

Outline

2×Charm

LHCb Detector & Data sample

Event Selection

2×Charm signals

Efficiency corrections

Systematics

Cross-sections & ratios

Properties of 2×Charm events

Conclusions

Heavy quark production in pp(gg)-collisions

LHC is LgC

- Open beauty & open charm:
 - "well known"
 - The measurements are in a reasonable agreement with state-of-art pQCD calculations
- Charmonium & bottomonium:
 - few open questions and puzzles
 - Polarization?
 - Color Singlet/CS vs Color Octet/CO
 - Recently very good progress with theory NLLO*

- Double (charm)onia
 - Test for CO vs CS
 - 2×J/ψ is measured by
 NA3 in 1982 [PLB 114 457, PLB 158, 85]
 LHCb in 2011 [PLB 707 52]
 - LHCb measurement is in excellent agreement with pQCD calculations for

$$gg \rightarrow 2 \times J/\psi$$

$$\sigma_{LHCb} = 5.1 \pm 1.0 \pm 1.1 \text{ nb}$$

$$\sigma_{gg} = 4 \text{ nb}$$

How to get 2xCharm?

- pQCD matrix elements $gg \rightarrow 2 \times J/\psi$ and to $gg \rightarrow$
 - $c\bar{c}J/\psi$ and $gg \rightarrow c\bar{c}c\bar{c}$
 - ullet Agrees well for $2 \times J/\psi$

A.Berezhnoy et al., Phys Rev **D57** 4385 (1998)

S.P.Baranov, Phys Rev **D73** 074021 (2000)

J.-P.Lansberg, Eur.Phys.J. C61 693 (2009)

- Intrinsic Charm:
 - Charm from (badly known) charm PDF
 - Lack of predictive power
- Double Parton Scattering
 - Simple paradigm with raising popularity

Double Parton Scattering

Google 240k documents

Double-Parton Scattering is Not Rare « Collider Blog •

muon.wordpress.com/.../double-parton-scatt... - Перевести эту страницу 29 Dec 2009 – The thrust of the Berger, Jackson and Shaughnessy paper is a study showing that clear evidence for double-parton scattering can be obtained ...

[PDF] Double Parton Scattering at the LHC –

moriond.in2p3.fr/QCD/2011/.../Berger.pdf - Перевести эту страницу

Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр

Double Parton Scattering at the LHC –. Dynamic and Kinematic Characteristics. Example: $pp \rightarrow b^{-}b$ jet jet X. Edmond L Berger. Argonne National Laboratory ...

Phys. Rev. D 56, 3811 (1997): Double parton scattering in p[over]p ... •

link.aps.org > ... > Volume 56 > Issue 7 - Перевести эту страницу

The process-independent parameter of **double parton scattering**, σ eff, is obtained without reference to theoretical calculations by comparing observed DP events ...

Fresh look at double parton scattering - APS Link Manager •

link.aps.org > ... > Volume 83 > Issue 11 - Перевести эту страницу

24 Jun 2011 – A revised formula for the inclusive cross section of a **double parton** scattering process in a hadron collision is suggested basing on the modified ...

Double Parton Scattering •

www-cdf.fnal.gov/.../double_parton_summ... - Перевести эту страницу

Double Parton Scattering in pbar-p Collisions at root s = 1.8 TeV In a paper submitted to Physical Review Letters, the CDF collaboration announced the first ...

Signals for **Double Parton Scattering** at the Fermilab Tevatron

arxiv.org > hep-ph - Перевести эту страницу

29 May 1996 – Abstract: Four **double-parton scattering** processes are examined at the Fermilab Tevatron energy. With optimized kinematical cuts and realistic ...

Double parton scattering of hadron-hadron interaction and its ... •

arxiv.org > hep-ph - Перевести эту страницу

25 Apr 1997 – Title: **Double parton scattering** of hadron-hadron interaction and its gluonic contribution. Authors: Hung Hsiang Liu (Inst. of Phys, Academia ...

PDFI Signals for Double Parton O

www.phys.psu.edu/~cteq/.../flaugher.pdf - Перевести эту страницу

Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр

Double Parton Scattering (DPS). Two parton-parton hard scatters in one pp collision. Extend knowledge of proton structure. 0 spatial distribution of partonsinside ...

High Energy Physics Group - Double Parton Scattering •

www.hep.phy.cam.ac.uk/theory/.../dps.html - Перевести эту страницу

Cavendish High Energy Physics Group Research Theory Double Parton Scattering.

Is double parton scattering useful? O

www.physicsforums.com/showthread.php?t... - Перевести эту страницу

Заблокировать все результаты с www.physicsforums.com

Сообщений: 2 - Авторов: 2 - 19 июл 2011

Is double parton scattering useful? High Energy, Nuclear, Particle Physics discussion.

Vanya Belyaew

DPS: simple paradigm

Two independent scattering processes Relations through (unknown) 2PDFs

$$\Gamma_{ij}(x_1,x_2;\mathbf{b_1},\mathbf{b_2};Q_1^2,Q_2^2) \ = \ D_h^{ij}(x_1,x_2;Q_1^2,Q_2^2)f(\mathbf{b_1})f(\mathbf{b_2}),$$

Assume factorization of 2PDFs

$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2).$$

(Can't be true for all x,Q^2)

Easy to make predictions!

And the predictions are easy to test

$$\sigma_{\rm DPS}^{AB} = \frac{m}{2} \frac{\sigma_{\rm SPS}^A \sigma_{\rm SPS}^B}{\sigma_{\rm eff}}.$$

Universal (energy and process independent) factor

$$1/\sigma_{eff} = \int d^2b F^2(b)$$

$$\sigma_{\text{eff}}^{\text{DPS}} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$$

CDF, F.Abe et al., PDR 56 3811 (1997)

2×Charm as proton probe

- Intrinsic Charm Model:
 - we are testing/constraining (badly known) charm
 PDFs typical uncertainties ×2
- Double Parton Scattering
 - Provide 2PDFs
 - Measure σ_{eff} <u>universal</u> proton property

2×Charm @ LHCb

ullet We want to measure $c\overline{c}c\overline{c}$

 $C = D^0, D^+, D_s, \Lambda_c$

- J/\(\psi\)C and CC
- As bonus CC
 - Dominated by the regular $gg \rightarrow c\bar{c}$
 - More information useful from correlations
 - Gluon splitting, flavour creation, etc.
 - Similar to CDF'2k+6
- In total 25 possible modes:

$$c\bar{c}c\bar{c}$$
 $(1 \text{ J/}\psi\text{J/}\psi) + 4 \text{ J/}\psi\text{C} + 10 \text{ CC}$
 $gg \rightarrow c\bar{c}$ 10 CC

Predictions for LHCb

	Mode	$\sigma_{ m gg}$		$\sigma_{ m DPS}$	$\sigma_{ m IC}$	
2		[nb]				
3	$\mathrm{J}/\psi\mathrm{D}^0$	10 ± 6	7.4 ± 3.7	146 ± 39	220	
ž.	$J/\psi D^+$	5 ± 3	2.6 ± 1.3	60 ± 17	100	
	$\mathrm{J}/\psi\mathrm{D_s^+}$	1.0 ± 0.8	1.5 ± 0.7	24 ± 7	30	
١	$J/\psi \Lambda_c^+$	0.8 ± 0.5	0.9 ± 0.5	56 ± 22		
3			[μ	[b]		
2	$\mathrm{D}^0\mathrm{D}^0$			2.0 ± 0.5	1.5	
6	D_0D_+			1.7 ± 0.4	1.4	
5	$\mathrm{D^0D_s^+}$	$\Sigma=0.1\mu b$		0.65 ± 0.15	0.4	
2	$D^0\Lambda_c^+$			1.5 ± 0.5	1.4	
>	D_+D_+			0.34 ± 0.09	0.3	
-	$\mathrm{D^+D_s^+}$			0.27 ± 0.07	0.2	
	$D^+\Lambda_c^+$			0.64 ± 0.23		

σ_{gg}

A.Berezhnoy et al., Phys Rev **D57** 4385 (1998) S.P.Baranov, Phys Rev **D73** 074021 (2000)

J.-P.Lansberg, Eur.Phys.J. C61 693 (2009)

σ_{DPS}

based on LHCb measurements of

[EPJ C71 1645] $\sigma_{\mathrm{J/w}}$

[LHCb-CONF-2010-013]

C.H.Kom, A.Kulesza & J.W.Stirling, Phys.Rev.Lett, 107 082002 (2011)

S.P.Baranov, A.M.Snigirev and N.P.Zotov,

Phys.Lett. B705 116 (2011)

A.Novoselov, arXiv:1105.62076

M.Luszczak, R.Maciula, A.Szczurek,

arXiv:1111.3255

$\sigma_{\rm IC}$

based on Alekhin's PDFs

S.Alekhin, PRD68 014002

2×Charm

LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios Properties of 2×Charm events Conclusions

How to measure 2×Charm?

- Need excellent detector:
 - Track reconstruction and momentum resolution
 - Hadron identification
 - Muon identification
 - Vertex/lifetime/impact parameter resolution
 - Efficient trigger for muons and hadrons
- Need high statistics...

Natural choice: LHCb at LHC

LHCb: beauty detector

VELO

Tracking system

Hadron ID

Calorimeter system

Muon system

Trigger

LO hardware

• high- p^{T} μ , 2μ , h, e^{\pm} , γ

Software Hlt1

- Reconstruct μ, 2μ,h
- cut on IP, p^{T} , mass

Software H1t2

- Full reconstruction of J/ψ
- Full reconstruction of open charm hadrons

DAQ records information needed for off-line trigger matching, allowing determination of trigger efficiency directly from data

Lumi'2k+11 1.1fb-1 recorded at \sqrt{s} =7TeV

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios Properties of 2×Charm events Conclusions

Analysis strategy

- Determine the *model independent* cross-sections in LHCb fiducial volume
- Reconstruct prompt charm hadrons: 3< p_C^T <12 GeV/c $p_{J/\psi}^T$ < 12 GeV/c

$$D^0{\longrightarrow} K^-\pi^+,\, D^+{\longrightarrow} K^-\pi^+\pi^+,\, D_s{\longrightarrow} (K^+K^-)_\phi\pi^+,\, \Lambda_c{\longrightarrow} p^+K^-\pi^+$$

- Take care about background and keep track on efficiency determination
 - Use sPlot technique for background subtraction
 - Use per-event efficiency correction
 - Extract efficiencies from data (when possible)

Event Selection

J/ψ two muons in common PV vertex

Open charm hadrons

Event Selection

J/ψC two charm with common vertex

2×Open charm hadrons

Charm hadron reconstruction

- Start from good quality tracks
- Apply positive PID μ, K, π, p
- Vertex quality cuts
- PV & decay consistency
- $c\tau$ cut for open charm hadrons
- As similar as possible (a bit tighter for Λ_c)

"3 σ mantra"

- Daughter particles do not point to PV $(>3\sigma)$
- Mother particle does point to PV $(<3\sigma)$
- Mother particle has non-zero lifetime (except J/ψ)
- The decay structure is self-consistent

Charm hadrons

2×Charm

- PV the only one cut $\chi^2_{fit}(C_1C_2)/ndf < 5$
- By construction: 100% efficiency for signal:

 - $\chi^2_{fit}(C_1)/ndf < 5 \& \chi^2_{fit}(C_2)/ndf < 5$
 - * Remove particles from different PV (pileup)
- Apply trigger matching:

J/\pC require the event is triggered by J/\p

CC and $C\overline{C}$: either of open charm hadrons triggers event

2×Charm

LHCb Detector & Data sample

Event Selection

2×Charm signals

Efficiency corrections

Systematics

Cross-sections & ratios

Properties of 2×Charm events

Conclusions

J/ψC 2D-mass spectra

Clear $c\bar{c}c\bar{c}$ signals!

D⁰C 2D-mass spectra

Clear $c\bar{c}c\bar{c}$ signals!

D+C 2D-mass spectra

 $c\overline{c}c\overline{c}$

D⁰C 2D-mass spectra

CC

2D-mass spectra

 $gg \rightarrow c\overline{c}$

Signal Extraction

 2D- unbinned maximum likelihood fit

$$F(m_i m_j) \propto N^{S_i \times S_j} \times S_i(m_i) S_j(m_j) + N^{S_i \times B_j} \times S_i(m_i) B_j(m_j)$$

$$+ N^{B_i \times S_j} \times B_i(m_i) S_j(m_j) + N^{B_i \times B_j} \times B_i(m_i) B_j(m_j)$$

Signal

J/ψ: double-sided Crystal Ball

Open Charm: «Bukin»

Background: exponential

Extensive goodness-of-fit tests

Cross-check (binned) fit-in-slices

Significance

Yields & Significances

6	Mode	Yield	Significance	Goodness-of-fit[%]
	$J/\psi D^0$	4875 ± 86	$> 30\sigma$	59
3	$J/\psi D^+$	3323 ± 71	$> 30\sigma$	26
2	$J/\psi D_s^+$	328 ± 22	13.6σ	65
2	$J/\psi\Lambda_{c}^{+}$	116 ± 14	7.3σ	98
_	Mode	\mathcal{Y}	\mathcal{S}_{σ}	\mathcal{P} [%]
6.	D_0D_0	1087 ± 37	27σ	4.5
Ž.	${ m D}^0ar{ m D}^0$	10080 ± 105	$> 30\sigma$	33
	D_0D_+	1177 ± 39	29σ	24
12	$\mathrm{D}_0\mathrm{D}-$	11224 ± 112	$> 30\sigma$	36
,E	$\mathrm{D^0D_s^+}$	111 ± 12	8σ	10
f)	$\mathrm{D^0D_s^-}$	859 ± 31	26σ	13
ě	$D^0\Lambda_c^+$	41 ± 8	5σ	9
3	$\mathrm{D}^0 \bar{\Lambda}_{\mathrm{c}}^-$	308 ± 19	14σ	35
2	D_+D_+	249 ± 19	12σ	15
14	D_+D	3236 ± 61	$> 30\sigma$	67
	$D^+D_s^+$	52 ± 9	5σ	54
3	$D^+D_s^-$	419 ± 22	18σ	59
À	$D^+\Lambda_c^+$	21 ± 5	2.5σ	36
	$D^+\bar{\Lambda}_c^-$	137 ± 14	8σ	7

>5σ				
4 J/ψC				
6 CC				
7 C̄C̄				

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios Properties of 2×Charm events Conclusions

Per-event efficiencies:

$$\begin{split} \epsilon^{tot} &\equiv \epsilon^{acc\&rec\&sel} \times \epsilon^{pid} \times \epsilon^{trg} \times \epsilon^{*track} \\ \epsilon^{acc\&rec\&sel} &\equiv \epsilon_1^{acc\&rec\&sel} \times \epsilon_2^{acc\&rec\&sel} \\ \epsilon^{pid} &\equiv \Pi \epsilon^K \times \Pi \epsilon^\pi \times \Pi \epsilon^p \quad \left[\quad \times \epsilon^{2\mu,J/\psi} \right] \\ \epsilon^{*track} &\equiv \Pi \quad \epsilon^{*track} \\ \epsilon^{trg}(J/\psi C) &\equiv \epsilon^{trg}(J/\psi) \\ \epsilon^{trg}(CC,C\overline{C}) &\equiv 1 - (1 - \epsilon_1^{trg}) (1 - \epsilon_2^{trg}) \end{split}$$

Efficiencies II

- $\epsilon_i^{acc\&rec\&sel}$ from (single charm) Monte Carlo Simulation
 - As function of p^{T} & y for D^{0} , D^{+} , D_{s} , Λ_{c}
 - As function of p^{T} ,y & $\cos \theta^{*}$ for J/ψ
- ϵ^{K} , ϵ^{π} and ϵ^{p} from DATA using $\Lambda^{0} \rightarrow p^{+}\pi^{-}$ and $D^{*+} \rightarrow (D^{0} \rightarrow K^{-}\pi^{+})$ π^{+}
 - As function of p&n and #Tracks
- $\epsilon^{2\mu,J/\psi}$ from DATA, using inclusive J/ ψ peak
 - As function of $J/\psi p^T \& y$
- $\epsilon^{trg}(J/\psi)$ & ϵ_i^{trg} from DATA using inclusive J/ψ , D^0 , D^+ , D_s^+ , Λ_c^+
 - As function of p^T&y
- E*track from detailed DATA/MC comparison
 - As function of track $p^{T} & \eta$

Cross-section

- * Use s Weight/s Plot technique:
 - Each event i has weight ω_i from sWeight
 - Probability event to be signal
 - This weight is corrected by $1/\epsilon^{TOT}$

$$N^{\rm corr} = \sum_{i} \frac{\omega_i}{\varepsilon_i^{\rm tot}}.$$

$$\sigma = \frac{N^{\text{corr}}}{\mathcal{L} \times \mathcal{B}_1 \times \mathcal{B}_2 \times \varepsilon^{\text{GEC}}}$$

The price:

The inflation of "statistical" error Need good control over efficiency!

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios

Properties of 2×Charm events

Conclusions

Systematic uncertainties

- Dominant:
 - hadron track reconstruction uncertainty related to hadron interactions in detector:
 - 2% per hadron track
- For modes with Λ_c and D_s large uncertainties due to uncertainties in branching fractions
 - cancelled in ratios
- Uncertainties related to signal extraction and efficiency corrections are small (1-3-5%)

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios Properties of 2×Charm events Conclusions

J/yC cross-sections and ratios

1272	THE ACRES TO THE STATE OF THE S	LHCb Preliminary
	Mode	σ [nb]
2	${ m J}/\psi { m D}^0$	$161.0 \pm 3.7 \pm 10.3 \pm 6.5$
>	$J/\psi D^+$	$56.6 \pm 1.7 \pm 4.9 \pm 3.3$
	$\mathrm{J}/\psi\mathrm{D_{s}^{+}}$	$30.5 \pm 2.6 \pm 2.6 \pm 2.2$
	$\mathrm{J}/\psi\Lambda_\mathrm{c}^+$	$43.2 \pm 7.0 \pm 4.0 \pm 11.3$

Using LHCb measurements for $\sigma_{J/\psi}$ [EPJ C71, 1645] and σ_{C} [LHCb-CONF-2010-013]

			LHCb Preliminary
Mode	$\sigma_{\mathrm{J/\psi C}}/\sigma_{\mathrm{J/\psi}}$ [10 ⁻³]	$\sigma_{\mathrm{J/\psi C}}/\sigma_{\mathrm{C}} \ [10^{-4}]$	$\sigma_{\mathrm{J/\psi}} \sigma_{\mathrm{C}} / \sigma_{\mathrm{J/\psi C}} \; [\mathrm{mb}]$
$J/\psi D^0$	$16.18 \pm 0.38 \pm 1.31^{+3.38}_{-2.52}$	$6.69 \pm 0.18 \pm 0.46$	$14.9 \pm 0.4 \pm 1.1^{+2.3}_{-3.1}$
$J/\psi D^+$	$5.69 \pm 0.17 \pm 0.62^{+1.19}_{-0.89}$	$5.67 \pm 0.20 \pm 0.40$	$17.6 \pm 0.6 \pm 1.3^{+2.8}_{-3.7}$
$J/\psi D_s^+$	$3.07 \pm 0.26 \pm 0.35^{+0.64}_{-0.48}$	$7.76 \pm 0.81 \pm 0.63$	$12.8 \pm 1.3 \pm 1.1^{+2.0}_{-2.7}$
$J/\psi\Lambda_{\rm c}^+$	$4.34 \pm 0.70 \pm 1.21^{+0.91}_{-0.68}$	$5.52 \pm 1.00 \pm 0.62$	$18.0 \pm 3.3 \pm 2.1_{-3.8}^{+2.8}$

CC & CC cross-sections

The second	THE PLANTS		LHCb Preliminary
Mode	σ [nb]	$\sigma_{\rm CC}/\sigma_{ m Car{C}}$ [%]	$\sigma_{\mathrm{C}_1}\sigma_{\mathrm{C}_2}/\sigma_{\mathrm{C}_1\mathrm{C}_2} \ [\mathrm{mb}]$
$\mathrm{D}_0\mathrm{D}_0$	$687 \pm 43 \pm 66 \pm 33$	10.9 ± 0.8	$2 \times (42.2 \pm 2.8 \pm 3.6)$
$\mathrm{D}^0 \bar{\mathrm{D}}^0$	$6225 \pm 123 \pm 561 \pm 280$	10.9 ± 0.8	$2 \times (4.65 \pm 0.13 \pm 0.40)$
D_0D_+	$516 \pm 81 \pm 59 \pm 31$	12.8 ± 2.1	$46.6 \pm 7.3 \pm 4.2$
D_0D	$3985 \pm 91 \pm 439 \pm 231$	12.0 ± 2.1	$6.02 \pm 0.19 \pm 0.54$
$\mathrm{D^0D_s^+}$	$266 \pm 53 \pm 33 \pm 20$	15.7 ± 3.4	$35.6 \pm 7.5 \pm 3.8$
$\mathrm{D^0D_s^-}$	$1680 \pm 107 \pm 202 \pm 121$	10.7 ± 5.4	$5.6 \pm 0.5 \pm 0.6$
$\rm D^0 \bar{\Lambda}_c^-$	$2010 \pm 279 \pm 261 \pm 543$	—	$9.4 \pm 1.5 \pm 1.3$
D^+D^+	$76 \pm 12 \pm 11 \pm 7$	9.6 ± 1.6	$2 \times (65.6 \pm 10.5 \pm 7.3)$
D+D-	$779 \pm 43 \pm 109 \pm 73$	3.0 ± 1.0	$2 \times (6.4 \pm 0.4 \pm 0.7)$
$D^+D_s^+$	$67 \pm 16 \pm 9 \pm 6$	12.1 ± 3.3	$58.6 \pm 14.5 \pm 5.9$
$D^+D_s^-$	$547 \pm 57 \pm 77 \pm 45$	12.1 ± 5.5	$7.2 \pm 0.9 \pm 0.8$
$D^+\Lambda_c^+$	$58 \pm 29 \pm 9 \pm 16$	10.7 ± 5.9	$134.8 \pm 68.3 \pm 19.8$
$D^+\bar{\Lambda}_c^-$	$534 \pm 130 \pm 80 \pm 144$	10.1 ± 0.5	$14.6 \pm 3.7 \pm 2.1$

Cross-sections & ratios

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections **Systematics** Cross-sections & ratios Properties of 2×Charm events Conclusions

Properties of J/\pc,CC & C\overline{\cappa} events

Background subtracted & efficiency corrected distributions:

J/ ψ C & CC
pQCD some correlations
DPS the production is essentially uncorrelated $C\overline{C}$ Gluon splitting, flavour creation flavour excitation, etc...

 $p^{T}(C_1), p^{T}(C_2)$ $\Delta \phi$ and Δy $m(C_1, C_2)$

J/ψC p^T -spectra

$CC p^{T}$ -spectra

$\overline{\mathbf{C}}$ p^{T} -spectra

p^{T} -slopes: $3 < p^{\mathrm{T}} < 12 \text{ GeV/}c$

Fit with exponential

- "Similar" within each category
- C from J/ψC is similar to single C
- J/ψ from J/ψC is very different from single J/ψ
- CC and C\overline{\text{C}} are similar and both are very different from single C

$J/\psi C$ $\Delta \phi$ and Δy

Support for non-correlated production

CC $\Delta \phi$ and Δy

No prominent correlations?

\overline{CC} $\Delta \phi$ and Δy

Compare with CDF'2k+6

http://www-cdf.fnal.gov/physics/new/bottom/060921.blessed-double-charm-corr/

- $^{\bullet}$ CDF: azimuthal correlations for $D^{(0,+)}D^{*-}$
- Large gluon splitting contribution
 Very different kinematical region

J/yC and CC invariant mass

CC invariant mass

- "Flavour" independent
- for m>7 GeV/ c^2 : very similar to CC

Global Event Activity

- * Compare number of primary vertices, tracks, hits in subdetectors,
- No clear pattern has been observed
- No significant difference with respect to the single charm events with same selection
- One more indirect argument against pileup)
 - decrease number of PVs (-1)
 - increase multiplicity (x1.5-2.0)

2×Charm LHCb Detector & Data sample **Event Selection** 2×Charm signals Efficiency corrections Systematics Cross-sections & ratios Properties of 2×Charm events Conclusions & Summary

Comparison with models

pQCD $(gg \rightarrow c\bar{c}c\bar{c})$ /MadOnia, DPS, Pythia, IC

- pQCD is off by the factor ~20
- Support for (factorization) DPS
 - excellent agreement for J/ψC
 - factor ~3 off for CC
 - general support for "uncorrelated" production
- Pythia fails to reproduce all the cross-section ratios and spectra.
- IC agrees on cross-section, but lack of welldefined predictions on spectra, correlations, ...

Summary

- J/yC production has been measured (>7σ) for the first time at hadron machines
 - All four modes: $J/\psi D^0$, $J/\psi D^+$, $J/\psi D_s$, $J/\psi \Lambda_c$
- CC production has been observed for the first time for six modes with >5σ significance:
 - D^0D^0 , D^0D^+ , D^0D_s , $D^0\Lambda_c$, D^+D^+ , D^+D_s
- CC production have been measured for seven modes
- Cross-sections and ratios have been obtained
- p^{T} -spectra, $\Delta \phi$, Δy and $m(C_1C_2)$ have been studied

In total LHCb measured 1 + 4 + 6 + 7 = 18 modes from 25

Stay tuned: LHCb-PAPER-2012-003 in preparation

THANK YOU

thanks

- Anatoly Likhoded for inspiring efforts and stimulating discussions
- * Antoni Szczurek for useful discussions on DPS
- * Jean-Philippe Lansberg for the great help with MadOnia

BACK UP

Theory: double charm at LHCb WHCb

Table 1.1: Predictions for the production cross-sections of the $J/\psi C$ and CC modes in the LHCb fiducial range given by the leading order gg $\rightarrow J/\psi c\bar{c}$ matrix element 112, 113, 116 σ_{gg} , the double parton scattering approach, σ_{DPS} and the intrinsic charm model, σ_{IC} .

Mode	State-of-a	rt pQCD	$\sigma_{ m DPS}$	$\sigma_{ m IC}$
03 - 69	2 7	[n	b]	
$J/\psi D^0$	10 ± 6	7.4 ± 3.7	146 ± 39	220
$J/\psi D^+$	5 ± 3	2.6 ± 1.3	60 ± 17	100
$J/\psi D_s^+$	1.0 ± 0.8	1.5 ± 0.7	24 ± 7	30
$J/\psi \Lambda_c^+$	0.8 ± 0.5	0.9 ± 0.5	56 ± 22	-
		[μ	.b]	3500
D_0D_0		1270.00	2.0 ± 0.5	1.5
D_0D_+			1.7 ± 0.4	1.4
$D^0D_s^+$			0.65 ± 0.15	0.4
$D^0\Lambda_c^+$			1.5 ± 0.5	1.4
D^+D^+			0.34 ± 0.09	0.3
$D^+D_s^+$			0.27 ± 0.07	0.2
$D^+\Lambda_c^+$			0.64 ± 0.23	

	PYI	THIA
	Mode	$\sigma_{\mathrm{J/\psi C}}^{*}$ [nb]
	$J/\psi D^0$	160
	$J/\psi D^+$	58
	$J/\psi D_s^+$	33
	$J/\psi \Lambda_c^+$	23
	7 1 6	
	Mode	$\sigma_{\text{CC,CC}}^*$ [nb]
	D_0D_0	1.0×10^{3}
	$D^0\bar{D}^0$	17.4×10^{3}
	D_0D_+	680
	D_0D	12.6×10^{3}
	$D_s^0D_s^+$	370
	$D^0D_s^-$	6.8×10^{3}
	$D^0\Lambda_c^+$	253
	$D^0 \bar{\Lambda}_c^-$	4.8×10^{3}
	D+D+	120
	D+D-	2.3×10^{3}
	$D^+D_s^+$	140
	$D^+D_s^-$	2.5×10^{3} 100
	$D^+\Lambda_c^+$ $D^+\bar{\Lambda}_c^-$	1.8×10^{3}
_	D+D+	39
	D+D+ D+D-	670
	$D_s^+D_s^-$ $D_s^+\Lambda_c^+$	50
	$D_s^+ \bar{\Lambda}_c^-$	0.9×10^{3}
	$\Lambda_c^+ \Lambda_c^+$	20
	$\Lambda_c^+ \bar{\Lambda}_c^-$	370
	~	

Do we have pileup?

- 3 approaches:
 - Generator level MC with applied efficiency factors
 - ° Cross-check with $\,$ inclusive $J/\psi,\,D^0,\!D^+,\!D_s$ and Λ_c MC samples
 - Good statistics, but some assumptions
 - Full simulation:
 - Low statistics, need some assumptions
 - Real data: vary χ^2_{fit}/ndf cut
- All three methods: pileup is totally negligible
 - A tiny fraction of the statistical error

Pileup from data

pileup is totally negligible

Figure 6.1: The background subtracted distributions of $\chi^2_{\rm DTF}/{\rm ndf}$. a) For J/ ψ D⁰ events. The solid red line corresponds to the fit result in region $\chi^2_{\rm DTF}/{\rm ndf} > 5$ by function described in text, the dashed line corresponds to the extrapolation of fit results to $\chi^2_{\rm DTF}/{\rm ndf} < 5$ region. (b) D⁰D⁰ events (black circles corresponds to CC and blue rectangles corresponds to CC case). The solid red (green) line corresponds to the fit result in region $\chi^2_{\rm DTF}/{\rm ndf} > 5$ by function described in text, the dashed red (green) line corresponds to the extrapolation of fit results to $\chi^2_{\rm DTF}/{\rm ndf} < 5$ region for CC and CC cases respectively.

Global Event Cuts

Global Event Cuts (activity in subdetectors, namely #hits in Outer Tracker and #hits in SPD detector) are applied during data taking to suppress few very busy events. The effect is studied on the data itself. Efficiency ϵ^{GEC} is extracted through

DPS: a rather simple paradigm

LHC is LgC

$$\sigma_{\mathrm{DPS}}^{AB} \; = \; \frac{m}{2} \sum_{i,j,k,l} \int \Gamma_{ij}(x_1,x_2,\mathbf{b_1},\mathbf{b_2},Q_1^2,Q_2^2) \\ \times \hat{\sigma}_{ik}^A(x_1,x_1^{'},Q_1^2) \hat{\sigma}_{jl}^B(x_2,x_2^{'},Q_2^2) \\$$

Single partonic x-section

₂PDF (unknown)

$$\times \Gamma_{kl}(x_{1}^{'}, x_{2}^{'}, \mathbf{b_{1}} - \mathbf{b}, \mathbf{b_{2}} - \mathbf{b}, Q_{1}^{2}, Q_{2}^{2}) \times dx_{1} dx_{2} dx_{1}^{'} dx_{2}^{'} d^{2}b_{1} d^{2}b_{2} d^{2}b,$$

$$\Gamma_{ij}(x_1,x_2;\mathbf{b_1},\mathbf{b_2};Q_1^2,Q_2^2) \ = \ D_h^{ij}(x_1,x_2;Q_1^2,Q_2^2)f(\mathbf{b_1})f(\mathbf{b_2}),$$

$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2).$$

Can't be true for all x,Q²

Both for total and (double) differential

$$\sigma_{\rm DPS}^{AB} = \frac{m}{2} \frac{\sigma_{\rm SPS}^A \sigma_{\rm SPS}^B}{\sigma_{\rm eff}}.$$

Easy to make predications!

And the predicitons are easy to test

Universal (energy and process independent) factor)

$$1/\sigma_{eff} = \int d^2b F^2(b)$$

Analysis strategy

- To measure:
 - Model independent cross-section in signal window
 - Various ratios (with minimal error)
- Rely on per-event efficiency

The price:

The *enormous* inflation of "statistical" error

- Evaluate various techniques for signal extraction
 - Choose sPlot/sWeight
 - * Correct weight from sWeight by 1/ε
 - Careful check for biases and correlations

Event Selection

- Start from good tracks:
 - $^{\bullet}$ Minimal p^{T} , good track fit quality, remove clones
- For hadrons: fiducial cuts for good PID
- (μ,K,p,π) PID cuts are imposed

	·
	Track Selection
μ^{\pm}, h^{\pm}	$\chi_{\rm tr}^2/{\rm ndf} < 5 \ \& \ \Delta^{\rm KL} > 5000$
μ^{\pm}, h^{\pm} μ^{\pm}	$p^{\mathrm{T}} > 650 \; \mathrm{MeV}/c$
h [±]	$p^{\rm T} > 250~{ m MeV}/c~\&~2.0 < \eta < 5~\&~\chi_{ m IP}^2 > 9$
$\pi^{\pm}, \mathrm{K}^{\pm}$	$3.2 \; {\rm GeV}/c$
P±	$10 \text{ GeV}/c$
84	Particle Identification
μ^{\pm}	$\Delta^{\mu/h} \log \mathcal{L} > 0$
π^\pm	$\Delta^{\pi/\mathrm{K}} \log \mathcal{L} > 2$
K^{\pm}	$\Delta^{\mathrm{K}/\pi}\log\mathcal{L} > 2$
p [±]	$\Delta^{\mathrm{p/K}} \log \mathcal{L} > 10 \& \Delta^{\mathrm{p/\pi}} \log \mathcal{L} > 10$

Charm hadron reconstruction

- Vertex quality cuts
- PV & decay consistency
- $c\tau$ cut

<u>"3\sigmantra"</u>

- Daughter particles do not point to PV $(>3\sigma)$
- Mother particle does point to PV $(<3\sigma)$
- Mother particle has non-zero lifetime (except J/ψ)
- The decay structure is self-consistent

As similar as possible (a bit tighter for Λ_c)

		J/ψ	D_0	D+	$\mathrm{D_{s}^{+}}$	$\Lambda_{\rm c}^+$
		$\mu^+\mu^-$	$K^-\pi^+$	$K^-\pi^+\pi^+$	$(\mathrm{K}^+\mathrm{K}^-)_{\phi}\pi^+$	$pK^-\pi^+$
y_{\perp}				2 < y		
$p^{\mathbf{T}}$	$[{ m GeV}/c]$	< 12		3	$ < p^{\rm T} < 12 $	
$\chi^2_{ m VX}$		< 20	< 9	< 25	< 25	< 25
$\chi^2_{ ext{IP}}$					< 9	
$\chi^2_{\rm VX}$ $\chi^2_{\rm IP}$ $\chi^2_{\rm fit}/{\rm ndf}$				< 5		
$c\tau$	$[\mu m]$			$c\tau \ge 10$	0	$c\tau \ge 100$
	[perri]			o, <u> </u>		$c\tau < 500$
$ \cos \theta^* $			< 0.9			
$m_{K^+K^-}$	$[{ m GeV}/c^2]$				< 1.04	
$\min p_{T}^{h\pm}$	$[\mathrm{GeV}/c]$					≥ 0.5
1						

Systematic uncertainties

• Dominant: hadron track reconstruction uncertainty related to hadron interactions in detector: 2% per hadron track

•					
Source		$J/\psi D^0$	$J/\psi D^+$	$J/\psi D_s^+$	$J/\psi\Lambda_c^+$
J/ψ reconstruction	$\varepsilon_1^{\mathrm{reco}}$			1.3	
C reconstruction	$\varepsilon_2^{ m reco}$	0.7	0.8	1.7	3.3
Muon ID	$arepsilon_{ extstyle J/\psi}^{ extstyle extst$			1.1	
Hadron ID	$\varepsilon_{ m had}^{ m ID}$	1.1	1.9	1.1	1.5
Tracking	ξ^{trk}	4.9	7.0	7.0	7.0
Trigger	$\varepsilon_{\mathrm{J/\psi C}}^{\mathrm{trg}}$			3.0	
J/ψ polarization	~reco			3.0	
Global event cuts	$arepsilon^{arepsilon_{ m J/\psi}} arepsilon^{ m GEC}$			0.7	
Luminosity	${\cal L}$			3.7	
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	\mathcal{B}_1			1.0	
C branching ratios	\mathcal{B}_2	1.3	4.3	6.0	26
Total		8	10	11	28

Source		D_0D_0	D_0D_+	$\mathrm{D^0D_s^+}$	$\mathrm{D}^0\Lambda_\mathrm{c}^+$
D ⁰ C reconstruction	$\varepsilon_2^{\rm reco} \times \varepsilon_2^{\rm reco}$	1.4	1.4	2.3	3.6
Hadron ID	$arepsilon_{ ext{had}}^{ ext{ID}}$	1.2	1.8	1.6	2.4
Tracking	$\xi^{ m trk}$	8.5	10.7	10.6	10.6
Trigger	$arepsilon_{ ext{C}}^{ ext{trg}}$	1.8	2.5	3.9	5.2
Global event cuts	$arepsilon^{ ext{GEC}}$		1	.0	
Luminosity	${\cal L}$		3	3.7	
$\mathcal{B}(\mathrm{D}^0 \to \mathrm{K}^-\pi^+)$	\mathcal{B}_1		1	.3	
C branching ratios	\mathcal{B}_2	1.3	4.3	6.0	26
Total		10	12	14	30

Source		D^+D^+	$\mathrm{D^{+}D_{s}^{+}}$	$\mathrm{D}^+\Lambda_\mathrm{c}^+$
D ⁺ C reconstruction	$\varepsilon_2^{\rm reco} \times \varepsilon_2^{\rm reco}$	1.4	2.2	4.0
Hadron ID	$arepsilon_{ ext{had}}^{ ext{ID}}$	2.3	2.4	3.0
Tracking	$\xi^{ m trk}$		12.8	
Trigger	$arepsilon_{ ext{C}}^{ ext{trg}}$	3.7	5.8	5.0
Global event cuts	$arepsilon^{ ext{GEC}}$		1.0	
Luminosity	${\cal L}$		3.7	
$\mathcal{B}(\mathrm{D}^+ \to \mathrm{K}^- \pi^+ \pi^+)$	\mathcal{B}_1		4.3	
C branching ratios	\mathcal{B}_2	4.3	6.0	26
Total		17	17	31

Cross-sections & ratios

p^{T} -slopes: $3 < p^{\mathrm{T}} < 12 \text{ GeV/}c$

Fit with exponential

- "Similar" within each category
- C from J/ψC is similar to single prompt C
- J/ψ from J/ψC is very different from prompt J/ψ
- CC and C\overline{\tau} are similar and both are very different from single prompt C