
Parallelization
Opportunities in Math

Libraries

Forum on Concurrent Programming Models and Frameworks,

Wednesday 1/02/2012

Lorenzo Moneta

1

Problem Domain
✦ Mathematical libraries

✦ mathematical functions
✦ geometry (3D) and physics vectors (4D)
✦ matrix and vector classes and linear algebra
✦ random number generations
✦ Numerical algorithms

✦ numerical integration
✦ minimization

✦ Statistics libraries
✦ fitting (parameter estimation)
✦ Toy MC generations (sampling from probability distribution)
✦ multivariate analysis tools
✦ advance tools for interval (limit) and significance estimation

✦What are the most important applications using these
libraries ?

✦Which opportunities do we have to parallelize the
libraries to speed up these applications ?

2

Data Analysis Applications
✦Statistical techniques all based on the likelihood function

✦ each event is described by a probability density function (PDF)

✦ all methods require evaluation of the likelihood
✦ parameter estimation (maximum likelihood fit)
✦ interval estimation (e.g. mass limits in particle searches)
✦ hypothesis tests (significance of discovery for new particles)

✦ Bayesian Methods:
✦ based on integrating the likelihood

✦ Frequentist methods
✦ require distribution of a test statistic

✦ e.g. profiled likelihood ratio
✦ require repeated generation and fitting of pseudo data (toys)

L(x|✓) =
Y

i

P (xi|✓)P (x|✓)

Z
L(x|µ, ⌫)⇧(µ, ⌫)d⌫

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)

Likelihood:

3

Data Analysis Parallelization
✦ Use typically RooFit for building complex PDF and RooStats for running

statistical analysis
✦ models with many PDF, many observables and a lot of parameters

✦ e.g. Higgs combination (more than 200 parameters and several channels)

✦ Possible various level of parallelizations:
✦ PDF evaluation
✦ Loop on events for computing log-likelihood
✦ Algorithms (e.g Minuit) require multiple likelihood evaluations
✦ Loop on toy data analysis (on various likelihood minimization)
✦ Repetition of same analysis on different inputs (analysis points)

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L
lim

it
on

-110

1

10

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary, ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,

4

Parallelization of Minuit
Parallelization of MIGRAD algorithm (presented ACAT 2008)

Each Migrad iteration consists of:
 computing function value and gradient to find Newton direction
 computing step by searching for minimum along the Newton direction
 if satisfactory improve calculation of Hessian matrix, H
 invert to get new matrix V = H-1

 repeat iteration until expected distance from minimum smaller than tolerance

 In case of many parameters (> 10) and complex function evaluation,
gradient calculation dominates the process:

 al least 2 * NDIM function evaluation are needed

Parallelize calculations by using a thread for each partial derivative

Use OpenMP (multi-thread) or MPI (multi-processes)

 Available in ROOT for Minuit2 since version 5.22 (3 years ago)

⇤i(x) =
⇥f

⇥xi
⇥ f(xi + �xi)� f(xi � �xi)

2�xi

A. Lazzaro & L.M.

5

Minuit parallelization
Minuit parallelization is independent of user code

 requires thread safety user code to evaluate the likelihood function when
using OpenMP

 Examples:

 Log-likelihood parallelization (splitting the sum) is more efficient but
requires the user to change its code

N param = 20

complex BaBar fitting by A. Lazzaro
and parallelized using MPI

unbinned fit with 20 parameters
using openMP

6

RooFit/RooStats Parallelization
✦ RooFit supports parallelization in evaluating log-likelihood function

✦ multi-process parallelization
✦ use fork to parallelize likelihood on multi-processes

✦ pdf->fitTo(data, NumCPU(8));
✦ Support also for PROOF and PROOFLite

✦ for multiple likelihood fits (e.g. for toy studies, goodness of fits, etc.)

✦ RooStats: parallelization of toys (generation and fitting) using PROOF
✦ loop on toys to obtain test statistic distributions
✦ results from each toy (ROOT object) are automatically merged and returned

to the user
✦ PROOFLite is very convenient to use on user desktops
✦ tested also on large clusters (ATLAS)
✦ memory can start to be a problem with very large models and many cores

✦ Trivial parallelization performed at job level
✦ run several jobs on Grid or on cluster each with a small number of toys
✦ RooStats provides the tools for merging results but user still needs to do it
✦ most common usage of RooStats for complex analysis

7

Likelihood Parallelization
✦ Study Likelihood parallelization in detail (A. Lazzaro, Openlab)

8

Log-Likelihood Evaluation

Possible various level of parallelization
9

Vectorization of PDF’s
✦ Organize data (observables) as vectors
✦ Evaluate PDF not on a single observables but on vector of

observables

✦ data vector is read-only during evaluations
✦ evaluate vector of pdf results traversing the tree

✦Allows SIMD vectorization during the pdf evaluation

Pi = P (xi|✓) =) �!P (�!x |✓)

10

Openlab Prototype

✦ Studied parallelization at various levels using multi-threads
✦CPU with OpenMP
✦GPU with CUDA or OPENCL
✦hybrid setup to optimize CPU/GPU load with OpenCL

✦Levels:
✦parallelize loop on the single PDF evaluation of the

observables
✦parallelize outer loop for summing the final result

✦Try to have minimal change in RooFit code
✦ see various Openlab presentations and reports

11

Openlab Prototype Findings
✦ Inner loop parallelization:

✦ small memory footprint and better for race conditions
✦ suffer from OpenMP overhead in having multiple parallel regions
✦ require manage a large number of arrays with the evaluation

results
✦ cache problems when evaluating composite PDF’s

✦ much better scalability when using processors with larger cache
✦ GPU -> CPU communication problems for summing final results

✦Outer loop parallelization:
✦ better scalability
✦ suffer from race conditions
✦ more difficult to implement, it requires more changes in original

code
✦ developed prototype has many changes and is difficult to port in

RooFit production code

12

Conclusions on Likelihood Parallelizations

✦Lesson learnt:
✦ PDF vector evaluation is promising and should be further

investigated
✦ importance of optimizing and redesigning code to have good

scalability for many threads
✦ this will result also in a faster scalar version of the code

✦ need to work in close collaboration with the RooFit author for
an optimal solution

✦ Important note:
✦ Numerical precision problems when evaluating final log-likelihood

sum from the thread-results
✦ need appropriate algorithm (e.g. Kahan summation) which minimizes

evaluation errors

13

Vectorization
✦Another parallelization dimension

✦ the vector processing using SIMD (Single Instruction Multiple Data)

✦ Perform numerical operations in parallel
✦ size of registers depending on architectures

✦ SSE : 128 bits : 2 double’s or 4 float’s
✦ AVX: 256bit : 4 double’s or 8 float’s)

✦Compilers can try to perform auto-vectorization of loops
✦ require data organize in vectors and iteration independence
✦ branches (if statement) can break vectorization
✦ new compilers (e.g. gcc 4.6) are much better

✦Can use special instructions for processors (intrinsic)
✦ SSE or AVX instructions

✦ Libraries exist to hide this complexity to user
✦ e.g. Vc library

14

Vc Library
✦ C++ library developed by M. Kretz (and V. Linderstruth) to ease

vectorization
✦ Used in processing tracks in ALICE L3 trigger (Kalman filter) with very

good results
✦ See http://code.compeng.uni-frankfurt.de/projects/vc/

✦ portable across compilers and architectures
✦ application written in Vc can be compiled for SSE, AVX and scalar case

✦ Vc provides new vector types:
✦ Vc::float_v or Vc::double_v
✦ float_v::Size will depend on architecture (e.g 8 on AVX)
✦ basic operations (+,-,/,*) for these types are supported
✦ also basic Math and transcendental functions (sin,cos, log,etc..)

✦ exponential is not yet implemented

✦ User can vectorize code without need to use and know intrinsic
instructions

15

http://code.compeng.uni-frankfurt.de/projects/vc/
http://code.compeng.uni-frankfurt.de/projects/vc/

Vc Code Example

from M. Kretz diploma thesis
16

Vc Code Example (2)
✦ Same code using intrinsic for SSE

17

Vc Evaluation
✦ An initial evaluation performed 2 years ago
✦ Try to use Vc as a template argument in the ROOT matrix and vector

libraries
✦ SMatrix<double_v, N> , SVector<double_v, N>
✦ also tried in Physics and Geometrid vectors (e.g. LorentzVector)
✦ when looping on set of vector or matrices, loop size reduced by the size of

the Vc type (NITER = NITER / double_v::Size)
✦ example: Kalman filter equations for updating error matrix

✦ Some tests show promising results, but in some cases no significative
improvement found
✦ explained as some compiler limitation at that time (gcc 4.4 was used)

✦ Would be interesting to try with new compiler versions
✦ Should to continue evaluation and maybe provide as a possible library

to use either inside ROOT or externally ?
✦ Matrix and Vector libraries should be able to profit from it

✦ Can be useful for reconstruction or simulation applications

18

Vectorization Activities in CMS
✦ Activities by D. Piparo and V. Innocente (CMS)
✦ New fast implementation of transcendental functions using Cephes

(an old C library)
✦ Make code in a way that can be auto-vectorized by compiler

✦ no need to use intrinsic
✦ provide API to pass arrays of values instead a single one

✦ double exp(double x) ⇒ void exp_vect(const double *, double *, int)

✦ Promising results obtained
✦ use latest compiler version 4.7
✦ good speed-up and also the numerical results are at the expected precision

✦ Functions are being included in CMS SW framework
✦ Consider to include these functions at some point in ROOT for

common usage ?
✦ require latest compiler versions for vectorization and use also C++OX

✦ CMS is also trying to parallelize (using OpenCL) some heavy used SMatrix
operations (e.g. similarity ATBA)
✦ see presentation of T. Hauth at one of the last meetings

19

Random Numbers
✦ Parallelization of pseudo-random numbers generators

✦ most used generator are very fast (RanLux is maybe the exception)
✦ time in generating random numbers is often not critical in majority of our

applications
✦ one does much more time consuming things with a random number

✦ Using the random numbers in parallel application is more problematic
✦ many good generators have a very large state

✦ e.g. Mersenne and Twister (TRandom3) has state of 624 words (32 bits)
✦ This makes them problematic to run on GPU

✦ see work from F. Carminati and others presented at ACAT 2011

✦ problem in seeding many independent sequences and in bookkeeping them
✦ need generator with very long periods, which normally can be obtained only with

large states
✦ need care in seeding the generators to have really independent states

✦ or dedicated parallel generators which allow to jump in the sequence
✦ need to know in advance max length of each stream

20

New Parallel Random Numbers
✦ New PRNG based on counters without a state (J. Salmon et al.)

✦ based on a counter n and key k
✦ k : xn = fk(n)

✦ instead of an iterative sequence
✦ xi -> xi+1 = f(xi)

✦ no state (can be easily used in parallel applications)
✦ generators derived from algorithms used in cryptography
✦ awarded best paper at the SC11 conference

✦ These new generators pass the most stringent tests
✦ BigCrush of TestU01 from L’Ecuyer

✦ but are empirical generators (lack of mathematical analysis)
✦ very complex algorithm

✦ interesting to watch this new development

21

Summary
✦ Parallelization in tools for data analysis and concentrated on likelihood

evaluation (fitting)
✦ most time consuming tasks and immediate benefit for end-users
✦ other analysis tools (e.g. multi-variate tools) would benefit as well from same

code optimization
✦ very useful findings from prototype developed by Openlab
✦ opportunity to work on optimize and parallelize algorithms at the same time

✦ Whenever possible, a parallelized version of an algorithm should be
provided
✦ Example of Minuit. Parallel version can be used without changing user code

✦ Need to improve also thread safety of existing code
✦ Started investigation of parallelization in vector and matrix operations

(reconstruction or simulation applications)
✦ vectorization looks promising

✦ Random number generators for parallel applications
✦ Other parallelization opportunities exist but less relevant in HEP

✦ e.g. parallelization of large linear algebra systems

22

References

✦ OpenLab parallelization studies:
✦ Various reports, latest ones:

✦ S. Jarp et al., Parallel Likelihood Function Evaluation on Heterogeneous Many-core Systems, proceeding of
International Conference on Parallel Computing, Ghent, Belgium, 2011. EPRINT: CERN-IT-2011-012

✦ S. Jarp et al., Parallel Likelihood fits with OpenMP and CUDA, Journal of Physics: Conference Series EPRINT:
CERN-IT-2011-009

✦ Vc
✦ http://code.compeng.uni-frankfurt.de/projects/vc/
✦ M. Kretz, V. Lindenstruth, Vc, a C++ Library for explicit vectorization
✦ M. Kretz, Efficient Use of Multi- and Many-Core Systems with Vectorization and

Multithreading, Diplomarbeit (2009)

✦ Pseudo-Random Number Generators based on counters
✦ http://www.thesalmons.org/john/random123/papers/random123sc11.pdf

23

http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1328927/files/CERN-IT-2011-009.pdf
http://cdsweb.cern.ch/record/1328927/files/CERN-IT-2011-009.pdf
http://code.compeng.uni-frankfurt.de/projects/vc/
http://code.compeng.uni-frankfurt.de/projects/vc/
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://code.compeng.uni-frankfurt.de/attachments/13/Diplomarbeit.pdf
http://www.thesalmons.org/john/random123/papers/random123sc11.pdf
http://www.thesalmons.org/john/random123/papers/random123sc11.pdf

