Phase space painting for linear optics measurement

- Pair of correctors used to 'paint' a phase space ellipse
- Ideally, correctors separated by drift
- Linear combination of kicks produces difference orbits with desired x, x^{\prime}
- Orbits behave as macroparticles, an ensemble simulates a beam
- Orbits uniformly distributed in normalised phase space to ensure good coverage
- If desired, ellipse can be painted to match the design (MAD-X) phase space

Phase space painting for linear optics measurement

- 'Star' pattern painted to maximise signal to noise
- Difference orbits generated from two orbits separated by 180 deg. phase adv.
- Beam drifts thus cancelled
- Use an average over typically 5 difference orbits
- Repeat measurement with multiple ellipses
- Increase the 'emittance' of the painted 'beam'
- Use all data sets to fit a normalised ellipse, reducing sensitivity to drifts further

Evolution of painted phase space ellipse

- Aim to measure matrix M
- Know phase space painted at downstream corrector
- Want to observe how the phase space ellipse evolves at the BPM P1
- This requires knowledge of position and angle at P1
- Assume matrix N from MAD-X model, reconstruct using P1 \& P2

Reconstructing the transfer matrix with symplectic fit

- Matlab non-linear fitting code. Solve for M :

$$
\mathbf{x}_{B P M}-\mathrm{M} \mathbf{x}_{K}=0
$$

- Where for the N difference orbits:

$$
\mathbf{x}=\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \ldots \overrightarrow{x_{N}}\right)
$$

- And the symplectic constraint is applied:

$$
\mathrm{M}^{\prime} \Omega \mathrm{M}-\Omega=0
$$

Consistency of measured matrices

1. Reconstruct M_{1} by assuming N_{1} from MAD-X
2. Move forward to next pair of BPMs
3. Reconstruct M_{2} by assuming N_{2}
4. $M_{2}=N_{1} M_{1}$
5. If M_{1} and M_{2} are consistent with MAD-X, confident it was okay to assume N_{1}
6. Otherwise, have localised an optical error
7. Repeat for all BPMs

M2
N2

Linear optics measurement in CT-TL1-CR

-Machine conditions:

- 3 GHz , uncombined beam
- Magnetic bypass of delay loop
- Magnetic injection into combiner ring
- Extracted after $1 / 2$ turn
- Correctors 0495 and 0505 at DL injection used (horizontal and vertical)
- Early data set - only single ellipse painted per plane

Horizontal linear optics measurement in CT-TL1-CR

Ben Constance \quad CTF3 working meeting - 10/01/2012

Vertical linear optics measurement in CT-TL1-CR

Ben Constance
CTF3 working meeting - 10/01/2012

Linear optics measurement in delay loop

- Machine conditions:
- 3 GHz beam
- Magnetic injection into delay loop
- Correctors 0495 and 0505 at DL injection used (horizontal and vertical)
- Five ellipses painted per plane and matched to nominal MAD-X
- Discrepancy in vertical optics found
- Included Biscar wiggler model in MAD-X
- Used Matlab optimisation code to run analysis with various MAD-X parameters
- Good agreement between model and data by optimising dipole field integrals
- Optimum FINTs 0.708 and 0.503 for the two dipole families (other \& EPA resp.)

Horizontal linear optics measurement in delay loop

Ben Constance
CTF3 working meeting - 10/01/2012

Vertical linear optics measurement in delay loop

Ben Constance
CTF3 working meeting - 10/01/2012

Alternative view - delay loop vertical measurements 1

Alternative view - delay loop vertical measurements 2

Alternative view - delay loop vertical measurements 3

Alternative view - delay loop vertical measurements 4

Alternative view - delay loop horizontal measurements 1

Alternative view - delay loop horizontal measurements 21

Alternative view - delay loop horizontal measurements 3

Alternative view - delay loop horizontal measurements 4

