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Motivation: Multi-processing 
Beyond Event Parallel

Manycore pushing us 
beyond event parallel

– Smaller processes
– Improved locality

Event I/O first use case
– ROOT dict and buffer 

sharing
– Better caching, less 

(un)zipping
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Object Sharing will be Crucial
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LCG Concurrency Forum

What do we want to do?

Demonstrate sharing of C++ objects among processes
– Issue:

• In general objects created in one C++ process are not usable by 
another

– vtable contents are process-specific

– Two possible solutions so far
• Stream objects as PODs using T/P conversion

– See Peter Van Gemmeren talk at FNAL concurrency workshop
https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=3&resId=1&materialId=slides&confId=4986

• Force linker/loader to make objects interchangeable
– See Roberto Vitillo's talk at FNAL concurrency workshop

https://indico.fnal.gov/getFile.py/access?contribId=21&sessionId=3&resId=0&materialId=slides&confId=4986

Demonstrate simple access synchronization scheme
– Focus on event reader/worker/writer use case

• Read-only objects (at least for now)
• Low bandwidth   o(MB/s/process) 

https://indico.fnal.gov/getFile.py/access?contribId=14&sessionId=3&resId=1&materialId=slides&confId=4986
https://indico.fnal.gov/getFile.py/access?contribId=21&sessionId=3&resId=0&materialId=slides&confId=4986


LCG Concurrency Forum

Plans for the next six months

• Contrast the two sharing approaches
– e.g. framework specific vs platform specific

→ determine best sharing approach for event I/O use case
• Investigate synchronization mechanism

– e.g. Unix pipes, boost interprocess,...
→ determine best synchronization approach for event I/O

• Who will work on this?
– Peter Van Gemmeren and LBL athena group
– Input/help sought from 

• the “Whiteboard group”
• C++ language/portability experts (on pitfalls of sharing live objects)
• Scheduling/synchronization experts
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