
Object Sharing
Demonstrator Plans

Paolo Calafiura

Tracking

Motivation: Multi-processing
Beyond Event Parallel

Manycore pushing us
beyond event parallel

– Smaller processes
– Improved locality

Event I/O first use case
– ROOT dict and buffer

sharing
– Better caching, less

(un)zipping

TrackingTrackingTracking

TrackingPID

Event I/O TrackingTrackingMonitoring

Object Sharing will be Crucial

Persistent Store

Event
Worker

Event
Reader

Physics
Algorithms

Pipe or
shared memory access

Tracking Process PID Process

Event
WorkerThe Tracks

LCG Concurrency Forum

What do we want to do?

Demonstrate sharing of C++ objects among processes
– Issue:

• In general objects created in one C++ process are not usable by
another

– vtable contents are process-specific

– Two possible solutions so far
• Stream objects as PODs using T/P conversion

– See Peter Van Gemmeren talk at FNAL concurrency workshop
https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=3&resId=1&materialId=slides&confId=4986

• Force linker/loader to make objects interchangeable
– See Roberto Vitillo's talk at FNAL concurrency workshop

https://indico.fnal.gov/getFile.py/access?contribId=21&sessionId=3&resId=0&materialId=slides&confId=4986

Demonstrate simple access synchronization scheme
– Focus on event reader/worker/writer use case

• Read-only objects (at least for now)
• Low bandwidth o(MB/s/process)

https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=3&resId=1&materialId=slides&confId=4986
https://indico.fnal.gov/getFile.py/access?contribId=21&sessionId=3&resId=0&materialId=slides&confId=4986

LCG Concurrency Forum

Plans for the next six months

• Contrast the two sharing approaches
– e.g. framework specific vs platform specific

→ determine best sharing approach for event I/O use case
• Investigate synchronization mechanism

– e.g. Unix pipes, boost interprocess,...
→ determine best synchronization approach for event I/O

• Who will work on this?
– Peter Van Gemmeren and LBL athena group
– Input/help sought from

• the “Whiteboard group”
• C++ language/portability experts (on pitfalls of sharing live objects)
• Scheduling/synchronization experts

	CHEP 2010: Title Page
	Slide 2
	Slide 3
	Slide 4
	Slide 5

