussing magnet etc.). This is valid for LHC

Electrical Fields for Acceleration
$\underline{E}=-\frac{1}{c} \frac{\partial A}{\partial t}$
$\operatorname{rot} B=\frac{\mu \varepsilon}{c} \frac{\boldsymbol{\partial} E}{\boldsymbol{\partial} t}$
capacitor
NOI」 \forall ソヨาヨココ \forall

$$
\begin{aligned}
L & =\frac{\mu_{0} \cdot N^{2} \cdot \boldsymbol{A}}{\boldsymbol{I}} \\
C & =\frac{\varepsilon_{0} \cdot \boldsymbol{A}}{\boldsymbol{d}}
\end{aligned}
$$

Resonance circuit Cavity for acceleration

The Synchrotron: grouping particles

NOII $\forall \searrow \exists \exists \exists ว \supset \forall$

An early particle gets less energy increase

The Synchrotron: Acceleration

Magnetic field B and the velocity v
-> revolution path, the reference trajectory
-> revolution time
-> the time at which the particle enters the RF gap

ACCELERATION

If v increases ->
Radius larger that the ref
Revolution time larger
Not adapted energy correction

To accelerate the particles, the magnetic field has to increase and the frequency has to be adjusted to keep the particles on the reference trajectory.

$$
f=v /\left(2 \pi R_{0}\right)
$$

Experiment

Targets:
Bombarding material with a beam directed out of the accelerator.
Bubbelchamber

EXPERIMENT
Avaliable energy is calculated in the center of mass of the system (colliding objects)

To collide particle more intersting
1960: electron/positron collider
1970: proton antiproton collider
2000: ions, gold

Colliders

DAll particles do not collide at the same time -> long time is needed

Two beams are needed

- Antiparticles are difficult (expensive) to produce (~ 1 antiproton/10^6 protons)

The beams affect each other: the beams have to be separated when not colliding

Leptons/Hadrons

Lepton versus Hadron Collider

\bigcirc Leptons: $\left(\mathrm{e}^{+} / \overline{\mathrm{e}}^{-}\right)$
\int elementary particles
\longrightarrow well defined energy
\longrightarrow precision experiments

O Hadrons: ($\mathrm{p}^{+} / \overline{\mathrm{p}}$)
\longleftarrow multi particle collisions
\longrightarrow energy spread
\longrightarrow discovery potentialExample:

Z_{o}	$1985 \operatorname{SppS}$	$p^{+} p^{-}$
	$1990 L E P$	$e^{+} e^{-}$

The LHC

Synchrotron light

Synchrotron light cone
Particle trajectory opening angle $\propto \frac{1}{\gamma}$
Electromagnetic waves
Accelerated charged particles emit photons
Radio signals and x-ray

$$
P \propto \frac{\gamma^{4}}{\rho^{2}} \quad E \propto \frac{\gamma^{3}}{\rho} \quad \begin{aligned}
& \text { LEP: } \gamma=200000 \\
& \text { LHC: } \gamma=7000
\end{aligned}
$$

Superconducting Technology 1

Why superconducting magnets?
Small radius, less number of particles in the machine, smaller machine

Energy saving, BUT infrastructure very complex

The Superconducting Dipole for LHC

LHC dipole (1232 + reserves) built in 3 firms (Germany France and Italy, very large high tech project)

Example: LHC 1

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4 σ)	[eVs]	1.0	2.5^{a}
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{\text {c }}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Exempel: LHC 2

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4σ)	[eV s]	1.0	$2.5{ }^{\text {a }}$
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{\text {c }}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Exempel: LHC 3

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4 σ)	[eVs]	1.0	2.5^{a}
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{\text {c }}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Exempel: LHC 4

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4 σ)	[eVs]	1.0	2.5^{a}
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{\text {c }}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Exempel: LHC 5

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4 σ)	[eVs]	1.0	$2.5{ }^{\text {a }}$
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{\text {c }}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	- 279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Arcs: ~ 1 mm transversellt

Exempel: LHC 6

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4σ)	[eV s]	1.0	2.5^{a}
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{c}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{\text {d }}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

References 1

- M.S. Livingston and E.M.McMillan, 'History of the Cyclotron', Physics Today, 1959
- S. Weinberg, 'The Discovery of Subatomic Particles', Scientific American Library, 1983. (ISBN 0-7167-1488-4 or 0-7167-1489-2 [pbk]) (539.12 WEI)
- C. Pellegrini, 'The Development of Colliders', AIP Press, 1995. (ISBN 1-56396-349-3) (93:621.384 PEL)
- P. Waloschek, 'The Infancy of Particle Accelerators', DESY 94-039, 1994.
- R. Carrigan and W.P. Trower, 'Particles and Forces - At the Heart of the Matter', Readings from Scientific American, W.H. Freeman and Company, 1990.
- Leon Lederman, 'The God Particle', Delta books 1994
- Lillian Hoddeson (editor), 'The rise of the standard model: particle physics in the 1960s and 1970s', Cambridge University Press, 1997
- S.Weinberg, 'Reflections on Big Science', MIT Press, 1967 (5(04) WEI)

Introduction to Particle Accelerator Physics:

- J.J. Livingood, 'Principles of Cyclic Particle Accelerators', D. Van Nostrand
Company, 1961
- M.S. Livingston and J.P. Blewett, 'Partticle Accelerators', McGrawHill, 1962
- Mario Conte and William McKay, 'An Introduction to the Physics of

Particle Accelerators', Word Scientific, 1991

- H.Wiedemann, 'Particle Accelerator Physics', Springer Verlag, 1993.
- CERN Accelerator School, General Accelerator Physics Course, CERN

Report 85-19, 1985.

- CERN Accelerator School, Second General Accelerator Physics Course, CERN Report 87-10, 1987.
- CERN Accelerator School, Fourth General Accelerator Physics Course, CERN Report 91-04, 1991.

References 2

- M. Sands, 'The Physics of Electron Storage Rings', SLAC-121, 1970.
- E.D. Courant and H.S. Snyder, 'Theory of the Alternating-Gradient Synchrotron', Annals of Physics 3, 1-48 (1958).
- CERN Accelerator School, RF Engeneering for Particle Accelerators,

CERN Report 92-03, 1992.

- CERN Accelerator School, 50 Years of Synchrotrons, CERN Report 97-04, 1997
- E.J.N. Wilson, Accelerators for the Twenty-First Century - A Review, CERN Report 90-05, 1990.
Special Topics and Detailed Information:
- J.D. Jackson, 'Calssical Electrodynamics', Wiley, New York, 1975.
- Lichtenberg and Lieberman, 'Regular and Stochastic Motion', Applied Mathematical Sciences 38, Springer Verlag.
- A.W. Chao, 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993.
- M. Diens, M. Month and S. Turner, 'Frontiers of Particle Beams: Intensity Limitations', Springer-Verlag 1992, (ISBN 3-540-55250-2 or 0-387-55250-2) (Hilton Head Island 1990) 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993.
- R.A. Carrigan, F.R. Huson and M. Month, 'The State of Particle Accelerators and High Energy Physics', American Institute of Physics New Yorkm 1982, (ISBN 0-88318-191-6) (AIP 92 1981) 'Physics of Collective Beam Instabilities in High Energy Accelerators', Wiley, New York 1993.

Special thanks to Oliver Bruning for the reference list and for some material

