EVALUATION OF OPENCL FOR
HIGH ENERGY PHYSICS EVENT
RECONSTRUCTION

Thomas Hauth
Danilo Piparo
Vincenzo Innocente

13-3-2012

For more detalls please have 8 look @ the supporting
document in e indico agendal

Motivation

~*» Data processing software of HEP experiments:

— Satisfy the needs of extremely ambitious Physics
programs

— Fit on the available computational resources (e.g.
TierO,1s,2s, trigger farms, laptops)

 New software technologies are crucial in this

\ environment!

. * CMS evaluates these innovations on a regular
basis (e.g. compilers, allocators ...)

* Today we will discuss one among them, OpenCL

The evaluation of this product goes along three
lines: performance, portability and usability

Concurrent Programming Models and Frameworks

Open Computing Language

* |dea: allow programmers to write portable programs that
use all resources in a heterogeneous platform (e.g. CPUs,
(GP)GPUs, handheld devices, FPGAS).

"« Mix data parallel and task parallel code in the same
application.

* Maintained by the Khronos group and supported by many
leading hardware and software vendors (Apple, NVIDIA,
AMD, ...)

* Open and Royalty-free %
 OpenCL: a framework + a programming language openct

(C99+limitations+additions)
— |EEE 754 numerical accuracy for all fp operations available

* Abstracted memory and execution model:
— Basic units of executable code, kernels, dispatched to the

Computing Units (CUs)
— Run the same code on CPUs and GPUs Dpent. glons torun
computations on

* Explicit memory model (private, shared heterogeneous platforms

and global mem spaces) See references and backup for more details

The “candle” used for this study

Algorithm from the CMS tracking code (MultipleScatteringUpdator)

— Calculate the maximum scattering angle of a particle passing through a
material (silicon) layer.

— Implementation of the Highland formula for multiple Coulomb
scattering.

* C(Called several times for a single track

e Useful figure: 500-1000 tracks to be expected in an average LHC
event in 2012
* Interms of mathematical operations:
— Multiplications, divisions, sums and a logarithm.
— About 40 lines of code, 1 branching
— 1/0: 4 double precision floating points in, 3 of them out.

\

\
e
Y

Y An algorithm from the
! <9P'a"e CMS software framework
See references and A taken as candle
backup for more

Concurrent Programming Models and Frameworks 4

details

Hardware used for the test

Intel CPU + NVIDIA graphics card: 1800 CHF
* Corei7-3930K @ 3.20GHz (AVX support)
o 6 physical, 12 hyper-threaded cores
o RAM: 16 GB
* NVIDIA GeForce GTX 560 — 250 CHF
o 336 CUDA compute cores*
o 1.5 GB on-card RAM
o NVIDIA Linux driver version 275.43
Scientific Linux 6

S |

NVIDIA.

AMD cpu + ATI graphics card: 1800 CHF
 AMD FX-8120 CPU — Bulldozer microarchitecture (AVX support)

o 8 cores

o RAM: 16 GB a
e AMD Radeon HD 6970 — 300 CHF

o 1536 Stream Processors* AMD

o 2 GB on-card RAM = .

GRAPHICS

o AMD Catalyst 11.11 Linux driver, revision 12.1

e Scientific Linux 6 AMDQ

* These numbers are not directly comparable!

The OpenCL SDKs used

* |ntel SDK
— Version 1.5 for 64-bit Linux
y — SSE and AVX instruction sets support
~ « NVIDIA SDK
— NVIDIA Linux driver version 275.43
e AMD Accelerated Parallel Programming SDK:
— Version 2.6 for 64-bit Linux
— Supports both AMD CPUs and GPUs
— No support for limiting the number of CPUs used
— SSE and AVX instruction sets support

All these SDKs use the LLVM compiler infrastructure.

\

For the results presented in this report, the GPU has not been
partitioned but considered on as one single compute entity.

Moreover no special optimisations were put in place: use OpenCL
“out of the box”.

6

Compute Performance
and
Performance Portability

Concurrent Programming Models and
rrrrrrrrrr

- Reference Implementation

* |n order to have a reference for the benchmark
] a well-established technology was used:
— MultipleScatteringUpdator OpenMP
implementation
* Open Multi Processing: Opean?
— C,C++,Fortran
— Simple: annotation for parallel portions with
pragmas

— Good potential when coupled to recent compilers
— No GPU support

#pragma omp parallel for
for (1 = 0; i < N; i++) Rely on a well established

afi) = 2 * i; technology to assess the
"""" performance of OpenCL

Concurrent Programming Models and Frameworks 8

Intel Box: Overall Performance 1

MultipleScatteringUpdater Runtime and Transfer Time o ®
| | | | ‘ intel
Times cited are N | *—#& Open MP - 10000 Tracks
— on linear: i
intended for 6 2 0.6 Fa|5e_sharin 5 * —& QOpen MP - 1000 Tracks |
cores, except for o) 8: #-% Open MP - 100 Tracks —
the GPU "E Open CL Intel - 10000 Tracks ‘/"?
9 o5 Open CL Intel - 1000 Tracks - NVIDIA.
5 Open CL Intel - 100 Tracks
S Open CL NVIDIA - 10000 Tracks
T 04 Open CL NVIDIA - 1000 Tracks | |
3 Open CL NVIDIA - 100 Tracks
c
Q 03 R , — . 1
o -
& .-\, 6 cores used
c dreeens) JURRISSE Sritribe ST R S Tt At
© 0-2 Hyper-threading Technology Time ms
S
\j € o1 ‘\\'\(OpenCL CPU 310
i S | A,
-Z o
GPU considered //75.;.:_;._‘_.;.;_._‘_.._‘..f.i..‘..f.f.f..‘_..‘.. ST T TTo77771 OpenCLGPU 130
77 il s 0.0 FURISTILE L SEETI . i St el Fealenlie Sevlivelies Sxleelive. sl *
as a “single CPU 0 2 4 6 8 10 OpenMP 70

Number of CPUs used

 10k,1k and 100 tracks considered — 1000 reiterations
— 100 warm-up iterations: not accounted in the total time

* Allocation done once
* Transfers: 4 doubles sent to the device and 3 copied back
 Worst case scenario: a huge number of copies is done!

Intel Box: no transfer
05 MEJItipleScatFeringUpda‘ter Overalll ComparisPn (i n tel

®

Times cited are #—# Open MP - 10000 Tracks
intended for 6 * —* Open MP - 1000 Tracks
cores, except for *--% Open MP - 100 Tracks PS> |

o
S
T

the GPU *—+ Open CL Intel - 10000 Tracks

* —#% QOpen CL Intel - 1000 Tracks
*--# QOpen CL Intel - 100 Tracks
—— Open CL NVIDIA - 10000 Tracks |
= = Open CL NVIDIA - 1000 Tracks
""" Open CL NVIDIA - 100 Tracks

NVIDIA

o
w

o
N

Hyper-threading 6 cores used

T — Technology Time ms

Runtime in seconds (1000 iterations)

0.1 OpenCL CPU 140 (310)
. OpenCL GPU 40 (130)
0.0 AT -sibelbel lbeiieds Jediell: Telbuils todbodiei-albellel Sdtedt
0 2 4 6 8 10 OpenMP 70

Number of CPUs used

 Same conditions as in the previous slide
— Transfers to/from memory not accounted

* 6 cores case CPU OpenCL: GPU OpenCL 3.8x — OpenMP 2x faster
e Within OpenCL, same hierarchy kept

* Transferring data from/to the device has an influence and this effect
must be carefully considered 10

Time in microseconds

Time in microseconds

Intel Box: CPU Scheduling Overhead

(=)
-
(=]

[
N
o

g

)

S
o

LS
o

500

300+

200+

100§

Open CL lntel Track Count = 100

- Scheduling . e

Runtime

ook Kernel Runtime Open CLInteI 100 Tracks i
w--« Kernel Schedule Open CL Intel - 100 Tracks

-

100 Tracks

R A - VST ETITLLL

Open CL Intel Track Count = 10000

—k Kernel Runtime Open CL Intel 10000 Tracks
»—+ Kernel Schedule Open CL Intel - 10000 Tracks

\ 10.000 Tracks
\.\ﬂ’pzf

.
i

Scheduling S>—m—,

2 3 3 5 3 7 B 3 10

Number of CPUs used

Time in microseconds

140

120}

[
o
O

5

8

a5
o
T

nJ
o

o
=]

Open CL Intel Track Count = 1000

-

- Kernel Runtime Open CL Intel 1000 Tracks
* -+ Kernel Schedule Open CL Intel - 1000 Tracks |

A —-—

Schedullng T Teame

”Resonance” of the /7

5
RUnﬁm:ardware and OpenCL:

*_7
- _-1———ﬂ-_\

-

S - - -

-

1.000 Tracks

2 3 7 5 © 7 8 9 10

Number of CPUs used

Scheduling is ~constant

Small workload: Scheduling
overhead > actual runtime

Indication that in a real-life
situation going across event
boundaries might be needelclzl

Intel Box: GPU Scheduling Overhead

00 ' Open CL Intel Track Count = 10000 o Open CL NVIDIA Track Count = 10000
ik Kemel Runtime Open CL Intel 10000 Tracks +—+ Kernel Runtlme Open CL NVIDIA 10000 Tracks
+»— Kernel Schedule Open CL Intel - 10000 Tracks = Kernel Schedule Open CL NVIDIA - 10000 Tracks
n 50} -
o 400
S - @ -
3 \\ { lntel a0} Runtime
w | | e - o e e o - ol ohe e ke
e 300 \
[S) \
- — \ 30 -
€ \'\,?UDZ?'
£ 200t —~e 10.000 Tracks - 10.000 Tracks <A
Q T 20 NVIDIA
£ ~
= ‘x—'_*"__‘__:_‘-
100¢ e T——] 10l
Scheduling: 95 s Scheduling: 4.7 us
o1 2 3 3 5 3 7 8 9 0 % 2 2 3 8 10
Number of CPUs used Number of CPUs used

GPU scheduling is 5% of the GPU one
— 5VS 95 us

Concurrent Programming Models and Frameworks 12

AMD Box m

0.8 MyltlpIeScatFermgUpda‘ter Overall‘ Compansgm AM D
Times cited are —* O
| —_ pen MP - 10000 Tracks
intended for 6 m Feature of Intel
tf C 0.7 SDK ﬂ_. t . * —& QOpen MP - 1000 Tracks |
:: reé'PExce: t: = 8 - orsetin *—# Open CL Intel - 10000 Tracks RGHFIEDEI?SN
s anpie © number of cores * —* Open CL Intel - 1000 Tracks
AMD SDK (8 9 06 1 AMDD
— w—#& QOpen CL AMD CPU - 10000 Tracks
cores) o
o #* —* Open CL AMD CPU - 1000 Tracks
9 05y * % Open CLAMD GPU - 10000 Tracks ||
e Open CL AMD GPU - 1000 Tracks
'g 0.4 :
S 6 or 8 cores used
o E]
= Technology Time ms
o)
o 0.2 CL IntelCPU 160
IS —
- AMD SDK: no é’0-1-/7:__:::1:-_1:‘_‘_:::1::.__ CL AMD CPU 140
. . . - -~ * - N
[EIiE=rel 0% it S ST S S’ | CL AMD GPU 25
cores used 0 2 4 6 8 10
possible Number of CPUs used OpenMP 90

10k and 1000 tracks cases only (warm-up loop always present)

* No transfer from/to memory considered

* Comparison of CPU (Intel+AMD SDK), GPU and OpenMP

 OpenMP always slightly faster

 OpenCL CPU: AMD SDK faster but less flexible (all 8 cores used)

e AMD GPU (25 ms) faster than all CPUs and NVIDIA (40 ms) 13

OpenMP + Vectorisation OpenMP

MuItlpleScatterlngUpdater Vectorlzed

*—& Open MP SSE - 10000 Tracks
* —% QOpen MP SSE - 1000 Tracks
*-% Open MP SSE - 100 Tracks

[| ®
— Open MP scalar - 10000 Tracks ‘ l n tel >

©
w
v

o
w
o

* —& Open MP scalar- 1000 Tracks

W% Open MP scalar - 100 Tracks

)
C
i)
©
O
= 025
o
o
S o020}
[72]
-8 015} . i
S Hyper-threading
(O]
» 010}
£ /\
g 0.05
 — ' * - M\Kﬁ
= e Twe —~— - — L —

0.00 o D T S et it Tt ats i ot ;

0 2 4 6 8 10 12

Number of CPUs used

e GCCA4.7 + OpenMP: well established technology

* Autovectorisation enabled (SSE2)
— CMS autovectorisable logarithm implementation used (faster per se than libm)

* An overall factor 2 in speed wrt scalar version
e Faster than all OpenCL CPU implementations
 OpenCL on GPU (both AMD and NVIDIA) is still faster

Concurrent Programming Models and Frameworks 14

OpenMP + Vectorisation

MuItlpleScatterlngUpdater Vectorlzed

*—& Open MP SSE - 10000 Tracks
* —% QOpen MP SSE - 1000 Tracks

0.35
,&)\ -4 Open MP SSE - 100 Tracks
C -
S 030 *—* Open MP scalar - 10000 Tracks i
-.(_U- * —& Open MP scalar - 1000 Tracks
E w % QOpen MP scalar - 100 Tracks
= 025
o
o
S o020}
9
015 i i
OpenCL CPU (6) 5 \ Hyper-threading
(O]
» 010
'E /\
OpenCL GPU g 005l N D
' [-~ |
PRI T e oot Sk T St Tl b ;
O.OOO 2 4 8 10

Number of CPUs used

e GCCA4.7 + OpenMP: well established technology

* Autovectorisation enabled (SSE2)
— CMS autovectorisable logarithm implementation used (faster per se than libm)

* An overall factor 2 in speed wrt scalar version
e Faster than all OpenCL CPU implementations
 OpenCL on GPU (both AMD and NVIDIA) is still faster

Concurrent Programming Models and Frameworks

12

OpenMP

15

Usability

Concurrent Programming Models and
Frameworks

16

Developing with OpenCL

* Many insights gained from the applications
programmer’s point of view

* Some features of programming with OpenCL
are for some use cases less than optimal

— Especially in the context of a sw project maintained
\\ by a plethora of users with non-uniform computer

skills
. OpenClL is a powerful tool
> Examples° but not easy to use “as is”
— Kernel code passed as string
— No syntax check for kernels at compile time
— Explicit memory management: alloc, dealloc

Concurrent Programming Models and Frameworks 17

A possible simplification
- Start from openclam: QSEE”WSp[am

* Kernels defined and interleaved with “regular”
C++ code

* Compile-time syntax and type checking
— No surprises during kernels re-compilation at runtime

On the top of that, a convenient C++ layer was built:

* Huge increase in usability:

— Simplify kernel creation with various numbers of
parameters (all OpenCL supported types)

— Convenient data structures wrappers for vectors and
matrices

— Automated memory management SPeEesEcHEtE
and backup for

more details

\

Concurrent Programming Models and Frameworks 18

Conclusions

Concurrent Programming Models and
Frameworks

19

Conclusions More detalls in the supporing
document in @he indico agendal

Performance
A “real-life” standard candle was used to test AMD, Intel and Nvidia hardware and
OpenCL runtimes.
e OpenMP and OpenCL performance is comparable
— OpenMP still faster when considering CPUs
Absolute performances: AMD GPU > Nvidia GPU > AMD CPU* ~ Intel CPU*
* Normalised according to the number of cores

* The scheduling overhead must be seriously considered
— To ammortise it, elements from subsequent events might need to be lumped together
— NVIDIA GPU scheduling overhead was 5% of the Intel CPU one

The data transfer overhead was not a significant penalty for the GPU

Portability

 The promises of OpenCL are maintained: the same kernels run smoothly and without
any modifications to the source code on [CG]PUs. No-vendor lock-in!

Usability
 The bare OpenCL APl might result cumbersome

* Anappropriate wrapper was developed on top of openclam

— This is a promising strategy to take advantage of the power of OpenCL
20

R —
QD un
c C
o
T 2
= 3
=
e 2

>
o B

>
S E
(%5]
x 2
C S
(¢°)
25
=

~ Next Steps

- Up to now: real-life simple algorithm in an artificial
- environment

* Consider a more complex algorithm: Deterministic
Annealing for vertices reconstruction (DAClusterizerinZ)

 Make it callable from a CMSSW component

* Answer these questions:

— How much “work” shall we extract from a typical data
processing chain to profit from a CPU->GPU offload?

— How does this scale with one to N processes on a K cores
machine?
— Which should be the total cost of ownership of a (more)

graphics card(s) per blade at a trigger/Tier0,1,2 farm for this
idea to be profitable?

— Get an idea about how the situation can change with
another kind of accelerator (e.g. MIC)?

Concurrent Programming Models and 21
Frameworks

\

References:

* http://www.khronos.org/opencl/

* Passage of particles through matter:
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-passage-particles-matter.pdf

* Multiple scattering updator in CMSSW:
http://cmslxr.fnal.gov/Ixr/source/TrackingTools/MaterialEffects/src/
MultipleScatteringUpdator.cc?v=CMSSW 5 2 0#014

* Intel OpenCL SDK:
http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/

 AMD OpenCL SDK: http://developer.amd.com/pages/default.aspx
* LLVM: http://llvm.org/
* Openclam: http://code.google.com/p/openclam/

Concurrent Programming Models and

Frameworks =

BACKUP

Concurrent Programming Models and Frameworks 23

OpenCL abstract resource layout

host

compute device

compute unit

processing processing processing
element element element
compute unit
processing processing processing
element element element

Concurrent Programming Models and Frameworks

24

OpenCL Memory Model

Private Private Private Private
Memory Memory Memory Memory

Workltem 1 WorkltemM Workltem 1 WorkltemM

Compute Unit 1 Compute UnitN

Local Memory ' | Local Memory
Global/ ConstantMemory Data Cache

Compute Device

Global Memory

Compute Device Memory

Concurrent Programming Models and Frameworks

25

OpenCL C99

C-based language kernels:

 Derived from ISO C99

 Few restrictions, e.g. recursion, function pointers

e Short vector types e.g., float4, short2, int16

e Built-in functions: math (e.g., sin), geometric,
common (e.g., min, clamp)

Concurrent Programming Models and Frameworks

26

Passage of particles through matter

26.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many small-angle scatters.
Most of this deflection is due to Coulomb scattering from nuclei, and hence the effect
is called multiple Coulomb scattering. (However, for hadronic projectiles, the strong
interactions also contribute to multiple scattering.) The Coulomb scattering distribution
is well represented by the theory of Moliere [32]. It is roughly Gaussian for small
deflection angles, but at larger angles (greater than a few 6y, defined below) it behaves
like Rutherford scattering, having larger tails than does a Gaussian distribution.

If we define

=TS — ___ gums (26.9)

plane — \/— space

then it is sufficient for many applications to use a Gaussian approximation for the central
98% of the projected angular distribution, with a width given by [33,34]

% > 7/ X0 [1 +0.038 ln(a:/Xo)] (26.10)

0 =

Concurrent Programming Models and Frameworks 27

More Scheduling Time

Open CL NVIDIA 'n'ack Count = 100

8 T
o Kemel Runtime Open CL NVIDIA 100 Tracks
7t -« Kernel Schedule Open CL NVIDIA - 100 Tracks ||
6+ .
S5k
5
= al * * > T SRR . B * * * . 1
£
= - Open CL NVIDIA Track Count = 1000
3r T
- Kemel Runtime Open CL NVIDIA 1000 Tracks
, = —« Kernel Schedule Open CL NVIDIA - 1000 Tracks
I 251 :
1-
20 e Bt I B e S S et i et
% 2 a 3 g i
CPU Thread Number [1] o 151
S P ——
10f
st |
el I e e e il . S T S S
% 2 7 3 8 10 12

CPU Thread Number [1]

Concurrent Program

A “bare openclam” example

// create
openclam::
// create
openclam::

wrapper for OpenCL API calls

opencl wrapper;

compute context on Intel platform

context context(wrapper,
openclam: :opencl::PlatformNameIntel (),
// only select CPUs
openclam::icontext::cpu,
// compile options for CL Kernels
"-cl-fast-relaxed -math",
// options to the OpenCL command queue
0

// disable profiling of kernels
false,

// limit the use of CPU cores to 4
4);

Concurrent Programming Models and Frameworks 29

Full kernel code example

struct matrix_add_scalar : private boost::noncopyable

{

KERNEL2_CLASS(kernel_add_scalar, const cl_mem, const double,

_kernel void kernel_add_scalar(__global double * a,
const double b) {
unsigned int x = get_global_id (0);
alx] += b;

})

explicit matrix_add_scalar (openclam::icontext const& context)
kernel_add_scalar (context) {}

template<class TMatrix, class TScalar>
void apply(TMatrix const & matrix,
TScalar const& scalar) const {
kernel_add_scalar.run(matrix.range_linear (),
matrix.mem_, scalar);

Carries the information about the resources
to be used and compiler flags.

Concurrent Programming Models and Frameworks 30

Another Full Example

openclam: :opencl wrapper;
openclam: :context context(wrapper);

// define Matrix of size 10x160
typedef openclam::matrix<double,10> Matrix;

// initialize Matrix
std::vector < double > arr(Matrix::value elements, 1.0);
Matrix ml (arr, 1, wrapper, context);

double d2 = 23.0 ;

// define kernel with all needed parameters
KERNEL2 CLASS(add val , cl mem, double ,

__kernel void add _val(global double * a, const double b)

{
al get global id(©)] += b;
}) (context);

// run kernel, with 2 parameters
add val.run(ml.range linear(), ml, d2);

// get result
ml.to_array(arr, wrapper, context);

Concurrent Programming Models and Frameworks

31

Concurre

ogramming Models and

32

Category

Concurrent Programming Models and
Frameworks

33

