PFA needs for a SDHCAL

V. Boudry, M. Ruan, H. Videau École polytechnique G. Grenier IPN Lyon

LC SW Meeting CERN, 02/02/2011

PFA: Needs for a SDHCAL 1) Performant Calibration scheme

- Huge number of channels: 48 layers, 1 cm 2 cell size \rightarrow 70M channels
- Huge number of constants. Per channel:
 - ► Geometry: 3 floats
 - ► «Energy». DHCAL \rightarrow 2 floats (μ , ϵ) SDHCAL \rightarrow 3-6 floats (ω_{123}) or (μ , ϵ)₁₂₃
 - RawCaloHit → CaloHits with Estimated Energy
- Size: 70M \times 3-6 floats \rightarrow 0.9-1.7 GB table
 - ► Can probably be compressed / fact 10... (ε ~ 0.95±..., μ =1+..., $x \rightarrow \delta x$, 4-8 bits enough ?)
 - Use of GPU lookup table ?
 - Use of smoothing functions ?

PFA: needs for a SDHCAL 2) Scheme for variable cell size

- Studies should allow for optimal cell size (electronic cost $\propto 1/(\Delta x)^2$)
- 1 simulation, many reconstructions?
 - Simulation can be done with very fine granularity
 - ◆ Hits storing or small cell size (avalanche size ~ 1.2×1.2mm²)
 - Reconstructed cell size done by digitisation module
- Technical implications
 - Separated ECAL & HCAL digi modules in Marlin
 - Should have been from the start (e.g. ≠ collections)
 - Digi module needs information about border cells
 - #SimCells or Sensor dimensions per plane
 - not now in Gear. Call to Mokka?
 - ▶ RecCellSize ≠ SimCellSize
 - → new parameters in Gear to be modified by Digi module and stored.
 - to be reset at for each new event.
 - ► Handling of CellId & filiation? *To be closely looked at...*

PFA: needs for a SDHCAL 3) Improved Videau geom in Pandora

- Videau geometry poorly handled in PandoraPFAnew (v00-08)
 - for example no crack handling...
 - ◆ ~ BoxGap for TESLA geom ?
 - DHCAL granularity fixed at 'COARSE'
 - Modifiable? (requires more scrutinisation)
- S-DHCAL not used:
 - Digital or Analog;
 - Digital ≡ constant cell energy
 - Analog requires EM and HAD cell scales
 - Additional flag needed for appropriate coding
- Pandora standard procedure not well adapted for (S)DHCAL:
 - Clustering requires a calibrated detector
 - Calibration requires clustering
 - Requires extra (physicist effort) + help from Pandora experts...

PFA: needs for a SDHCAL 4) and others...

- Gear in LCIO file
 - ► Advantages:
 - ◆ low cost: few kB in 10's of MB files
 - Avoid separate files (and mistakes, searches, ...)
 - ▶ Disadvantages ??
 - ► Technical implications
 - ◆ Very easy (Gabriel) → RunHeader
 - ♦ with variable RecCellSize ?

 "Is the header of the rec LCIO file written before the 1st event ?"
 - Alternative: usage of LCCD
 - OK for TB but for simulation ?
- Tracks In Calo
 - see Gabriel's slides