Operational Experience with Phase Switches

Piotr Skowroński

PHASE SWITCH IS FAST, below 10ns

Fri 01-10-10 Streak Camera measurements

Streak camera data under the following link
https://ab-dep-op-elogbook.web.cern.ch/ab-dep-op-elogbook/elogbook/secure/attach.php?attachId=1111118\&type=zip\&fname=1n.zip

01-10-2020 1 ns sweep, $167244_{4} 60$. .xt

01-10-2020 1 ns sweep, $16728_{4} 60 . \mathrm{txt}$

01-10-2020 1 ns sweep, $16732{ }_{4} 60 . \mathrm{txt}$

think we found the phase switch
we think that the phase switch occurs over 7/8 ns \{to be checked offline\} measured from: 16724460 to 16742460

16724 ns

16728 ns

16732 ns

After phase switch we observe more than 100ns transient on

TWT output (only if beam present)
SHB output (only if beam present)

- Bunch length

Beam current (capture efficiency)

- It gives effect on energy

And position in dispersive sections

- Pulse needs more space

Beam energy

Beam current, 2011 factor 8 ref

BPR-W

Cavity Exit, 2011 factor 8 ref

TWT exit, w. and w.o. beam

No change on TWT1
Big change on TWT3

- Related to beam loading

$\checkmark \mathrm{SHB} 1$| $.001 \quad \square \mathrm{SHB} 2 \square .001 \quad \square \mathrm{SHB} 3 \square .001$ |
| :--- |

SHB exit, effect depends on phase

Ringing after a switch can take as long as 500ns

Fri 29-07-11 The same as previous, Spectro 4

No switch

1 switch in

APRP (\%)

P^{0440} Central $=19.69 \mathrm{MeV} / \mathrm{C}$

$P_{\text {peak }}=19.49 \mathrm{MeV} / \mathrm{c}, \Delta \mathrm{P}_{\mathrm{FWHH}}=2.228 \%$

9 February 2012

Fri 29-07-11 The same as previous, Spectro 10

Figure 1
Eile Edit View Insert Iools Desktop Window Help

$P_{\text {peak }}=62.89 \mathrm{MeV} / \mathrm{c}, \Delta \mathrm{P}_{\mathrm{FWHH}}=2.947 \%$

Figure 1
Eile Edit View Insert Iools Desktop Mindow Help

Corrections from the gun

Corrections from the gun

-402 with switches and with correction

Corrections from the gun

-To get 502 flat we have to overcompensate 0402

Corrections from the gun

Wednesday 21-Sep-2011 DAY
Problem only with cavity 1 ?

Only SHB03 in. (TP)

ctra Monltor बका sed

- CLIstbpmosors
- Cl.Lstepmososos
- CCLISPBMO690s

- CLL.STepmososos
- C CLISTEPN1120s

-Only SHB01 in. (TP)
图 File Edit View Settings
Spectrometer RAW data [21/09/11 08:40:31]

\$5 Si Specrometer Spline interpolation [21/09/11 08:40:31]

-Bot SHBs in. (TP)

- Signal induced by the beam on SHB3 output.
- UP: CW RF signal produced by switching system n .1 (modulator n .1 RF input); -DOWN: pulsed RF output of TWT1.

TWT out (diode)

Phase flip 180 deg (TTL driver)

Luca measured the output of the TWT01 and it shows the ringing, as well. In the image: UP is the signal TWT1_out; DOWN is the LLRF signal on ch1

Programmed a 20 degree phase step on TWT01

Ringing at the beginning of the pulse

 SAMP: NO ERROR / COMPLETION IS O.K.

 SAMP: NO ERROR / COMPLETION IS O.K.
File View Control Options

 SAMP: NO ERROR / COMPLETION IS O.K.

† Q 絓国目

Eile Options
Main Control

```
M, Segmented Dump 4-treated (--
```

```
M, Segmented Dump 4-treated (--
```

\square DISAELE ONLIMe
\square Stan Measure：No value｜－ －Emable Real Time View ortine
File：No value Measure： No value
$-a x$ Time window
From： $\begin{array}{r}300 \mid-7 \\ \text { To：} \quad 1,800 \mid-7\end{array}$ $-$

6）

CTF3

Segdump monitor \quad -
Main Controls Show O
Main Controls Show O

Time Window
Measure: No value From $\square 800:-$ VAuto
DISABLE OnLine Offline To: $\quad 1,800 \div$ auto File: No value -

 400
400
300
200
100

Deltar/ $P_{\text {Co }}$

Satellites 0.6A

Friday 09-Sep-2011

"Delayed TWT03 after the beam and put switches on again (still two missing, as before). Loading on SHB03 looks reasonable. So is there a problem with SHB02 or only the measurement there? "

Monday 19-Sep-2011

The raising time after a switch to nominal power is $\sim 130 \mathrm{~ns}$. We disable every second switch to let the power to get back to nominal. However the come back to a higher power instead.

\checkmark SHB1 .001 $\quad \square$ SHB2 $.001 \quad \square$ SHB3 $\quad .001$

Monday 19-Sep-2011

-Effect of phase correction in the amplitude.

4

File File

File File

Monday 19-Sep-2011

```
|
Eile File
```


CTF3 Monitor

CTF3 Monitor

The effect of switches strongly depends on pre-buncher phase

08-Aug-2011

The effect of switches strongly depends on prebuncher phase +70 units

The effect of switches strongly depends on prebuncher phase, adjusted to minimize the effect

04-Aug-2011

File Eat vew setungs

\qquad

Fri 29-07-11 Kind'a extreme situation, when the phases are not adjusted properly

Fri 29-07-11 The same as previous, but
-TWT1 moved away
-TWT3 moved away

Mon 15-11-10 Production x8 Beam

Combined with DL
$-\square x$

Fri 01-10-10 Streak Camera measurements

Trying to optimize SHB switch synchronisation.
Disabled two switches, so there is a switch only every 280 ns , so I can see the steady state.
-1st plot: cable length $2 n s$ to TWT1, 4ns to TWT3
-2nd: $4+10+16=30 \mathrm{~ns}$ to TWT3
-3rd: $2+10+16=28 \mathrm{~ns}$ to TWT1, 4 ns to TWT3
-4 th: $2 / 4 \mathrm{~ns}$ as initially with all switches enabled.
As a conclusion, the $2 / 4 \mathrm{~ns}$ configuration looks the best. But there is an apparent amplitude transient of $\sim 50 \mathrm{~ns}$ on TWT3 which is reflected in a loading transient in SHBO3 of the same length.
TWT1 does not show this effect (see plot \#5) (FT)
Piotr suggested to check without beam: the variation on TWT3 is gone (plot \#6).
Having another look at the loading of SHBO2 now: there is a 2-3 step behaviour in the signal after each phase switch. (PSk+FT)

Fri 01-10-10 Streak Camera measurements

Fri 01-10-10 Streak Camera measurements

Streak camera data under the following link
https://ab-dep-op-elogbook.web.cern.ch/ab-dep-op-elogbook/elogbook/secure/attach.php?attachId=1111118\&type=zip\&fname=1n.zip 01-10-2020 1 ns sweep, $16724_{4} 60 . \mathrm{txt}$

16724 ns

16728 ns
think we found the phase switch we think that the phase switch occurs over 7/8 ns \{to be checked offline\} measured from: 16724460 to 16742460

Misplaced?

Showing the evolution over 9 ns , moved fast timing slow timing (of the fast timing) in steps of 1 ns .
Work still needs to be done to understand exactly the correspondence between the FESCA time axis and the fine timing

