LCFIPlus

T. Tanabe, T. Suehara ICEPP, The University of Tokyo February 3, 2012 Linear Collider Software Workshop @ CERN

Contents

- * introduction
- event model, algorithms
- steering, documentation
- * looking ahead
- * conclusions

Introduction

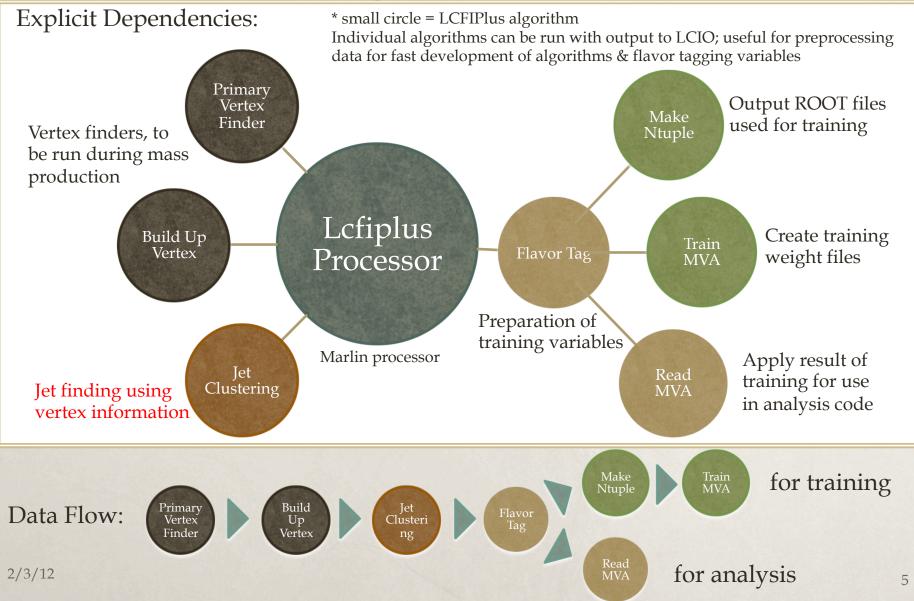
- ★ LCFIVertex NIM A 610 573 (2009)
 - vertex finder & flavor tagger for LOI
 - neural net difficult to extend
- ★ Jet Finding
 - needed to be improved for multi-jet events
 - vertex first, jet second approach

- vertex finding, jet finding, flavor tagger in one package
- * exploit TMVA package
- flexible algorithm flow
 & configuration with
 XML steering files

Included in ilcsoft v01-13

Data Types & Event Model

LCIO	LCFIPlus
ReconstructedParticle (PFOs)	Track, Neutral
ReconstructedParticle (Jets)	Jet
Vertex	Vertex
Vertex names specified in XMI	MCParticle (optional)
AMI T	


* LCFIPlus creates own event model for convenience of algorithms

- * automatic conversion of data types from/to LCIO
 - * takes advantage of LCIO persistence model
- * caveat: event data at run time is held in a singleton

MyLcfiplusProcessor1 \leftrightarrow lcfiplus::EventData MyLcfiplusProcessor2 \leftrightarrow

Caution: input/output list names are shared in the same Marlin run!!! Possible to support different names; let us know if this should be supported

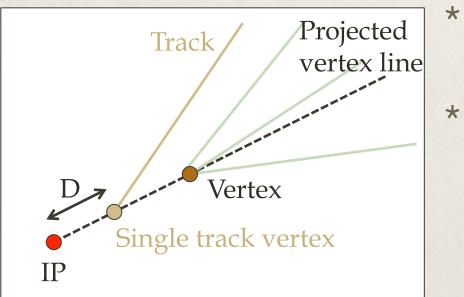
Algorithms

Steering

- ***** Typical user experience:
 - * obtain DST files (with vertices)
 - * select weight files from ILDConfig (tentative!! what about SiD??)
 - run analysis with JetClustering + FlavorTag + ReadMVA
- * For training:
 - * prepare training samples in DST format (with vertices)
 - * ntuple preparation step:
 - JetClustering + FlavorTag + MakeNtuple
 - * (concatenate the ROOT files with "hadd" if necessary)
 - * training step:
 - ★ FlavorTag + TrainMVA
 - * run analysis with the weight files

Documentation & Feedback

- * User feedback + documentation system (thanks J. Strube)
 - * Documentation wiki hosted at SLAC (thanks N. Graf)
 - also issue tracking with JIRA
 - * https://confluence.slac.stanford.edu/display/ilc/LCFIPlus
 - * skeletal at the moment... need to be filled in
- * Checking memory leaks with coverity @ CERN (thanks A. Sailer)
- * Early bug reports (thanks J. Engels, F. Gaede, J. Strube, A. Sailer)
- * Doxygen class reference (partially complete)


Looking Ahead

- * Two contexts for improvements, bug fixes, solving issues: short-term (for mass production) & long-term (user analysis)
 - * Short-term goals
 - * validation!
 - * vertex, jets, flavor... (we'll do them but extra eyes would help)
 - * vertex finders are slow
 - * fast enough?
 - * if not, need to rewrite kernel (e.g. Kalman filter)
 - * distribution of weight files from training
 - * included in ILDConfig package?
 - * what about SiD & CLIC?
 - * related: need to raise experts capable of making own training files
 - * Long-term goals
 - continued improvement in vertex/jet finding, flavor tagging
 - * e.g. calibration of output variables for different categories
 - * effect of backgrounds: on jet clustering in particular

MyLcfiplusProcessor	1.472000e+02 s	100 1
MyClupatraProcessor MyFullLDCTracking_MarlinTrk	1.078700e+02 s 9.256000e+01 s	100 evts
MyMarlinPandora	1.558000e+01 s	zpole bb
MySiliconTracking_MarlinTrk	5.690000e+00 s	1

Single track vertices

*

T. Suehara

(bbhh 100 events)	b	С	0
# MC hadrons	486	585	
# single track vertex (reco)	113	102	18
\rightarrow # MC matched (1 trk)	59	19	
\rightarrow # MC matched (2 trks)	21	16	

Single-track vertex finding: ZVKIN algorithm exists but was never used in production (to our knowledge)

Instead, a simple geometrical approach:

- * given a secondary vertex, look for a nearby track, compatible with an additional vertex
- * Cut-based selections found to give promising results; to be included as a variable in flavor tagging

Procedure (preliminary)

- * Find a track whose distance to the projected vertex line is < 0.1 D
- * Angle between track (at vertex) and the projected vertex line must be < 0.5 rad
- * 0.3 mm < D < 30 mm
- * d_0 or z_0 significance of T > 5

Conclusions

- * LCFIPlus released and included in iLCSoft
 - * use of TMVA, flexible configuration via XML steering files
- * Documentation framework ready, content to be provided soon
- ***** Looking ahead:
 - * validation!
 - slow vertex finders
 - * need to raise experts from SiD & CLIC