
www.kit.edu   ­   www.cern.ch

Research Project: OpenCL for Physics Applications

Thomas Hauth (CERN/KIT), Vincenzo Innocente (CERN), 
Danilo Piparo (CERN), Benedikt Hegner (CERN)

http://www.kit.edu/


CERN I EKP 11th January 20122

Motivation

Goal:
Find a programming model to exploit current and future 

hardware for compute intensive tasks

Constraints:
Simplify multi­core programming, not complicate it
Keep the code portable and as high­level as possible
Don't program for specific hardware or instruction sets



CERN I EKP 11th January 20123

OpenCL ( Open Computing Language )

Standardized Framework for parallel programming on heterogeneous systems

Managed by the Khronos Group ( OpenGL, WebGL)

Offers a common interface to run compute intensive tasks ( so called Kernels ) on CPU, 
GPU or other compute devices

A subset of the C language is used to write these Kernels

Platform implementations provided by hardware vendors

CPU GPU GPU GPUCPU & GPU

. . .

High Portability
The same Kernel and host code can be used to run on a multitude of compute hardware

Platform implementations compile the Kernel's code to the machine instructions their 
hardware supports

Some tweaking can be done to better fit different memory layout and processor 
capabilities

http://www.khronos.org/opencl/



CERN I EKP 11th January 20124

Our Choice: Intel's OpenCL SDK [1]

Implements the OpenCL 1.1 specification for x86_64 CPUs >runs on our current hardware

Available for free for the Windows and Linux platforms

Automatically generates binaries which use the vector units of the CPU [2]

Dispatches the Kernels to all available cores, no explicit multi-threading necessary

[1] http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/

Intel Offline Compiler allows to compile the Kernel code, look at the generated Assembly 
output and reports if the Kernel was successfully vectorized
More tools available[3]: Graphics Performance Analyzer v 4.0 for OpenCL, Amplifier XE 
Analysis ..

[2] http://www.llvm.org/devmtg/2011-11/    - third talk -

[3] http://software.intel.com/en-us/articles/introduction-to-intel-opencl-tools/

Reasons:

http://www.llvm.org/devmtg/2011-11/


CERN I EKP 11th January 20125

Prototype: Simplified OpenCL Programming

Using the OpenCL interface in C/C++ is cumbersome and error prone as a lot 
of code is necessary

Memory allocation has to be done explicitly and cannot be done inside a kernel

Kernels are only compiled during runtime, errors sometimes hard to detect

To decrease this overhead, we developed an OpenCL wrapper for C++

Based on the OpenCLAM[1]  project, but customized and extended

Easy setup of the OpenCL runtime ( ~ 50 lines of C code to 2 lines C++)

Kernels and their parameters can be easily defined and are checked for correctness 
by the host's C++ compiler ( GCC in our case )

Simplified memory management of buffer objects on the compute device

Complete code example can be found in the Backup

Use Case: Matrix Algebra

Data types for Matrices and Vectors have been implemented

Math library to operate on Matrix and Vector data types (see Backup for example)

Matrix x Vector, Matrix x Matrix etc. [1] http://code.google.com/p/openclam/

http://code.google.com/p/openclam/


CERN I EKP 11th January 20126

Summary & Outlook

OpenCL is the emerging Industry Standard for portable high-performance computing

CPU, GPU portability

With smart wrapper classes, OpenCL kernels are seamlessly integrated in the C++ code

It Works ! 

Easy Kernel development by syntax and type check during compile time

It was shown that common data types ( Matrix, Vector ) and mathematical operations can 
be provided to the user via high-level C++

OpenCL on algorithm level is orthogonal to high-level module paralellism (see Chris 
Jones' talk)

Next Steps

Implement selected parts of the CMS reconstruction outside the CMS software FW as 
OpenCL Kernels to quantify the possible gains

Assess the portability of the current setup when running on GPU 

See how much of the porting can already be handled inside the C++ wrapper ( and 
therefore be kept away from the Kernel programmer)

Test the multi-core scalability of Intel's OpenCL SDK with many cores ( > 4 )

Quantitative comparisons to SMatrix performance hopefully to come next time 



CERN I EKP 11th January 20127

BACKUP



CERN I EKP 11th January 20128

Prototype: Simplified OpenCL Programming

openclam::opencl wrapper;
openclam::context context( wrapper );

// define Matrix of size 10x10
typedef openclam::matrix<double,10> Matrix;

// initialize Matrix
std::vector < double >  arr(Matrix::value_elements, 1.0);
Matrix m1 ( arr, 1, wrapper, context );

double d2 = 23.0f;

// define kernel with all needed parameters
KERNEL2_CLASS( add_val , cl_mem, double  ,

   __kernel void add_val( __global double * a, const double b )
  {

a[ get_global_id( 0 ) ] += b;
  }) ( context );

// run kernel, with 2 parameters
add_val.run( m1.range_linear(), m1, d2 );

// get result
m1.to_array( arr, wrapper, context );

Complete Code Example



CERN I EKP 11th January 20129

Prototype: Simplifying Matrix Operations

ROOT's Similarity Operation is heavily used in the CMS Track Reconstruction Kalman Filter:

ROOT's call instruction ( for one track candidate )

Starting OpenCL Kernels to do the same task in our prototype:

A buffer to hold temporary values during the calculation ( track_states._tmp ) is 
passed

The overall number of tracks in passed ( track_states._count ) as one call to 
OpenCL performs the Similarity operation for all tracks

B=U∗A∗U T

err_new = ROOT::Math::Similarity( prediction_matrix, err_matrix );

compute_context.m_similarity.apply( predictions._prediction,
track_states._err,
track_states._tmp,
track_states._err_new, 
track_states._count);

    All Tracks at
     the same time


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

