Common production, incl. common issues like event overlay

Akiya Miyamoto 2 February 2012 KEK

Linear Collider Software Meeting @ CERN

DBD benchmarking requirements

- ILC PEB Benchmarks Task Force
 - resources (human & computing) limited
 - cooperation between ILD and SiD in physics analysis
 - same event samples and same high level analysis.
- Processes
 - ◆ 1 TeV:
 - $e^+e^- \rightarrow \nu\bar{\nu}h$ for $Brs(h \rightarrow \mu^+\mu^-, b\bar{b}, c\bar{c}, gg, WW^*)$
 - $e^+e^- \rightarrow W^+W^-$ for $\sigma(WW)$ and beam pol.
 - $e^+e^- \rightarrow t\bar{t}h$ for ytop
 - ◆ one of 500 GeV LOI channels
 - ◆ Others to enrich physics case
- Using a baseline detector model with increased realism and improved reconstruction
- with
 - all relevant SM physics background
 - machine related backgrounds

Generator samples

- ILC generator event samples
 - ILC 1 TeV beam parameter has just fixed and common generator samples are about to generate
 - Work sharing (for 1 TeV samples) agreed
 - vvH:
 - 4f (WW, ZZ, singleW, singleZ, ...)
 - 2f (μμ, ττ, ee with kinematic cuts)
 - 6f
 - tth, 8f (ttZ, ttbb) by Physsim
 - $\gamma \gamma / e \gamma / \gamma e \rightarrow ff$, hadrons, mini-jets
 - pairs
 - ◆ Statistic: 1ab⁻¹ or 10k as a first step. Could be increased if need more.
 - Based on SVN version of whizard code and inputs
 - Meta files are prepared on a web.
 - Common samples are placed in /grid/ilc/prod/ilc/mc-dbd : To be used for simulation inputs
- Note: in the case of CLIC
 - ◆ The standard binary is provided by Stephan. Generator events are generated as a first step of GRID production.

Simulation

Geant4

- ◆ Geant4.5 will be used
- ◆ Physics List:
 - CALICE recommends QGSP_BERT_HP.
 - set G4NEUTRONHP_NEGLECT_DOPPLER to reduce CPU time
 - Another candidates
 - PhysicsShielding
 - FTFP_BERT
 - → Study by CALICE is needed

Machine backgrounds

\blacksquare $\gamma\gamma\rightarrow$ hadrons

- At least, one bunch of backgrounds will be overlaid
 - Bunch separation : 366ns. Expect O(1) bkg events per bunch Xing
- ♦ Issue: IP Z smearing with σ_Z =225 μ m. Separately for signal event and background event. Can the event reconstruction (LCFIVertex) work properly ?

e⁺e⁻ pairs

- ◆ a few x 10k pairs per bunch crossing at 1 TeV
- ◆ SiD : overlay one bunch of pairs with a p_t cut at generator level.
- ◆ ILD : not considered now. SiD method may be applicable.

Common DST

- Main topics of the session tomorrow
- LCIO: common IO and data model is the bases for common DST. But exact information and qualities in objects are not identical between ILD and SiD
- Required common-ness depend on the purpose of common DST. For the common high level physics analysis, equalities on
 - ◆ 4 vectors, vertex info. ...
 - Particle IDs
 - **♦** ...

would be desirable. Need to agree very soon before starting production

- New features of DST for DBD
 - ◆ ILD case:
 - LOI: 2,4,6 jet clustering with LCFIVertexing
 - DBD plan: Vertexing in DST, but jet clustering and vertex tagging (incl. NN training) should be made in user analysis

GRID production

Events

- ◆ More than O(10M) SM events for 1ab⁻¹ 1TeV with no cuts
- ◆ 10 min/events x 10M events x 2000 CPUs → 35 days per detector
- User specific productions would be required. Ex. ZHH at 500 GeV
- For efficient production,
 - Generator level cuts are crucial.
 - consistency between ILD and SiD
 - Inputs from analysis groups
 - study stdhep files and samples by pilot production
 - proposed us exact number of events to simulate for each files.

GRID tools

- ◆ SiD: ILCDIRAC
- ◆ ILD: Tools at DESY&KEK + ILCDIRAC ?

Production

- ◆ ILC VO. Focus on sites with large resources
 - DESY, CERN, IN2P3, KEK (from April), FNAL, ...
- ◆ Resource sharing
 - mechanism ?
 - Schedule ?
 - Small test production has already started
 - Full production. When ? Original ILD plan: 5 months from March