Midrapidity K⁻ spectra from TOFR at 20 AGeV

V. Friese

Gesellschaft für Schwerionenforschung Darmstadt, Germany v.friese@gsi.de

> NA49 Collaboration Meeting CERN, October 2003

Data set and event selection

Data set: 2002 Pb+Pb @ 20 AGeV central, 1/8 STD+

Production: 03A

Event selection : $N_{hit,\pi} > 1$ (91.4 %)

328.103 events used

New method of event-by-event calibration! (Old criterium : $N_{hit,\pi} > 3 (40\%) \rightarrow bias ?$)

Definition of pion hit for selfcalibration:

- \pm 8% from pion dE/dx
- \pm 800 ps from calculated TOF_{π}

Track selection

- \rightarrow track.iflag = 0
- \triangleright right-side tracks (px < 0)
- ➤ last point at MTPC border
- $> 1_{\text{MTPC}} > 3 \text{m}$
- > $b_x < 2$ cm; $b_y < 1$ cm
- > require found points in VTPC if potential points

Analysis strategy

- Define windows in dE/dx-m² (or intervals in m²)
- Call every track in this window a K⁻
- Give this track a weight for
- PID efficiency (dep. on momentum)
- contamination (dep. on momentum)
- TOF efficiency (dep. on channel)
- Fill track with this weights into y-p_t histogram
- Correct each y-p, bin for geometrical acceptance
- Construct p_t spectrum by merging y-p_t bins
- Same for m_t spectrum
- Fit thermal distribution to spectra
- Sum measured bins and extrapolate with fit function to obtain dn/dy

Kaon identification by m²

p = 1.5 GeV p = 1.5 GeV 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 m² [GeV]

Momentum range 1 - 2.5 GeV

Selection window : Interval $\sim \sigma_{m2}$

Kaon identification by m² and dE/dx

Momentum range 2.5 – 7 GeV

 $Standard\ selection\ window:$ Ellipse with half axes $\sim \sigma_{dE/dx,m2}$

PID efficiency and contamination

calculated from (dE/dx-) m² parametrisation as function of momentum

mean PID efficiency: 96 % mean contamination: ~1 %

TOF efficiency

Losses due to:

☐ track extrapolation	(inexact geometry)	10 %
- Hack Chapolation	(mexact geometry)	10 /0

$$\Box \text{ Fiducial QDC-cut } (0.8 < q_{\text{norm}} < 1.6)$$
 12 %

calculated and corrected for each channel

Mean TOFR efficiency: ~ 77 %

Geometrical acceptance

pure GEANT reconstruction losses disregarded

Extraction of p_t spectra:

$$y = 1.88 - 2.08$$

$$y = 2.08 - 2.28$$

Full p_t coverage:

$$y = 1.68 - 2.08$$

Transverse spectra, y = 1.88 - 2.08

Transverse spectra, y = 2.08 - 2.28

First systematics: Stability against PID criteria

Stable (within stat. error) against variation of PID

Stability against event selection

y = 1.88 - 2.08 Note: not independent measurements

Systematics visible in dn/dy (T?)

... to be studied