Latest results on Heavy Ion Physics from ALICE

Marco van Leeuwen, Utrecht University for the ALICE collaboration

Heavy ion collisions

Two basic approaches to learn about the QGP

- 1) Bulk observables
- 2) Hard probes

Both measure the same system – expect consistency

This talk: focus on experimental results

Physics interpretation given for context; fineprint omitted in many cases

Low p_T: thermal production, flow initial geometry

(Not a focus of Hard Probes Conference Some results shown at ICHEP)

Low and intermediate p_T

F. Bellini@ICHEP

- Low p_T : $< p_T > increases with mass$ (more than in pp)
 - → Flow velocity
 - → Hydrodynamical calculations agree with measurements

Intermediate p_T: large baryon/meson ratio:

- Flow
- Hadronisation via quark coalescence?

p_T (GeV/c)

More flow: v_2 , v_3

C. Perez Lara@ICHEP

y(fm)

v₂: azimuthal anisotropy

$$\frac{dN}{d\varphi} = N(1 + 2v_2\cos 2\varphi)$$

Agreement with hydro: the matter behaves like a fluid

Sensitive to medium density profile

→ Compare with hard probe measurements

v₃: fluctuations in the initial state

Alver and Roland, PRC81, 054905

High p_T: probes of the medium

High-p_T partons scatter off partons in the medium and radiate gluons

Energy loss: suppression of yield at fixed p_T

Nuclear modification
$$R_{AA} = \frac{dN / dp_T \big|_{Pb+Pb}}{N_{coll} \, dN / dp_T \big|_{p+p}}$$

Nuclear modification factor

Charged hadron p_T spectra

Shape of spectra in Pb+Pb differ from p+p

Nuclear modification factor
$$R_{AA} = \frac{dR}{N}$$

$$R_{AA} = \frac{dN / dp_T \Big|_{Pb+Pb}}{N_{coll} dN / dp_T \Big|_{php}}$$

Large suppression R_{AA} rises with $p_T \rightarrow$ fractional energy loss $\Delta E/E$ decreases

R_{AA} vs theory/models

Rough agreement with extrapolations from lower energy at RHIC

However: large spread of models,

- Improve understanding of energy loss
- Multiple observables needed

M. Floris, P. Luettig@HP

Identified hadrons at high p_T

P. Christiansen@HP

R_{AA} similar for all particles above p_T~6 GeV

Suggests fragmentation dominant production process No large modifications of hadronisation (color reconnection, coalescence) above $p_T \sim 6 \text{ GeV}$

Proton/pion ratio in jets

Large p/π ratio in Pb+Pb events

 p/π ratio low, similar to pp when associated with high-p_T hadrons

Heavy flavour

- 1) Produced in hard scattering, no thermal production in the QGP expected (m < T)
- 2) Parton energy loss: dead cone effect expect ΔE less than light quarks

Heavy flavour via leptons in pp

Electrons from heavy flavour

Good agreement with FONLL theory Nice complementarity with ATLAS (low-high p_T)

Muons from HF decay (forward)

Comparison to theory expectations
Good agreement

Electrons from beauty: 2 methods

M. Kweon, M. Heide, M. Völkl, D. Thomas@HP

Impact parameter selection

Method being refined Good agreement with FONLL

B/D separation via decay kinematics

B/D ratio agrees with FONLL

Important baseline for AA, parton energy loss

Difficult charm hadrons: D_s and Λ_c

D_s in pp

G.M. Innocenti, P. Pagano@HP

First results on D_s , Λ_c

Challenge: 3-prong decays, smaller cross sections Interest: hadronisation through coalescence/recombination?

D meson R_{AA}

Z. Conesa del Valle@HP

R_{AA} < 1: charm also loses energy Agrees with model calculations

Jets in pp and Pb+Pb

In-cone radiation: softening and/or broadening of jet structure

ALICE: use charged tracks $p_T > 150$ MeV to 'catch' soft gluon fragments

Jets in pp at √s=2.76 TeV

EMCAL installed in Dec 2010: $|\eta|$ <0.8, $\varphi \sim \pi/3$

Reasonable agreement with NLO calculations Need to include hadronisation for jet shapes

PbPb jet background

Main challenge: large fluctuations of uncorrelated background energy

(Size of fluctuations depends on p_T cut)

PbPb jet spectra

Suppression of jet production: out-of-cone radiation

Jet spectrum in Pb+Pb: charged particle jets Two cone radii, 4 centralities

Jet broadening: R=0.2/R=0.3

Ratio R=0.2/R=0.3

Similar in PbPb, pp, Pythia

No significant broadening observed

Comparison to JEWEL

Good agreement with JEWEL energy loss MC (tuned to charged particle R_{AA})

⇒ Towards understanding energy loss mechanism with MC-data comparisons

Di-hadron correlations

J-F Grosse-Oetringhaus, A. Morsch@HP

Width larger in η than ϕ Not expected for jet fragmentation Longitudinal flow?

Di-hadron correlations

J-F Grosse-Oetringhaus, A. Morsch@HP

$\Delta\eta$ width

Lines: AMPT 2.25 and Pythia P-0 (for pp)

Width larger in η than ϕ Not expected for jet fragmentation Longitudinal flow?

AMPT model has similar behaviour Mechanism not clear yet...

J/ψ production and suppression

Motivation:

J/ψ and quarkonia melt
in Quark Gluon Plasma

Debeye screening

Thermometer:
Suppression depends on local temperature

$J/\psi R_{AA}$

J. Wiechula, C. Suire, L. Massacrier@HP

Forward rapidity, low p_T

2011 data: clear improvement in statistical uncertainties

Forward rapidity, high p_T

Suppression observed: melting, but also other mechanisms?

Compare SPS, RHIC

High-p_⊤ results agree with CMS measurements

$J/\psi R_{AA}$ vs p_T : regeneration/coalescence?

Low $p_T R_{AA} > High p_T R_{AA}$

 J/ψ formed by recombination of c-cbar pairs at low p_T?

Multiplicity dependence in pp

 J/ψ yield in pp increases with event multiplicity

Do we understand J/ψ production?

First glimpse of Charm flow

Hint of non-zero v₂ for charm: interactions with medium

Comparing open charm and J/w

Open charm: parton energy loss and fragmentation J/ψ : production and dissociation (+regeneration?)

A priori, do not expect similar values for $R_{\Delta\Delta}$

J. Schukraft: Apples&Broccoli

Summary/outlook

- Many new results:
 - Identified hadrons
 - Open heavy flavour
 - Jets
 - J/ ψ
- Comparisons to theory/models ongoing
 - Should lead to consistent understanding of medium density (evolution), parton energy loss and charmonium melting
- Future:
 - Increase data sample of Pb+Pb (2011 data and future runs)
 - B, D_s , Λ_c , di-jets, jet structure, photons ...
 - Early 2013: p+Pb run for cold nuclear effects
 - Higher energy: 5.5 TeV systematically constrain models/interpretation

Extra slides

Medium-induced radiation

Landau-Pomeranchuk-Migdal effect Formation time important

Energy loss depends on density: $\lambda \propto \frac{1}{\rho}$

and nature of scattering centers (scattering cross section)

Transport coefficient
$$\hat{q} \equiv \frac{\left\langle q_{\perp}^2 \right\rangle}{\lambda}$$

Energy loss

 $\Delta E_{med} \sim \alpha_S C_R \hat{q} L^n F(m, E)$

 C_R : color factor (q, g)

 \hat{q} : medium density

L: path length

m: parton mass (dead cone eff)

E: parton energy

Path-length dependence *L*ⁿ

n=1: elastic

n=2: radiative (LPM regime)

n=3: AdS/CFT (strongly coupled)

Two extreme scenarios

(or how $P(\Delta E)$ says it all)

 $P(\Delta E)$ encodes the full energy loss process

R_{AA} not sensitive to energy loss distribution, details of mechanism

Identified hadron R_{AA}

R_{AA} comparison

Single muon R_{AA}

D. Stocco@HP

Hard Probes conference

- Parton energy loss
 - Jets, high-pt hadrons, heavy flavours
- Color screening
 - J/psi, Y
- Thermal production/radiation
 - Photons, di-leptons

v₂ at high p_T: path length dependent energy loss

^

ALICE, arXiv:1205.6761

h⁺+h⁻(10-50%)

Agrees with energy loss models at high p_T

Suggests:
Medium density profiles from bulk models consistent with high-p_T observations

ALICE

$\text{High-}p_{T} \ v_{2}$

Heavy flavour in pp 2.76 TeV

Comparison to scaled 7 TeV data:

(pp reference for RAA)

Good agreement

J/y from B in pp

Use impact parameter distribution

Fraction of J/y from B

Clear increase from pT~5 GeV

Good agreement between experiments – different p_⊤ ranges

$J/\psi \eta$, p_T dependence

