Energy dependence of transverse momentum fluctuations

Katarzyna Perl
Institute of Experimental Physics
Warsaw University

What are we looking for?

- Enhanced dynamical fluctuations for systems close to the phase transition
- Exotic, unexpected, interesting effects

Plan

- Data sets
- Event and track selection criteria
- Mixed events
- Mean p_T distributions for data and mixed events
- Two-particle correlation plots
- Conclusions
- What next?

General looking at data

- No acceptance cuts (p_T versus azimuthal angle) –
 if any effects exist they will be better seen
- No common acceptance
- Forward-rapidity, mid-rapidity, no rapidity cuts

Data sets

- 20 AGeV, STD+, 03A, 7.2% central
- 30 AGeV, STD+, 02J, 7.2% central
- 40 AGeV, STD-, 00C, 7.2% central
- 80 AGeV, STD+, 01E, 7.2% central
- 158 AGeV, STD+, 00B, 7.2% central, Eveto < 10868 GeV, run.number > 1398 (10%)

Event and track selection criteria

- Cut on x, y, z position of the fitted vertex
- n.trk.fit/n.trk.out > 0.25

- z.first < 200 cm
- |bx| < 2 cm, |by| < 1 cm
- n.m.p > 30, n.p/n.m.p > 0.5
- $0.005 < p_{_{\rm T}} < 1.5 \text{ GeV/c}$

Mixed events – prepared text files

- /castor/cern.ch/user/k/kperl/MIXED_ENERGY/
- 30k events for 20, 30, 40, 80, 158 GeV (7.2%)
- Mixed events prepared on the basis of real events

 multiplicity distribution the same, inclusive
 spectra the same, each particle for mixed event
 comes from a different real event
- Event and track cuts see the previous page
- By construction no correlations (Φ_{pT} consistent with zero)

The structure of mixed event

```
number_of_particles event_number
id(Geant) px py pz
id(Geant) px py pz
id = 8 (\pi^+)
id = 9 (\pi^{-})
all particles (from real events) treated as pions
```

Rapidity ranges – multiplicities

	No rapidity cuts	mid-rapidity	forward-rapidity
		$(-0.6 < y^* < 1.0)$	$(1.09 < y^* < 2.59)$
20	233 (100%)	65.7%	27.9%
30	301 (100%)	65.4%	27.9%
40	357 (100%)	63.6%	28.6%
80	519 (100%)	55.5%	32.4%
158	722 (100%)	52.3%	34.3%

Mean p_T distributions for data (points) and mixed events – forward-rapidity 20 30 40 80 158

Mean p_T distributions for data (points) and mixed events – mid-rapidity 20 30 40 80 158

Mean p_T distributions for data (points) and mixed events – no rapidity cuts 20 30 40 80 158

Two-particle correlation plot

- Example for 158 AGeV
- Forward-rapidity
- No acceptance cuts

Two-particle correlation plots – forward-rapidity

own scale:

common scale:

Two-particle correlation plots – mid-rapidity

own scale:

common scale:

Two-particle correlation plots – no rapidity cuts

own scale:

common scale:

Conclusions (observations rather)

- Correlations are rather small (dominated by BE), the reason limited geometrical acceptance (?)
- Energy dependence of the difference in $M(p_T)$ between data and mixed events for mid-rapidity (??)
- Energy dependence of two-particle correlation plots better seen for forward-rapidity

What next?

- Acceptance cuts (p_T versus azimuthal angle)
- M(p_T) for data and mixed events for mid-rapidity at 158 AGeV (stability checks)
- Φ_{pT} fluctuation measure (stability checks systematic errors, TTR corrections Geant simulations and reconstruction of mixed events)