Phase space painting for linear optics measurement

- Pair of correctors used to 'paint' a phase space ellipse
 - Ideally, correctors separated by drift
 - Linear combination of kicks produces difference orbits with desired x, x'
 - Orbits behave as macroparticles, an ensemble simulates a beam
 - Orbits uniformly distributed in normalised phase space to ensure good coverage
 - If desired, ellipse can be painted to match the design (MAD-X) phase space

Phase space painting for linear optics measurement

- 'Star' pattern painted to maximise signal to noise
 - Difference orbits generated from two orbits separated by 180 deg. phase adv.
 - Beam drifts thus cancelled
 - Use an average over typically 5 difference orbits

- Increase the 'emittance' of the painted 'beam'
- Use all data sets to fit a normalised ellipse, reducing sensitivity to drifts further

Evolution of painted phase space ellipse

Aim to measure matrix M

- Know phase space painted at downstream corrector
- Want to observe how the phase space ellipse evolves at the BPM P1
- This requires knowledge of position and angle at P1
- Assume matrix N from MAD-X model, reconstruct using P1 & P2

Reconstructing the transfer matrix with symplectic fit

• Matlab non-linear fitting code. Solve for M:

$$\mathbf{x}_{BPM} - \mathsf{M}\mathbf{x}_K = 0$$

Where for the N difference orbits:

$$\mathbf{x} = (\vec{x_1}, \vec{x_2}, \dots \vec{x_N})$$

And the symplectic constraint is applied:

$$\mathsf{M}'\Omega\mathsf{M} - \Omega = 0$$

Consistency of measured matrices

- 1. Reconstruct M_1 by assuming N_1 from MAD-X
- 2. Move forward to next pair of BPMs
- 3. Reconstruct M_2 by assuming N_2

Repeat for all BPMs

4. $M_2 = N_1 M_1$

7.

- 5. If M_1 and M_2 are consistent with MAD-X, confident it was okay to assume N_1
- 6. Otherwise, have localised an optical error
- 6. Otherwise, nave localised an optical error

Linear optics measurement in CT-TL1-CR

Machine conditions:

- 3 GHz, uncombined beam
- Magnetic bypass of delay loop
- Magnetic injection into combiner ring
- Extracted after ½ turn
- Correctors 0495 and 0505 at DL injection used (horizontal and vertical)
- Early data set only single ellipse painted per plane

Ben Constance

CTF3 working meeting – 10/01/2012

Ben Constance

CTF3 working meeting – 10/01/2012

Linear optics measurement in delay loop

- Machine conditions:
 - 3 GHz beam
 - Magnetic injection into delay loop
- Correctors 0495 and 0505 at DL injection used (horizontal and vertical)
- Five ellipses painted per plane and matched to nominal MAD-X
- Discrepancy in vertical optics found
 - Included Biscar wiggler model in MAD-X
 - Used Matlab optimisation code to run analysis with various MAD-X parameters
 - Good agreement between model and data by optimising dipole field integrals
 - Optimum FINTs 0.708 and 0.503 for the two dipole families (other & EPA resp.)

Ben Constance

CTF3 working meeting – 10/01/2012

Ben Constance

CTF3 working meeting – 10/01/2012

Alternative view – delay loop vertical measurements 4

Ben Constance

CTF3 working meeting – 10/01/2012

Alternative view – delay loop horizontal measurements 21

Ben Constance

CTF3 working meeting – 10/01/2012

Ben Constance

CTF3 working meeting – 10/01/2012

Alternative view – delay loop horizontal measurements 4

