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Outline 
Lecture 1:  Introduction and basic formalism 

 Probability, statistical tests, parameter estimation. 

Lecture 2:  Discovery and Limits 
 Quantifying discovery significance and sensitivity 
 Frequentist and Bayesian intervals/limits 

Lecture 3:  More on discovery and limits 
 Bayesian limits 
 The Look-Elsewhere Effect 
 Dealing with nuisance parameters 
 Expected discovery significance 

Lecture 4:  Unfolding (deconvolution) 
 Correcting distributions for effects of smearing 
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Formulation of the unfolding problem 

New goal:  construct  
estimators for the µj (or pj). 

“true” histogram 

Consider a random variable y, goal is to determine pdf f(y). 

If parameterization f(y;θ) known, find e.g. ML estimators    . 

If no parameterization available, construct histogram:   

 !̂
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Migration 

discretize:  data are 

response 
matrix 

Effect of measurement errors:  y = true value, x = observed value, 

 migration of entries between bins, 

 f(y) is ‘smeared out’, peaks broadened. 

Note µ, ν are constants; n subject to statistical fluctuations. 
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Efficiency, background 

efficiency 

Sometimes an observed event is due to a background process: 

Sometimes an event goes undetected: 

βi = expected number of background events in observed histogram. 

For now, assume the βi are known.  
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The basic ingredients 

“true” “observed” 
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Summary of ingredients 
‘true’ histogram: 

probabilities: 

expectation values for observed histogram: 

observed histogram: 

response matrix: 

efficiencies: 

expected background: 

These are related by: 
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Maximum likelihood (ML) estimator 
from inverting the response matrix 

Assume  can be inverted: 

Suppose data are independent Poisson: 

So the log-likelihood is 

ML estimator is  
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Example with ML solution 

Catastrophic 
failure??? 
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What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have ν, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.
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ML solution revisited 

For Poisson data the ML estimators are unbiased: 

Their covariance is: 

(Recall these statistical errors were huge for the example shown.) 
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ML solution revisited (2) 
The information inequality gives for unbiased estimators the  
minimum (co)variance bound: 

invert → 

This is the same as the actual variance!  I.e. ML solution gives 
smallest variance among all unbiased estimators, even though 
this variance was huge. 

In unfolding one must accept some bias in exchange for a 
(hopefully large) reduction in variance. 
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Correction factor method 

Nonzero bias unless MC = Nature.  

Often Ci ~ O(1) so statistical errors far smaller than for ML. 
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Reality check on the statistical errors 

Suppose for some bin i we have:  

Example from Bob Cousins 

But according to the estimate, only 10 of the 100 events 
found in the bin belong there; the rest spilled in from outside. 

How can we have a 10% measurement if it is based on only 10 
events that really carry information about the desired parameter? 

(10% stat. 
error) 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 15 

Discussion of correction factor method 

As with all unfolding methods, we get a reduction in statistical 
error in exchange for a bias; here the bias is difficult to quantify 
(difficult also for many other unfolding methods). 

The bias should be small if the bin width is substantially larger  
than the resolution, so that there is not much bin migration. 

So if other uncertainties dominate in an analysis, correction factors 
may provide a quick and simple solution (a “first-look”). 

Still the method has important flaws and it would be best to 
avoid it. 
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Regularized unfolding 
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Regularized unfolding (2) 
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Tikhonov regularization 

Solution using Singular Value Decomposition (SVD). 
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SVD implementation of Tikhonov unfolding 
A.  Hoecker, V. Kartvelishvili, NIM A372 (1996) 469; 
(TSVDUnfold in ROOT). 

Minimizes  

Numerical implementation using Singular Value Decomposition. 

Recommendations for setting regularization parameter τ: 

 Transform variables so errors ~ Gauss(0,1); 
 number of transformed values significantly different  
 from zero gives prescription for τ; 
 or base choice of τ on unfolding of test distributions. 
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SVD example 
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Edge effects 
Regularized unfolding can lead to “edge effects”.   E.g. in 
Tikhonov regularization with Gaussian data, solution can  go 
negative: 

Solution pushed 
negative. 

Important e.g. if New Physics would appear as a longer tail of 
a distribution. 
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Regularization function based on entropy 

Can have Bayesian motivation: 
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Example of entropy-based unfolding 
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Estimating bias and variance 

G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with Tikhonov regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Some examples with entropy regularization 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Iterative unfolding (“Bayesian”) 

Goal is to estimate probabilities: 

For initial guess take e.g. 

Initial estimators for µ are  

Update according to the rule 

uses Bayes’ theorem here 

Continue until solution stable  
using e.g. χ2 test with previous 
iteration. 

;  see also arXiv:1010.0632.  
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Estimating systematic uncertainty 
We know that unfolding introduces a bias, but quantifying this 
(including correlations) can be difficult. 

Suppose a model predicts a spectrum 

A priori suppose e.g. θ ≈ 8 ± 2.  More precisely, assign prior π(θ). 
Propagate this into a systematic covariance for the unfolded 
spectrum: 

Often in practice, one doesn’t have π(θ) but rather a few models 
that differ in spectrum.  Not obvious how to convert this into 
a meaningful covariance for the unfolded distribution. 

(Typically large 
positive correlations.) 
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Stat. and sys. errors of unfolded solution 
In general the statistical covariance matrix of the unfolded  
estimators is not diagonal; need to report full 

But unfolding necessarily introduces biases as well, corresponding 
to a systematic uncertainty (also correlated between bins). 

 This is more difficult to estimate.  Suppose, nevertheless, 
 we manage to report both Ustat and Usys. 

To test a new theory depending on parameters θ, use e.g. 

Mixes frequentist and Bayesian elements; interpretation of result 
can be problematic, especially if Usys itself has large uncertainty.   
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Folding 
Suppose a theory predicts f(y) → µ (may depend on parameters θ). 

Given the response matrix R and expected background β, this  
predicts the expected numbers of observed events:  

From this we can get the likelihood, e.g., for Poisson data, 

And using this we can fit parameters and/or test, e.g., using 
the likelihood ratio statistic 
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Versus unfolding 
If we have an unfolded spectrum and full statistical and 
systematic covariance matrices, to compare this to a model µ 
compute likelihood 

where 

Complications because one needs estimate of systematic bias Usys. 

If we find a gain in sensitivity from the test using the unfolded 
distribution, e.g., through a decrease in statistical errors, then we  
are exploiting information inserted via the regularization (e.g.,  
imposed smoothness). 
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ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of θ should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Crucial point is to use full covariance, not just diagonal errors. 
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Summary/discussion 
Unfolding can be a minefield and is not necessary if goal is to  
compare measured distribution with a model prediction. 

Even comparison of uncorrected distribution with future theories  
not a problem, as long as it is reported together with the expected  
background and response matrix. 

 In practice complications because these ingredients have 
 uncertainties, and they must be reported as well.  

Unfolding useful for getting an actual estimate of the distribution 
we think we’ve measured; can e.g. compare ATLAS/CMS. 

Model test using unfolded distribution should take account of  
the (correlated) bias introduced by the unfolding procedure. 
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Extra slides 
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Some unfolding references 
H. Prosper and L. Lyons (eds.), Proceedings of PHYSTAT 2011, CERN-2011-006;  
many contributions on unfolding from p 225. 

G. Cowan, A Survey Of Unfolding Methods For Particle Physics,  
www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf 

G. Cowan, Statistical Data Analysis, OUP (1998), Chapter 11. 

V. Blobel, An Unfolding Method for High Energy Physics Experiments, 
arXiv:hep-ex/0208022v1 

G. D'Agostini, Improved iterative Bayesian unfolding, arXiv:1010.0632 

G. Choudalakis, Fully Bayesian Unfolding, arXiv:1201.4612 

Tim Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160v1 
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Dependence of response matrix on physics model 
Often to good approximation, the response matrix is independent 
of the physics model, i.e., 

is by construction independent of how often the model puts an 
event in bin j. 

But it can still depend on the underlying model.  E.g. if one model 
generates jets very forward, this has different pT resolution than 
another model that puts jets mainly in the barrel. 

Same problem regardless of whether folding or unfolding. 

Can improve situation by measuring both the variable of interest 
(say, pT), as well as another variable that correlates with the  
resolution.  Response “matrix” now has 4 indices: 

 Rijkl = P(observed in cell ij | true value in cell kl) 
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Determining the response matrix 
Usually determine response matrix from MC, some smoothing 
often useful.   E.g. first make scatterplot of measured versus true: 

S. Paramesvaran, PhD thesis (BaBar), RHUL, 2010. 
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Parameterizing the response matrix 
Then cut the scatterplot into vertical slices, and fit each 
with an appropriate function (here, Student’s t distribution): 

S. Paramesvaran, PhD thesis (BaBar), RHUL, 2010. 



G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 41 

Parameterizing the response matrix (2) 
Then fit these parameters as a function of the true variable: 

S. Paramesvaran, PhD thesis (BaBar), RHUL, 2010. 

These can then be treated as nuisance parameters and the  
likelihood function extended to include the constraints on them  
from knowledge of the detector (e.g., from the fits above or 
subsidiary measurements). 


