

Introduction to gLite

Mike Mineter TOE-NeSC, mjm@nesc.ac.uk

With thanks to EGEE colleagues for many of these slides

www.eu-egee.org

- EGEE <u>Enabling Grids for E-Science</u>
- EGEE's Grid middleware: gLite
 - Introducing the core services that we will use in the practical
- Sources of further information

egee

The EGEE project

- EGEE
 - 1 April 2004 31 March 2006

Enabling Grids for E-sciencE

- 71 partners in 27 countries, federated in regional Grids
- EGEE-II
 - 1 April 2006 31 March 2008
 - 91 partners in 32 countries
 - 13 Federations

Objectives

- Large-scale, production-quality infrastructure for e-Science
- Attracting new resources and users from industry as well as science
- Improving and maintaining "gLite" Grid middleware

US partners in EGEE-II:

- Univ. Chicago
- Univ. South. California
- Univ. Wisconsin
- RENCI

egee

Main lines of the EGEE project

GE^AN[™]

- Enabling Grids for E-sciencE
- Infrastructure operation
 - Currently includes sites across 39 countries
 - Continuous monitoring of grid services & automated site configuration/management
- Middleware
 - Production quality middleware distributed under business friendly open source licence
- User Support Managed process from first contact through to production usage
 - Training
 - Expertise in grid-enabling applications
 - Online helpdesk
 - Networking events (User Forum, Conferences etc.)
- Interoperability
 - Expanding geographical reach and interoperability with related infrastructures

Applications on EGEE

- Applications from an increasing number of domains
 - Astrophysics
 - Computational Chemistry
 - Earth Sciences
 - Financial Simulation
 - Fusion
 - Geophysics
 - High Energy Physics
 - Life Sciences
 - Multimedia
 - Material Sciences

Book of abstracts: http://doc.cern.ch//archive/electronic/egee/tr/egee-tr-2006-005.pdf

- Need to prepare for permanent Grid infrastructure
 - Ensure a reliable and adaptive support for all sciences
 - Independent of short project funding cycles
 - Infrastructure managed in collaboration with national grid initiatives

The EGEE Infrastructure

Enabling Grids for E-sciencE

Test-beds & Services

Certification testbeds (SA3)

Pre-production service

Production service

Infrastructure:

- Physical test-beds & services
- Support organisations & procedures
- Policy groups

Support Structures

Operations Coordination Centre

Regional Operations Centres

Global Grid User Support

EGEE Network Operations Centre (SA2)

Operational Security Coordination Team

Security & Policy Groups

Joint Security Policy Group

EuGridPMA (& IGTF)

Grid Security Vulnerability Group

Operations Advisory Group (+NA4)

Grid management: structure

Enabling Grids for E-sciencE

Operations Coordination Centre (OCC)

 management, oversight of all operational and support activities

Regional Operations Centres (ROC)

- providing the core of the support infrastructure, each supporting a number of resource centres within its region
- Grid Operator on Duty

Resource centres

- providing resources (computing, storage, network, etc.);
- Grid User Support (GGUS)
 - At FZK, coordination
 - and management of 9

Main components

User Interface (UI):

The place where users logon to the Grid

Resource Broker (RB): Matches the user requirements with the available resources on the Grid

<u>Information System</u>: Characteristics and status of CE and SE (Uses "GLUE schema")

<u>Computing Element (CE)</u>: A batch queue on a site's computers where the user's job is executed

Storage Element (SE): provides (large-scale) storage for files

<u>GSI with VOMS</u>: authentication and basis for authorisation

- VOMS: VO Management
- Workload Management System ("Resource Broker"):
 - Receives job description from user
 - Match-makes with available resources
 - Sends job to Compute Element (batch queue)
- Information System
 - Is used by services including the Resource Broker
- Data management (files)
 - Catalogue that maps logical filenames to physical instances of file on storage elements
 - Data transfer, storage and access services

Current production middleware

CGCC The (main) Information System

- The data published in the Information System (IS) conforms to the GLUE (Grid Laboratory for a Uniform Environment) Schema. The GLUE Schema aims to define a common conceptual data model to be used for Grid resources. http://infnforge.cnaf.infn.it/glueinfomodel/
- The BDII (Berkeley DB Information Index), based on an updated version of the Monitoring and Discovery Service (MDS), from Globus, is adopted as main provider of the Information Service.

Information Service

- Enabling Grids for E-sciencE
- a user or a service can query
 - the BDII (usual mode)
 - LDAP servers on each site

File management in gLite

Enabling Grids for E-sciencE

• Files are write-once, read-many

- If users edit files then they manage the consequences!
- Middleware supporting
 - Replica files
 - to be close to where you want computation
 - For resilience
 - Logical filenames
 - Catalogue: maps logical name to physical storage device/file
 - Virtual filesystems, POSIX-like I/O
- Services provided:
 - storage
 - transfer
 - catalogue that maps logical filenames to replicas.

Users primarily access and manage files through "logical filenames"

What is happening now?

Enabling Grids for E-sciencE

http://gridportal.hep.ph.ic.ac.uk/rtm

Certificates - Summary

Enabling Grids for E-sciencE

- Authentication
 - User obtains certificate from Certificate Authority
 - Connects to UI by ssh
 - Downloads certificate
 - Single logon to UI create proxy
 - then Grid Security
 Infrastructure uses proxies
 to identify users to other
 machines
- Authorisation
 - User joins Virtual Organisation
 - VO negotiates access to Grid resources
 - Authorisation tested on receipt of credentials:

Controlling user rights: Virtual Organization Membership Service

Before VOMS

- All VO members have same rights
- Grid user identities are mapped onto local user accounts statically
- User is authorised as a member of a single VO (no aggregation of roles)
- grid-proxy-init

eGee

VOMS

- VO can have groups
 - Different rights for each
 - Different groups of experimentalists
 - Nested groups
- VOMS has roles

. . . .

- Assigned to specific purposes
 - E,g. system admin
 - When assume this role
- User can be in multiple VOs
 Aggregate roles
- Proxy certificate carries the additional attributes
- voms-proxy-init

egee

voms-proxy-init in the background

Enabling Grids for E-sciencE

- A community-level group membership system
- Database of user roles
 - Administrative tools
 - Client interface
- voms-proxy-init
 - Creates a proxy locally
 - Contacts the VOMS server and extends the proxy with a role

Allows VOs to centrally manage user roles

VOMS

- VOMS is a grid attribute system that allows a client to embed an attribute certificate in a well known certificate extension. Since the embedded attribute certificate is signed by a VOMS server, a VOMS enabled service can parse and verify this extra certificate and treat the data therein as extra information about the client to use in an authorization decision
- At a glance
 - A VOMS server, typically one for each VO, contains information about a user
 - The VOMS server, when requested, will digitally sign an assertion stating that a particular DN has some particular attributes
 - A client may embed this in its own proxy certificate to "push" it to the service when accessing resources
 - The service, trusting a particular set of VOMS servers for attribute information, can use the attributes to make authorization decisions
- Using a distributed attribute system relieves services of needing to know every detail about the connecting clients.

Practical

- Using OMII-Europe Evaluation Infrastructure to gain experience of basic services
 - In future, will have OMII-Europe components added to the basic gLite services
- Connecting to moss-g1.man.poznan.pl
- Do tutorials <u>in order given</u> on gLite link from <u>http://training.omii-europe.org/</u>
 - Do VOMS practical first!
 - Its your "single sign-on"

- EGEE <u>www.eu-egee.org</u>
- gLite <u>http://www.glite.org/</u>
- EGEE digital library: <u>http://egee.lib.ed.ac.uk/</u>
- EGEE'07 Conference 1-5 October 2007, Budapest, Hungary.