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Heavy ion collisions 

‘Hard probes’ 
Hard-scatterings produce hard partons 
 Probe medium through interactions 

pT > 5 GeV 

Heavy-ion collisions produce 
soft ‘thermal’ QCD matter 

Dominated by soft partons  
p ~ T ~ 100-300 MeV 

‘Bulk observables’ 
Study hadrons produced by the QGP 

Typically pT < 1-2 GeV 

Two basic approaches to learn about the QGP 

1) Bulk observables 

2) Hard probes 

This talk: focus on experimental results 
Physics interpretation given for context; fineprint omitted in many cases 

Both measure the same system – expect consistency 
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Low pT: thermal production, flow 

initial geometry 

(Not a focus of Hard Probes Conference 

Some results shown at ICHEP) 
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Low and intermediate pT 

Schukraft, Mueller, Wyslouch, arXiv:1202.3233 

Low pT: 

<pT> increases with mass 

           (more than in pp) 

Intermediate pT:  

large baryon/meson ratio: 

- Flow 

- Hadronisation via quark coalescence? 

F. Bellini@ICHEP 

Flow velocity  

Hydrodynamical calculations agree with 

measurements  
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More flow: v2, v3 
C. Perez Lara@ICHEP 
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Sensitive to medium density profile 

 Compare with hard probe measurements 
v3: fluctuations in  

the initial state 

v2: azimuthal anisotropy 

Agreement with hydro: the 

matter behaves like a fluid 
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High pT: probes of the medium 

High-pT partons scatter off  

partons in the medium 

and radiate gluons 

p+p 

Au+Au 
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Energy loss: suppression of yield at fixed pT 

Nuclear modification 
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Nuclear modification factor 

Charged hadron pT spectra 

Nuclear modification 

factor 

Shape of spectra in Pb+Pb differ 

from p+p 
Large suppression 

RAA rises with pT  fractional energy loss DE/E 

decreases  
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RAA vs theory/models 

M. Floris, P. Luettig@HP 

Rough agreement with 

extrapolations from  

lower energy at RHIC 

However: large spread of models,  

• Improve understanding of energy loss 

• Multiple observables needed 
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Identified hadrons at high pT 

P. Christiansen@HP 

pions protons+kaons 

RAA similar for all particles above pT~6 GeV 

Suggests fragmentation dominant production process 

No large modifications of hadronisation (color reconnection,  

coalescence) above pT ~ 6 GeV 
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Proton/pion ratio in jets 
M. Veldhoen@HP 

Large p/p ratio in Pb+Pb events 

 

associated 
D 

trigger 

Di-hadron correlation 

measurement 

Dh 

D 

p/p ratio low, similar to pp when associated with high-pT hadrons 
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Heavy flavour 

1) Produced in hard scattering, no thermal  

production in the QGP expected (m < T) 

2) Parton energy loss: dead cone effect 

expect DE less than light quarks 
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Heavy flavour via leptons in pp 

M. Kweon@HP 

ALICE: arXiv:1205:5423 

ATLAS: PLB707 (2012) 438 

FONLL: Cacciari et al.  

hep-ph/980340, hep-ph/0102134 

D. Stocco@HP,  

arXiv:1205.6443 

Muons from HF decay 

(forward) 

Comparison to theory expectations 

Good agreement 

Electrons from heavy flavour 

Good agreement with FONLL theory 

Nice complementarity with ATLAS  

(low-high pT) 
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Electrons from beauty: 2 methods 
M. Kweon, M. Heide, M. Völkl, D. Thomas@HP 

Impact parameter selection 

Method being refined 
Good agreement with FONLL 

B/D separation via decay kinematics 

B/D ratio agrees with FONLL 

Important baseline for AA, parton energy loss 

p+p 7 TeV 

p+p 7 TeV 
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Difficult charm hadrons: Ds and Lc 
G.M. Innocenti, P. Pagano@HP 

First results on Ds, Lc 

 

Lc in pp 

Ds in PbPb 

Ds in pp 

Challenge: 3-prong decays, smaller cross sections 

Interest: hadronisation through coalescence/recombination? 
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D meson RAA 

arXiv:1203.2160 

Z. Conesa del Valle@HP 

RAA < 1: charm also loses energy 

Agrees with model calculations 
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Jets in pp and Pb+Pb 

Out-of-cone radiation:  

suppression of jet yield: RAA
jets < 1 

In-cone radiation: softening  

and/or broadening of jet structure 

ALICE: use charged tracks pT > 150 MeV to ‘catch’ soft gluon fragments 
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Jets in pp at √s=2.76 TeV 

R. Ma@HP Charged tracks+EMCAL, R=0.4 

EMCAL installed in Dec 2010: |h|<0.8,  ~p/3 

R=0.2/R=0.4 

Reasonable agreement with NLO calculations 

Need to include hadronisation for jet shapes 
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PbPb jet background 

Toy Model 

Main challenge: large fluctuations of uncorrelated background energy 

(Size of fluctuations depends on pT cut) 
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PbPb jet spectra 
Charged jets, R=0.3 

M. Verweij@HP 

Jet spectrum in Pb+Pb: charged particle jets 

Two cone radii, 4 centralities 

Suppression of jet production:  

out-of-cone radiation 

M. Verweij@HP 

RCP, charged jets, R=0.3 
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Jet broadening: R=0.2/R=0.3 

Ratio R=0.2/R=0.3 

 

Similar in PbPb, pp, Pythia 

No significant broadening observed 
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Comparison to JEWEL 

Good agreement with JEWEL energy loss MC  
(tuned to charged particle RAA) 

  Towards understanding energy loss mechanism with MC-data comparisons 
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Di-hadron correlations 

associated 

D 

trigger 

J-F Grosse-Oetringhaus, A. Morsch@HP 

0-10% 

2 < pT,t < 3 GeV/c 

1 < pT,a < 2 GeV/c 

D , Dh 

Width larger in h than  

Not expected for jet fragmentation 

Longitudinal flow? 
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Di-hadron correlations 
J-F Grosse-Oetringhaus, A. Morsch@HP 

Width larger in h than  

Not expected for jet fragmentation 

Longitudinal flow? 
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2 < pT,t < 3    1 < pT,a < 2 GeV/c 

3 < pT,t < 4    2 < pT,a < 3 GeV/c 

4 < pT,t < 8    2 < pT,a < 3 GeV/c 

0-10% 

2 < pT,t < 3 GeV/c 

1 < pT,a < 2 GeV/c 

Lines: AMPT 2.25  

and Pythia P-0 (for pp) 

AMPT model has similar behaviour 

Mechanism not clear yet... 

D width Dh width 
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J/y production and suppression 

Motivation: 

J/y and quarkonia melt  

in Quark Gluon Plasma 

Thermometer: 

Suppression depends on 

local temperature 

Debeye screening 
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J/y RAA 

2011 data: clear improvement 

 in statistical uncertainties 

Forward rapidity, low pT Forward rapidity, high pT 

High-pT results agree with CMS measurements 

Suppression observed: melting, but also other mechanisms? 

Compare SPS, RHIC 

J. Wiechula, C. Suire, L. Massacrier@HP 
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J/y RAA vs pT: regeneration/coalescence? 

Low pT RAA > High pT RAA 

J/y formed by recombination of c-cbar pairs at low pT ? 
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Multiplicity dependence in pp 

arXiv:1202.2816, PLB 

J/y yield in pp increases with event multiplicity 

Not understood:  

e.g. Pythia expects opposite 

Do we understand J/y production? 
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First glimpse of Charm flow 

J/y D mesons 

Hint of non-zero v2 for charm: interactions with medium 
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Comparing open charm and J/y 

J. Schukraft: Apples&Broccoli 

Open charm: parton energy loss and fragmentation 

J/y: production and dissociation (+regeneration?) 
A priori, do not expect  

similar values for RAA 



30 

Summary/outlook 

• Many new results: 

– Identified hadrons 

– Open heavy flavour 

– Jets 

– J/y 

• Comparisons to theory/models ongoing 

– Should lead to consistent understanding of medium density 

(evolution), parton energy loss and charmonium melting 

• Future: 

– Increase data sample of Pb+Pb (2011 data and future runs) 

• B, Ds, Lc, di-jets, jet structure, photons ... 

– Early 2013: p+Pb run for cold nuclear effects 

– Higher energy: 5.5 TeV systematically constrain 

models/interpretation 



31 

Extra slides 
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Medium-induced radiation 

),(ˆ~ EmFLqCE n

RSmed D

propagating  

parton 

radiated 

gluon 

Landau-Pomeranchuk-Migdal effect 

Formation time important 

Radiation sees  

length ~tf at once 

Energy loss depends on density: 
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(scattering cross section) 
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Path-length dependence Ln 

n=1: elastic 

n=2: radiative (LPM regime) 

n=3: AdS/CFT (strongly coupled) 

Energy loss 
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Two extreme scenarios 

p+p 

Au+Au 
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Scenario I 

P(DE) = d(DE0) 

‘Energy loss’ 

Shifts spectrum to left 

Scenario II 

P(DE) = a d(0) + b d(E) 

‘Absorption’ 

Downward shift 

(or how P(DE) says it all) 

P(DE) encodes the full energy loss process 

RAA not sensitive to energy loss distribution, details of mechanism 
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Identified hadron RAA 
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RAA comparison 

Schukraft, Mueller, Wyslouch, arXiv:1202.3233 
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Single muon RAA 

D. Stocco@HP 

pT (GeV) 

Centrality dependence 

pT dependence central bin 
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Hard Probes conference 

• Parton energy loss 

– Jets, high-pt hadrons, heavy flavours 

• Color screening 

– J/psi, Y 

• Thermal production/radiation 

– Photons, di-leptons 
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v2 at high pT: path length dependent energy loss 

ALICE, arXiv:1205.6761 

Agrees with energy loss models 

at high pT 

Suggests: 

Medium density profiles from bulk  

models consistent with high-pT  

observations 
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High-pT v2 
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Heavy flavour in pp 2.76 TeV 

Z. Conesa del Valle@HP, 

arXiv: 1205.4007 

D mesons 

Comparison to scaled 7 TeV data: 
(pp reference for RAA) 

Good agreement 
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J/y from B in pp 

arXiv:1205.5880 

Use impact parameter distribution Fraction of J/y from B 

Clear increase from pT~5 GeV 

Good agreement between experiments – different pT ranges 
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J/y h, pT dependence 


