

Organisation européenne pour la recherche nucléaire

Handbook of Mitigation techniques against Radiation Effects for ASICs and FPGAs

Gilles Foucard EN/STI group

Who am I?

- PhD graduated from Grenoble Polytechnic Institute (INPG) in 2010.
- Theme of my thesis:
 - Fault injection in SRAM-based FPGAs (software, laser beams & heavy ion particles)
 - Error rate prediction for applications embedded in SRAMbased FPGAs
- Post Doc (2010-2011) at TIMA laboratory (Grenoble): write a HandBook (HB) named "Mitigation techniques against Radiation Effects for ASICs and FPGAs".
- Since September 2011: collaboration between TIMA laboratory and the CERN EN/STI group.

1. General description of HB and the context

2. Structure of the HB

- 3. Classification of mitigation solutions
- 4. List of techniques
- 5. Present & future

Definition of the Handbook

- ESA ITT (Invitation To Tender) : produce a handbook to help space application designers choosing appropriate mitigation solutions depending on their project requirements & constraints
- Target circuits: analogue, digital and mixed-signal ASICs and digital FPGAs
- Intended readers:
 - Junior engineers: provide background and detailed information
 - Confirmed engineers: Well classified and easy access to information, comparison tables, etc.
 - Experts: used as a checklist
- Levels of abstraction: from silicone to system architecture

Limiting the scope of the handbook

Problem: defining the limits of the handbook

• What technique should we include? According to which criteria? Which level of maturity should the techniques have?

=> Techniques exhibiting proof of efficiency: results at least from simulation or radiation results or having flown.

- What depth of information do we want to provide?
 - Too much details -> the HB would become enormous and this is not what ESA wants. Difficult to maintain & update
 - Not enough details -> HB = useless

The reader will find answers to What? What do I gain? What do I loose? But he will NOT find How to do? He will have to find somewhere else => references are provided for this purpose.

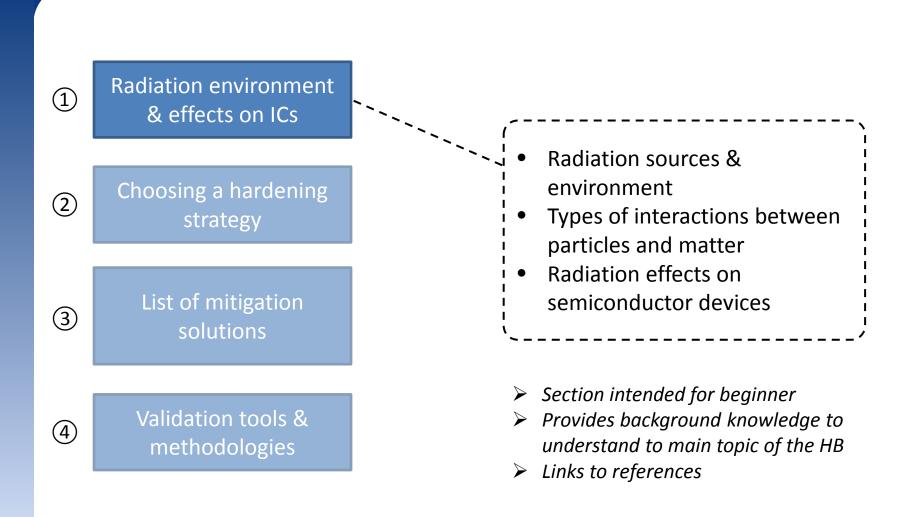
Current version of the HB: 225 pages & more than 300 references

Technical content sources & authors

Technical content based on:

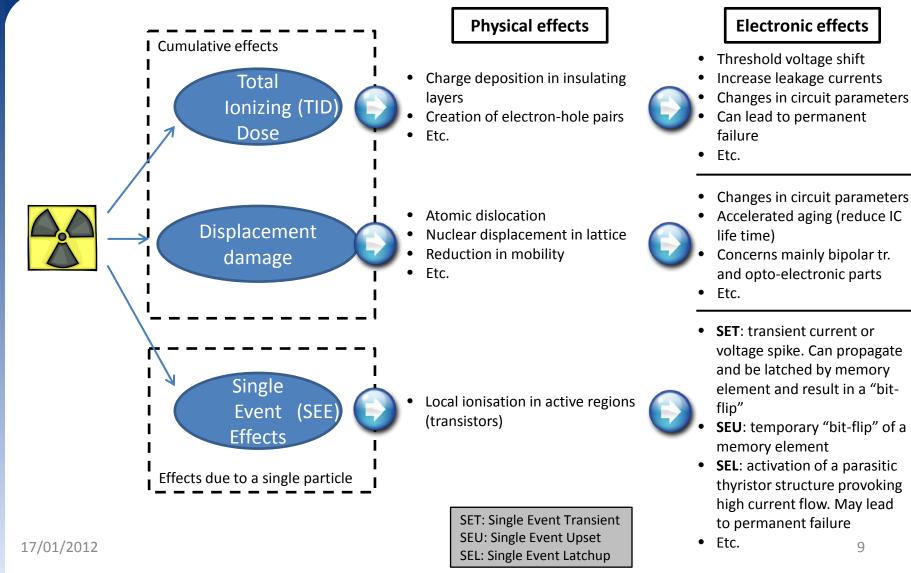
- State-of-the art techniques published in the scientific community (publications, workshops)
- Commercial solutions & vendors
- Volunteer contributions from experts :
 - Michael Alles, University of Vanderbilt (process and layout level)
 - Daniel Loveless, University of Vanderbilt (analogue & mixed-signal circuits)
 - Michael Nicolaidis, TIMA laboratory (digital circuits)
 - Fernanda Lima Kastensmidt, Universidade Federal do Rio Grande do Sul (digital circuits & FPGAs)
 - Melanie Berg, NASA (digital circuits & FPGAs)
 - Massimo Violante, Politecnico di Torino (embedded software)
 - Michel Pignol, CNES (system architecture)

Authors: Raoul Velazco (technical supervisor), Gilles Foucard (until September 2011) & Fabrice Pancher (since September 2011)

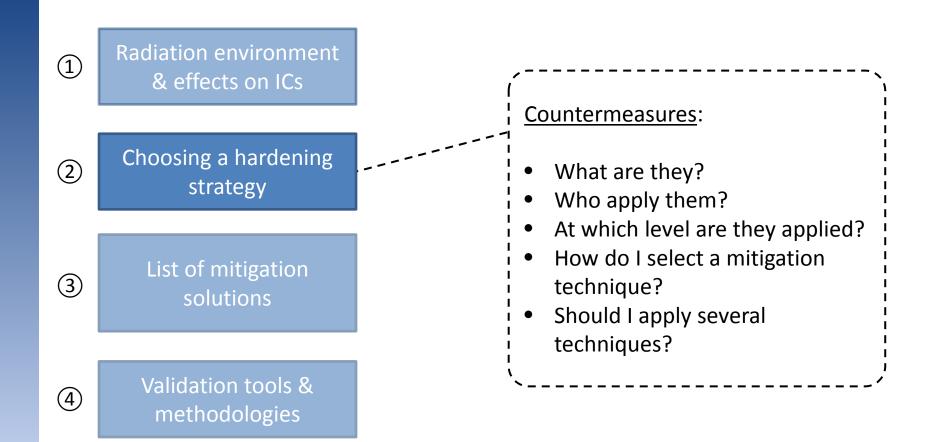

1. General description of HB and the context

2. Structure of the HB

- 3. Classification of mitigation solutions
- 4. List of techniques
- 5. Present & future



Part 1: Radiation environment & its effects on ICs



Part 1: Radiation effects in semiconductors

Part 2 : Choosing a design hardening strategy

Part 2: Choosing a design hardening strategy

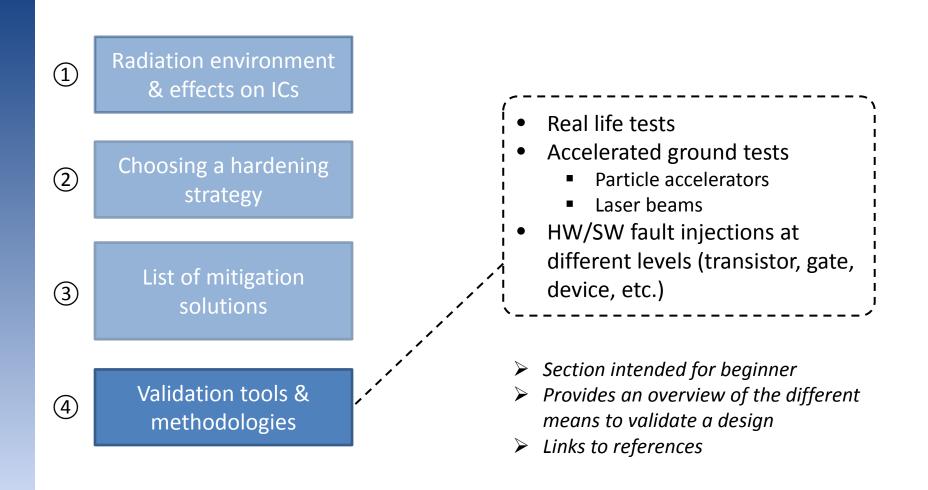
Goal: help the reader identifying the constraints of his project:

- What will the final environment of my application be: Nature, energy and density of the particles?
- What is the reliability I want to reach? (Mission duration -> TID threshold, Number of tolerated bit-flips -> SEU error rate)
- What is the deadline of this project? (Short term-> prefer commercial solutions, long term-> possible to develop the HW and SW, maybe an ASIC)
- What is the budget for the project? Low budget -> difficult to develop an ASIC.

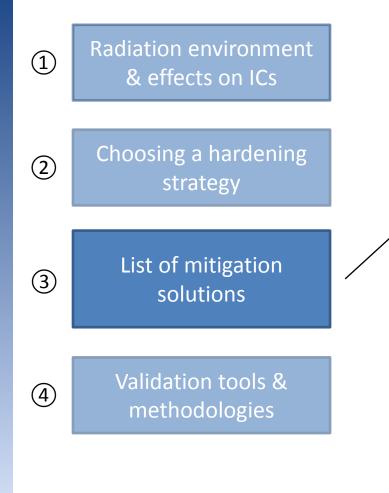
Three hardening strategies:

- <u>Full custom</u>: develop the HW & SW + qualification. an ASIC will provide the best performance/power consumption ratio but it is costly and time consuming.
- <u>COTS</u> (Commercial parts): cheap and available but need to qualify them.
- <u>Space qualified solutions</u>: qualified but expensive and not always possible to acquire them (ITAR*)

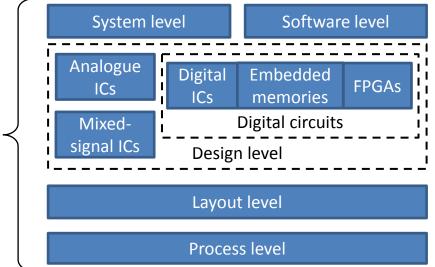
Answering these questions helps choosing a hardening strategy.


Sometimes the constraints are too tight and there is not a solution => compromises must be found.

*ITAR: International Traffic in Arms Regulations



Part 4: Validation tools & methodologies



Part 3: List of mitigation solutions

Classification of the techniques by abstraction level and circuit family

Design level: need to classify techniques by circuit family and circuit type

- Analogue circuits
- Mixed-signal circuits
- Digital circuits
 - FPGAs
 - ASICs
 - Embedded memories

Handbook chapter structure

- 5. Radiation environment and integrated circuits
- 6. Choosing a design hardening strategy
- 7. Technology selection and process level mitigation
- 8. Layout
- 9. Analogue circuits
- 10. Digital circuits
- 11. Mixed-signal circuits
- 12. FPGAs
- 13. Embedded memories
- 14. Embedded software
- 15. System architecture
- 16. Validation methods

List of mitigation solutions

1. General description of HB and the context

2. Structure of the HB

3. Classification of mitigation solutions

- 4. List of techniques
- 5. Present & future

Organization of a chapter

Chapters presenting mitigation solutions are organized as follow:

- Scope
 - What devices are concerned?
 - Which are the main radiation effects encountered?
 - The major strategies adopted by the techniques
 - Etc.
- Table of effects vs mitigation techniques
- List of mitigation techniques -> ID cards
- Additional information such as commercial solutions, radiation-hardened libraries, comparison of the techniques, etc.

Mitigation techniques vs radiation effects

Example of table summarizing techniques applied at system level and the effects they mitigate

		Abstraction	Radiation effects					D
Miti	Mitigation techniques lev		TID	SEL	SET	SEU	SEFI	Page
15.3.1	Shielding	Architecture	х	x	x	x	x	167
15.3.2	Watchdog timers	Architecture					х	169
15.3.3	Latching current limiters	Architecture		x				171
15.3.4	Duplex architectures	Architecture			х	х	х	173
15.3.5	Triple Modular Redundancy	Architecture			x	x	x	177
15.3.6	Error Correcting Codes	Architecture			x	х		180

ID cards

Information for each presented technique are organized according to a predefined template

-> easier for the reader to find the information

ID CARD

- Description of the concept
- Figures/diagram
- Examples
- Available test data (simulation, radiation testing, in-fight)
- Added value
- Known issues
- Summary table (example below for a HIT memory cell)

IC family	Memories
Abstraction level	Design
Pros	SEU hardness
Cons	Area penalty: ~10% Power consumption penalty : ~30%
Mitigated effects	SEU
Suitable validation methods	Accelerated ground tests HW/SW fault injection HDL simulation
Automation tools	N/A
Vendor solutions	N/A ¹⁸

1. General description of HB and the context

- 2. Structure of the HB
- 3. Classification of mitigation solutions
- 4. List of techniques
- 5. Present & future

Mitigation solutions @ process level

			Radiation effects				
Mitigation techniques		TID	SET	SEU	SEL	Page	
7.3.1	Epitaxial layers				х	36	
7.3.2	Silicon On Insulator		x	х	х	37	
7.3.3	Triple wells		x	х	х	41	
7.3.4	Buried layers		x	х	x	43	
7.3.5	Dry thermal oxidation	x				44	
7.3.6	Implantation into oxides	x				46	

- Technology scaling and radiation effects
 - Effects of technology scaling on TID sensitivity
 - Effects of technology scaling on SEE sensitivity

Mitigation solutions @ layout level

Mitigation techniques			D				
		TID	SEL	SET	SEU	MBU/MCU	Page
8.3.1	Enclosed Layout Transistor	х		х	х		51
8.3.2	Contacts and guard rings		х			х	53

- Radiation hardened libraries
 - ESA DARE (Design Against Radiation Effects)
 - CERN 0.24 μm
 - BAE 0.15 μm
 - Ramon Chips 0.18 μm and 0.13 μm
 - Aeroflex 0.6 μ m, 0.25 μ m, 0.18 μ m and 90nm
 - Atmel 0.35 μ m and 0.18 μ m
 - Etc.

Mitigation solutions for analogue circuits

	Miller Constant and	Abstraction	Radiatio	n effects
	Mitigation techniques	level	SET	SEU
9.3.1	Node separation and Interdigitation	Design/Layout	х	х
9.3.2	Analogue Redundancy	Design	х	
9.3.3	Resistive Decoupling	Design	х	х
9.3.4	Filtering	Design	х	х
9.3.5	Modifications in Bandwidth, Gain, Operating Speed, and Current Drive	Design	х	
9.3.6	Reduction of Window of Vulnerability	Design	х	х
9.3.7	Reduction of High Impedance Nodes	Design/Layout	х	
9.3.8	Differential Design and Dual Path Hardening	Design/Layout	х	x

Mitigation solutions for digital circuits

		Radiatio	n	
M	itigation techniques	SET	SEU	Page
10.3.1	Spatial redundancy	х	х	90
10.3.2	Temporal redundancy	х	х	94

- Others mitigations strategies
 - Memory cell hardening (see chapter 13)
 - Information redundancy: error detection and error correcting codes (see section 15.3.6)
- Commercial solutions
 - Radhard circuit manufacturers (Aeroflex, Atmel, Honeywell, Intersil, Xilinx, etc)
 - Radhard processors: architecture, radiation test results, missions (Honeywell RH32, Atmel AT697, etc)
 - Radhard computers : processor, radiation test results, missions (Space Micro Proton products, Maxwell SCS750, etc)

Mitigation solutions for mixed-signal circuits

	Mitigation technique	Abstraction level	Radiation effects SET	Page
11.3.1	Triple Modular Redundancy	Design	х	101

Mitigation solutions for FPGAs

		Abstraction	Rad	Page		
Mitigation techniques		level	SET	SEU	SEFI	Page
12.3.1	Local TMR	HDL		x		106
12.3.2	Global TMR	HDL	х	x		108
0	Large grain TMR	HDL	х	х		111
0	Embedded user memory TMR	HDL	х	х		113
12.3.5	Voter insertion	HDL	х	х		114
12.3.6	Reliability-Oriented place and Route Algorithm	FPGA layout	х	х		117
12.3.7	Temporal redundancy	HDL	х			119
12.3.8	Embedded processor redundancy	HDL	х	х	х	121
12.3.9	Scrubbing	System		x		122

- Vendor solutions (Aeroflex, Actel, Xilinx, etc)
- Device comparison for space applications

Mitigation solutions for embedded memories

		Mitigation techniques	Abstraction	Radiation effects		Page
			level	SEU	MBU	Ũ
	13.3.1	Resistor memory cell	Design	х		135
	13.3.2	Capacitor memory cell	Design	х		137
	13.3.3	IBM hardened memory cell	Design	х		139
Optimization _ of cell layout	0	HIT hardened memory cell	Design	х		141
or cen layout	13.3.5	DICE hardened memory cell	Design	х		142
	13.3.6	NASA-Whitaker hardened memory cell	Design	х		144
Optimization	0	NASA-Liu hardened memory cell	Design	х		146
of memory \prec	13.3.8	Scrambling	Architectural	х	х	147
layout 🛸						

- Error detection and error correcting codes (see section 15.3.6)
- Comparison between hardened memory cells

Mitigation solutions for embedded software

		ŀ				
	Mitigation techniques	SET	SEU	MBU	MCU	Page
14.3.1	Redundancy at instruction level	х	х	х	х	153
14.3.2	Redundancy at task level	х	х	x	х	159
14.3.3	Redundancy at application level	х	х	x	х	163

Mitigation solutions @ system level

		Abstraction	Radiation effects					
Miti	gation techniques	level	TID	SEL	SET	SEU	SEFI	Page
15.3.1	Shielding	Architecture	х	х	х	х	х	167
15.3.2	Watchdog timers	Architecture					х	169
15.3.3	Latching current limiters	Architecture		x				171
15.3.4	Duplex architectures	Architecture			х	х	х	173
15.3.5	Triple Modular Redundancy	Architecture			x	x	x	177
15.3.6	Error Correcting Codes	Architecture			x	x		180

- Description of commercial solutions
 - Space Micro Proton platform
 - Maxwell SCS750
- Examples of adopted architectures onboard satellites

1. General description of HB and the context

- 2. Structure of the HB
- 3. Classification of mitigation solutions
- 4. List of techniques
- 5. Present & future

Present & future

Presentation of the final draft @ ESTEC on Dec. 9, 2011. About 100 attendees to judge the quality of the HB.

A questionnaire was proposed for attendees to give their opinion:

- Finding information
 - 65% easily found
 - 20% found with difficulty
 - 15% not found
- Do you think the content is adapted to your needs?
 - 65% yes
 - 5% no
 - 30% moderately
- What do you think of an electronic version of the handbook in relation to your activity?
 - 30% essential
 - 60% useful
 - 10% why not

Present & future

What's coming next?

<u>Short future</u>:

 Submission of the handbook to the ECSS* committee in order to become an ECSS handbook

Proposition to ESA:

- Website version of the HB, depending on ESA good will. There is a real demand from the community
- Search engine where the user enters his mission parameters and the tool outputs techniques compatible with the user's constraints

* European Cooperation for Space Standardization

Any questions?

If you have any corrections, suggestions or remarks please contact:

- Raoul Velazco: <u>raoul.velazco@imag.fr</u>
- Fabrice Pancher: <u>fabrice.pancher@imag.fr</u>
- Myself: <u>gilles.foucard@cern.ch</u>
- Any questions?