

Contents	

  introduction

  event model, algorithms

  steering, documentation

  looking ahead

  conclusions	

2/2/12 2

Introduction	

2/2/12 3

  LCFIPlus
  vertex finding, jet

finding, flavor tagger
in one package

  exploit TMVA package
  flexible algorithm flow

& configuration with
XML steering files

  Jet Finding
  needed to be

improved for
multi-jet events

  vertex first, jet
second approach

  LCFIVertex
  vertex finder &

flavor tagger for
LOI

  neural net difficult
to extend

Included in ilcsoft v01-13	

NIM A 610 573 (2009)	

Data Types & Event Model	

  LCFIPlus creates own event model for convenience of algorithms
  automatic conversion of data types from/to LCIO

  takes advantage of LCIO persistence model
  caveat: event data at run time is held in a singleton	

2/2/12 4

LCIO	 LCFIPlus	

ReconstructedParticle (PFOs)	 Track, Neutral	

ReconstructedParticle (Jets)	 Jet	

Vertex	 Vertex	

MCParticle	 MCParticle (optional)	

MyLcfiplusProcessor1	
lcfiplus::EventData

(singleton)	
MyLcfiplusProcessor2	

Caution: input/output list names are shared in the same Marlin run!!!
Possible to support different names; let us know if this should be supported

Algorithms	

2/3/12 5

Lcfiplus
Processor	

Primary
Vertex
Finder	

Build Up
Vertex	

Jet
Clustering	

Flavor Tag	 	

Make
Ntuple	

Train
MVA	

Read
MVA	

Vertex finders, to
be run during mass
production	

Jet finding using
vertex information	

Preparation of
training variables	

Output ROOT files
used for training	

Create training
weight files	

Apply result of
training for use
in analysis code	

Marlin processor	

* small circle = LCFIPlus algorithm
Individual algorithms can be run with output to LCIO; useful for preprocessing
data for fast development of algorithms & flavor tagging variables	

Primary
Vertex
Finder	

Build
Up

Vertex	

Jet
Clusteri

ng	

Flavor
Tag	

Read
MVA	

Train
MVA	

Make
Ntuple	

Data Flow:	
for training	

for analysis	

Explicit Dependencies:	

Steering	
  Typical user experience:

  obtain DST files (with vertices)
  select weight files from ILDConfig (tentative!! what about SiD??)
  run analysis with JetClustering + FlavorTag + ReadMVA

  For training:
  prepare training samples in DST format (with vertices)
  ntuple preparation step:

  JetClustering + FlavorTag + MakeNtuple

  (concatenate the ROOT files with “hadd” if necessary)

  training step:
  FlavorTag + TrainMVA

  run analysis with the weight files

T. Tanabe	
6	

Documentation & Feedback	
  User feedback + documentation system (thanks J. Strube)

  Documentation wiki hosted at SLAC (thanks N. Graf)
  also issue tracking with JIRA

  https://confluence.slac.stanford.edu/display/ilc/LCFIPlus
  skeletal at the moment… need to be filled in

  Checking memory leaks with coverity @ CERN (thanks A. Sailer)

  Early bug reports (thanks J. Engels, F. Gaede, J. Strube, A. Sailer)

  Doxygen class reference (partially complete)	

2/3/12 7

Looking Ahead	
  Two contexts for improvements, bug fixes, solving issues: short-term

(for mass production) & long-term (user analysis)
  Short-term goals

  validation!
  vertex, jets, flavor… (we’ll do them but extra eyes would help)

  vertex finders are slow
  fast enough?
  if not, need to rewrite kernel (e.g. Kalman filter)

  distribution of weight files from training
  included in ILDConfig package?
  what about SiD & CLIC?

  related: need to raise experts capable of making own training files
  Long-term goals

  continued improvement in vertex/jet finding, flavor tagging
  e.g. calibration of output variables for different categories

  effect of backgrounds: on jet clustering in particular	

2/3/12 8

MyLcfiplusProcessor 1.472000e+02 s	
MyClupatraProcessor 1.078700e+02 s	
MyFullLDCTracking_MarlinTrk 9.256000e+01 s	
MyMarlinPandora 1.558000e+01 s	
MySiliconTracking_MarlinTrk 5.690000e+00 s	

100 evts
zpole bb	

Single track vertices	
  Single-track vertex finding: ZVKIN

algorithm exists but was never used
in production (to our knowledge)

  Instead, a simple geometrical
approach:
  given a secondary vertex, look for a

nearby track, compatible with an
additional vertex

  Cut-based selections found to give
promising results; to be included as a
variable in flavor tagging

  Procedure (preliminary)
  Find a track whose distance to the

projected vertex line is < 0.1 D
  Angle between track (at vertex) and the

projected vertex line must be < 0.5 rad
  0.3 mm < D < 30 mm
  d0 or z0 significance of T > 5

IP	

Vertex	

Single track vertex	

Projected
vertex line	

Track	

D	

(bbhh 100 events)	 b	 c	 o	

# MC hadrons	 486	 585	

# single track vertex (reco)	 113	 102	 18	

à # MC matched (1 trk)	 59	 19	

à # MC matched (2 trks)	 21	 16	

Conclusions	
  LCFIPlus released and included in iLCSoft

  use of TMVA, flexible configuration via XML steering files

  Documentation framework ready, content to be provided soon

  Looking ahead:
  validation!
  slow vertex finders
  need to raise experts from SiD & CLIC

2/2/12 10

