
Evaluation of OpenCL for High Energy Physics Event
Reconstruction

T. Hauth∗, D. Piparo†and V. Innocente‡

CERN

March 14, 2012

Abstract

The Open Computing Language (OpenCL) standard is evaluated in the context of a
selected track reconstruction algorithm present in the software of the CMS experiment.
The performance of the Intel, AMD and NVDIA OpenCL platforms on both GPU and
multi-core CPU devices of different vendors are compared to a reference OpenMP im-
plementation. In addition, the portability of OpenCL programs is investigated and the
usability of the OpenCL API is assessed.

All the tested OpenCL platforms which run the benchmark compute kernel on the
CPU show performance results which are comparable with the OpenMP reference im-
plementation. The same kernel running on NVIDIA and AMD GPUs is faster than on
the Intel and AMD CPUs, even when spawning a significant number of threads. The
scheduling and data transfer overheads with OpenCL is measured and figures of merit
about how it can be amortized are provided.
The performance of OpenCL is shown to be portable across CPU and GPU devices.
A significant improvement of the usability of the OpenCL technology was achieved via
a C++ wrapper to make the access to the OpenCL API more convenient than the one
natively offered by the standard.

∗thomas.hauth@cern.ch
†danilo.piparo@cern.ch
‡vincenzo.innocente@cern.ch

1



Contents

1 Introduction 4

2 Evaluated hardware and runtime environments 4
2.1 Intel OpenCL SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 NVIDIA OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 AMD APP OpenCL SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The CMSSW use case: exploiting parallelism on track level 5
3.1 The multiple scattering algorithm . . . . . . . . . . . . . . . . . . . . . . . 6

4 Multiple scattering runtime 6
4.1 Intel machine: performance measurement . . . . . . . . . . . . . . . . . . 6
4.2 Measuring the OpenCL scheduling overhead . . . . . . . . . . . . . . . . . 7
4.3 AMD machine: performance measurement . . . . . . . . . . . . . . . . . . 9
4.4 Data transfer overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Compiled Performance Numbers . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Auto-Vectorization with OpenMP . . . . . . . . . . . . . . . . . . . . . . 12

5 A possible simplification of OpenCL development 13
5.1 Platform management and OpenCL compute context . . . . . . . . . . . . 14
5.2 Memory buffer management and data transfer . . . . . . . . . . . . . . . . 14
5.3 Defining OpenCL Compute Kernels . . . . . . . . . . . . . . . . . . . . . 16
5.4 Running Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Full Kernel Example code . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Conclusions 18
6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



Executive Summary

To cope with the increasing computing demands implied by the future Physics program
of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC),
promising new technologies are evaluated on a regular basis. In this report the OpenCL
standard is considered and the evaluation of its Intel, NVIDIA and AMD implementations
are described in terms of overall compute performance, portability and usability.
OpenCL is a standard which defines a framework and a programming language for parallel
computation on heterogeneous systems. It is supported by a large consortium of industry
leaders in the software and hardware field and has been designed from the very beginning
to support computations on Graphics Processing Units (GPU) and Central Processing
Units (CPU).
An algorithm part of the track reconstruction chain of CMS events was selected as a
standard candle for this report. To provide a reference using a well-established technology,
the same algorithm was implemented using the OpenMP API.

The OpenMP and OpenCL measurements on the CPUs show comparable runtime
performance and smoothly scale with the number of available cores in the CPU. If on
the one hand the OpenCL platform adds a higher scheduling overhead with respect to
OpenMP, on the other hand this cost is well amortized when an adequate workload, i.e.
at least an input collection of 1,000 tracks, is provided to the single threads.
The benchmark algorithm could be run on all OpenCL platforms without modifications
to its implementation. Taking advantage from the portability offered by the OpenCL
technology, the algorithm has been tested on NVDIA and AMD GPUs. The time neces-
sary to process exactly the same input data on the GPU was about the half of the one
measured using all the cores of the CPU.
To reach a level of usability comparable to regular C++ programming, a consistent and
easy-to-use C++ wrapper around the OpenCL API was developed. The OpenCL memory
objects are encapsulated in compile-time type-checked C++ classes featuring an auto-
mated resource management. Therefore, the usage of the OpenCL technology becomes
simpler and less error prone with respect to the one offered by the native OpenCL API.

Expressing parallelism with the OpenCL framework in selected CMS event recon-
struction algorithms has proven to be possible. The performance scales properly with the
number of available CPUs, provided that enough work per thread is supplied in order
to amortize the scheduling overhead. The performance portability of OpenCL not only
makes the usage of GPU resources transparent for the developer, but elegantly avoids
vendor lock-in and allows the flexibility that a large and long-running project like CMS
software needs. Therefore, the OpenCL technology is for CMS one appealing way to take
advantage of herogeneous computing resources in the future many-core era.

3



1 Introduction

OpenCL is a standard which defines a framework, an API and a programming language
for parallel computation on heterogeneous systems like client computer systems, high-
performance computing servers as well as hand-held devices. The standard is maintained
by the Khronos Group and supported by a large consortium of industry leaders including
Apple, Intel, AMD, NVIDIA and ARM. Influenced by NVIDIA’s CUDA from the GPU
side and by OpenMP which originates from the classical CPU side, the open OpenCL
standard is characterized by a formulation which is abstract enough to support both CPU
and GPU computing resources. This is an ambitious goal, since providing an abstract
interface together with a peak performance is a challenging task. OpenCL employs a strict
isolation of the computation work into fundamental units, the kernels. These kernels can
be developed in the OpenCL C programming language, a subset of the C99 language,
with some additional OpenCL specific keywords. In general, these kernels are hardware
independent and compiled by the OpenCL runtime when they are loaded. To be able to
fully exploit the parallel execution of the kernel code, several kernel instances, the work
items, are started to process a set of input values. The actual number of concurrently
running work items is determined by the OpenCL system. How a concrete algorithm can
be partitioned into work items has to be decided by the programmer.

The Compact Muon Solenoid (CMS) collaboration has foreseen a rich and ambitious
Physics program based on the analysis of the data originating from the collisions deliv-
ered by the Large Hadron Collider (LHC). The reconstruction of the events recorded by
CMS, is carried out with an object-oriented C++ software framework, CMSSW. With
the increasing luminosity provided by the LHC and the future scenarios implied by the
super-LHC collider, the treatment of the collision data will require extraordinary large
computing resources, also in terms of CPU usage. The trivial event-based parallelism will
not be enough to cope with this challenge. Therefore, new promising technologies in the
field of computer hardware and software are evaluated on a regular basis within the CMS
collaboration in order to assess their potential advantages in terms of improvement of the
processing of the collision data. The purpose of this report is to summarize the findings
gained in a first evaluation of the OpenCL technology.

2 Evaluated hardware and runtime

environments

The specific implementations of the OpenCL runtime are provided by the hardware ven-
dors. In this report, four different hardware architectures, coming with a different OpenCL
runtimes, are evaluated.

2.1 Intel OpenCL SDK

As part of the OpenCL consortium, Intel played an important role in creating the OpenCL
standard. The Intel OpenCL Software Development Kit (SDK) compiles OpenCL kernels
in order to run them on x86-64 CPUs. Code vectorization is exploited to distribute the
calculations of a kernel to the vector units of a CPU. The most recent release of the SDK
(version 1.5), supports the SSE and AVX vector instruction sets.

The performance benchmarks described in this document are based on the Intel

4



OpenCL SDK 1.5 for 64-bit Linux. The hardware on which they are run is an Intel
Core i7-3930K CPU at 3.20GHz machine, with 6 physical and thus 12 hyper-threaded
cores. The RAM amounts to a total of 16 GB and the operating system is Scientific
Linux 6 (SLC6).

2.2 NVIDIA OpenCL

One of the forerunners of the OpenCL standard is the CUDA system for GPUs by
NVIDIA. CUDA also provides a framework and dedicated programming language to run
compute kernels. Since 2009, the NVIDIA graphics driver also supports the OpenCL
standard and can compile and run OpenCL kernels on the graphics card. For the evalua-
tions described in this paper, the NVIDIA Linux driver version 275.43 was installed. The
graphics card at disposal was a commodity one: the NVIDIA GeForce GTX 560 with 1.5
GB on-card RAM and 336 CUDA compute cores.

2.3 AMD APP OpenCL SDK

AMD is the first major vendor providing OpenCL support both for its own CPUs and
GPUs with one runtime environment: the AMD Accelerated Parallel Processing (APP)
SDK. The version used for the tests figuring in this document is the latest available version
at the time of writing: the AMD APP SDK v2.6.

The machine used for the benchmarks presented is an AMD FX-8120 CPU which is
based on the AMD Bulldozer microarchitecture and has 8 cores. As the machine equipped
with Intel hardware, this test machine also has 16 GB of RAM and runs SLC6.

The graphic card mounted was the AMD Radeon HD 6970, and it was used to evaluate
the GPU runtime of the AMD OpenCL SDK. This card is also aimed at the gaming market
and mounts 2 GB on-card RAM and 1536 Stream Processors. Note that number of Stream
Processors cannot directly be compared to the CUDA compute cores of the NVIDIA card,
as these entities may differ in implemented functionality. To access the card with OpenCL
the graphics driver AMD Catalyst 11.11 revision 12.1 for 64-bit Linux has been installed.

2.4 OpenMP

In order to have a relation of the OpenCL benchmark results with a more conservative
and established technology, the benchmarked algorithms were also coded in C++ taking
advantage of OpenMP. The adopted compiler was the most recent revision of the GCC
4.7 trunk.

3 The CMSSW use case: exploiting parallelism

on track level

The reconstruction of a real-life HEP event consists in running a wide range of algorithms
which include cluster finding, pattern recognition, linear algebra mathematics and mini-
mizations. These algorithms elaborate very different types of data, organized in various
categories of structures.

At the time of writing, the reconstruction of the charged particles tracks is by far the
major contributor to the total runtime of the CMS data processing. This is due to the

5



complexity of the CMS silicon tracker detector and to the high number of charged particles
originating from a proton-proton collision. Taking into account the expected LHC run
conditions in the year 2012, the number of particle tracks in an average proton-proton
collision is between 500 and 1,000 and this number is likely to increase even further in the
future.

From a computational perspective, often the same algorithms are applied under similar
conditions to all the tracks in an event. This behavior offers an opportunity to express
data-parallelism exploiting vector units and multi-threading. One representative real-life
use case from the actual CMS tracking reconstruction software is picked to perform the
runtime and scaling tests.

3.1 The multiple scattering algorithm

The calculation of the multiple scattering of a charged particle in the detector material was
chosen as the standard candle for the tests described in this document. The calculation is
composed of about 40 mathematical operations on double precision floating point values
and one call to the logarithm mathematical function. During the reconstruction process
of one recorded event, this calculation has to be performed thousands of times for all
tracks.

4 Multiple scattering runtime

In the following, the multiple scattering algorithm is applied to an input collection of 100,
1,000 and 10,000 tracks.

Both the OpenMP and the OpenCL implementations of the algorithm use the same
C++ code fragment to perform the calculations. For OpenCL, this code is defined using
the framework described in detail in section 5. The same OpenCL memory layout is used
to benchmark the Intel OpenCL SDK, NVIDIA CUDA Driver and AMD APP OpenCL.
For OpenMP, the computation is contained within a regular for loop and parallelized
using the directive

#pragma omp parallel for

4.1 Intel machine: performance measurement

The calculation has been performed 1,000 times and figure 1 shows the overall runtime of
all three implementations for 100, 1,000 and 10,000 tracks. The measurement has been
performed for various numbers of threads for the Intel OpenCL and OpenMP implemen-
tations. As there is no comparable equivalent to CPU threads on the NVIDIA GPU,
all available computing resources on the NVIDIA card have been used. The time inter-
val from submitting the OpenCL compute kernel to the the arrival of the results to the
application is reported.

The OpenMP reference implementation has good performance and scales well up to
about 4 threads.
The OpenCL NVIDIA implementation running on the GPU shows the best performance
of the test for the 10,000 tracks case.
For what concerns the Intel OpenCL SDK, the single thread measurement shows about
the same performance as the OpenMP case. The performance reasonably scales up to four

6



Figure 1: Overall runtime comparison for all three evaluated technologies for 100, 1,000
and 10,000 tracks on the Intel machine for 1000 repetitions of the process. A
structure is clearly visible at 6 threads. This is due to the fact that the ma-
chine has 6 physical cores and after this number of threads the Hyperthreading
technology comes into play.

cores. After this point, no additional improvement is visible. In general, the OpenMP
implementation can make better use of additional cores than the Intel OpenCL one.
For the 100 tracks case, multithreading basically does not bring any improvement. This
behavior hints to a significant scheduling overhead. This assumption will be quantified in
the next section.

4.2 A measurement of the OpenCL scheduling
overhead

To be able to separate the scheduling overhead from the actual runtime of the single
OpenCL kernels, OpenCL’s clGetEventProfilingInfo() was exploited. The scheduling
time and the actual runtime can be queried by this function after the kernels execution is
complete. For this benchmark, the profiling has been enabled on the OpenCL platforms.
The timings were gathered for 1,000 independent tests and their means are plotted.

As visible in figure 2, except for the 10,000 tracks case, the scheduling time of the
kernel on the Intel platform is larger than the actual runtime of the kernel. Only for
the case of 10,000 tracks, a significant improvement of the kernel runtime depending of
the CPU thread number is visible. Independent of the number of threads or the number
of input tracks, the scheduling overhead lies for this measurement in a region at around
90-100 µs.

Figure 3 illustrates that the NVIDIA runtime also has a constant scheduling overhead
when running the OpenCL kernel. This overhead is of about 4 µs and represents only the

7



(a) 100 Tracks (b) 1,000 Tracks

(c) 10,000 Tracks

Figure 2: Mean elapsed scheduling and running time of the multiple scattering kernel
running on the Intel OpenCL Platform. The mean was calculated on 1000
independent tests.

8



5% of the scheduling overhead observed with the Intel OpenCL SDK.

4.3 AMD machine: performance measurement

The same benchmarks described in section 4.1 were performed on the AMD machine.
Figure 4 shows the timing results for the 1,000 and the 10,000 tracks case.

The Intel OpenCL SDK has also been installed on the AMD machine and the obtained
timings are inserted into the plot.
The AMD APP SDK does not support running kernels only on a subset of the overall
available processor cores. Therefore, all AMD APP measurements on the CPU imply the
usage of all of the eight cores of the CPU. As it was the case for the NVIDIA GPU, the
computing units of the AMD GPU are not limited in any way.
Compared to the Intel machine, the OpenMP performance is slightly degraded on the
AMD machine. The performance of the Intel OpenCL runtime on the AMD machine
is about 10% worse than the one measured on the Intel machine. On the other hand,
the AMD OpenCL CPU kernel is faster than Intel OpenCL for the maximum number of
available threads, even taking into account the difference in real cores per die.
The AMD OpenCL running on the AMD GPU is the fastest of all investigated implemen-
tations, including the NVIDIA GPU.

4.4 Data transfer overhead

One important aspect of the OpenCL system is its memory model. Depending on the
actual hardware used, the memory accessible by the kernel is either located on the host’s
main memory or dedicated memory on the graphics card. In general, input values must
be transferred to dedicated OpenCL memory banks before any kernel has access to them.
After the kernel has performed its calculations, the resulting values stay in the OpenCL
memory realm and subsequent kernels can be started. If the results must be available to
the regular C/C++ program on the host side, an explicit memory copy operation has to
be performed.

Up to now, the additional time necessary to perform this memory transfer from and
to the OpenCL device has not been taken into account. The measured times reflected
the speed if all necessary data structures are already in place. This is the most generic
measurement which can be performed, as the complexity and frequency of memory trans-
fers highly depends on the workflow of the underlying application. The main factors here
are how many different kernels are run sequentially and how well data structures on the
OpenCL device can be reused by the kernels. In this case, four doubles are shipped to
the computing units and three doubles are taken back.

To give an estimate of the expected overhead, we examine the worst-case scenario. All
track-data is copied to the OpenCL memory space before each kernel run and is copied
back to host memory once the computation is complete. We repeat the measurement done
in Section 4.1 and include the transfer overhead in the measured runtime. The results
can be seen in Figure 5 and show the expected increase in the runtime of the OpenCL
implementations compared to the previous measurement (Figure 1). For the 10,000 tracks
case, the OpenCL runtime on the NVDIA GPU was more than doubled, the runtime of
the Intel OpenCL implementation increases by 25% for the single core case.

This measurement shows, that it is essential to keep the data structures as long as
possible in the OpenCL memory realm, apply as much computation as possible and only
copy the final results back to host.

9



(a) 100 Tracks (b) 1,000 Tracks

(c) 10,000 Tracks

Figure 3: Mean elapsed scheduling and runtime time of the multiple scattering kernel
running on the NVIDIA OpenCL Platform. The mean was calculated on 1000
independent tests.

10



Figure 4: Overall Runtime comparison of all the available technologies for 1,000 and 10,000
tracks on the AMD machine.

Figure 5: The Runtime including the transfer overhead for all three evaluated technologies
for 100, 1,000 and 10,000 tracks on the Intel machine for 1000 repetitions of the
process.

As the kernels running on Intel OpenCL are executed on the CPU and have therefore

11



access to the whole memory of the host system, the OpenCL standard offers a feature
to reuse the host memory in OpenCL kernels. Therein, pointers to regular C/C++ data
structures, like a std::vector of doubles, can be registered with the OpenCL framework
and kernels running on the CPU can directly access this memory. Therefore, by using this
technique on the CPU, no explicit memory transfer is necessary and no overhead with
moving data from host memory to the OpenCL memory realm occurs.

4.5 Compiled Performance Numbers

Table 1 shows all numbers gained during the studies in the previous sections. It is impor-
tant to note, that although these numbers reflect a general trend in the system runtimes,
other parameters discussed before, like scalability must also be taken into consideration.

Table 1: Overview of the runtime of all investigated systems for 1,000 iterations of the
multiple scattering algorithm

System under test Only Runtime [ms] Runtime with Transfer [ms]

Intel Machine
Intel OpenCL (6 CPU cores) 140 310
OpenMP (6 CPU cores) 70 -
NVIDIA OpenCL 40 130

AMD Machine
Intel OpenCL (all CPU cores) 160 -
AMD OpenCL (all CPU cores) 140 -
OpenMP (all CPU cores) 90 -
AMD OpenCL AMD GPU 25 -

4.6 Auto-Vectorization with OpenMP

In the process of implementing the OpenMP reference version, the gains were investigated
which can be achieved by using the auto-vectorization features of GCC.
Modern CPUs present several vector units, the capacity of which is growing steadily with
the introduction of new processor generations. Most recent C++ compilers can take
advantage of such innovations, either by explicit statements in the sources of the program
or automatically adapting the generated machine instructions to the available hardware,
without the need of modifying the existing code base.
Due to a call to the logarithm function, GCC is not able to auto-vectorize the existing
multiple scattering kernel source code as-is. To overcome this, a different double precision
logarithm implementation was used. This code is part of a collection of double and single
precision inline autovectorizable mathematical functions developed within CMS starting
from the well-known Cephes1 library.

1http://www.netlib.org/cephes

12

http://www.netlib.org/cephes


Figure 6 shows the auto-vectorized version compiled to use the SSE2 instruction set
compared to the scalar version. The measurements shown in this plots were performed
on the Intel machine which is described in section 4.1. The benefit brought by the usage
of the CPU vector units is clearly visible and is not affected in a negative way by the
number of available threads.

Figure 6: Auto-vectorized version of the OpenMP implementation compared to the scaler
version on the Intel machine.

5 A possible simplification of OpenCL develop-

ment

A relevant parameter taken into account by CMS during the evaluation process of new
software technologies is their usability. The responsibility of the development and main-
tenance of the CMS reconstruction code is spread among many developers from various
Research Institutions and Universities and their programming skills are far from being
homogeneous. Therefore, to ease the development process and to keep the source code
consistent, the complexities linked to the employed multi-threading technology should be
encapsulated as best as possible.

The API offered by OpenCL is a C-style one, which hands out handles and requires
explicit memory management. Moreover, OpenCL kernels cannot be defined as part of
the regular C++ code of a program but can only be contained in string variables or read
from external files. Therefore, no syntax or type checking of the kernel program code is
natively performed at compile time of the host application.

13



The openclam2 project tries to mitigate these issues by encapsulating the OpenCL API
in C++ classes. Taking advantage of smart C++ templating and preprocessor statements,
OpenCL kernels can be defined interleaved with regular C/C++ program code and are
syntax and type checked by the compiler, in our case GCC. Unfortunately, the activities
linked to the openclam project showed a setback in the last year and the project is still
more a proof-of-concept than a finished product. Nevertheless, openclam acted as a basis
and has been heavily extended and refactored by the authors of this paper.

In the following, several aspects of the OpenCL experience are discussed from the pro-
grammer’s point of view. The code snippets shown present the aforementioned OpenCL
programming interface. Given the abundance of examples offered on the web, the equiv-
alent OpenCL API code that would be necessary to achieve the same functionality is not
shown.

5.1 Platform management and OpenCL compute context

To simplify the instantiation of the OpenCL runtime, the C++ classes clam::opencl
and clam::context are available. If no parameters are given, the first available OpenCL
runtime on the machine will be selected. Specific platforms can be selected by the vendor
name or by defining whether a GPU or CPU should be used.
The release of all to the compute context associated resources is automatically performed
once the C++ destructor of the clam::context object is called.
Figure 7 to Figure 9 show some examples of how the clam::context C++ class can be
used to access various computing hardware.

// create wrapper for OpenCL API calls

openclam::opencl wrapper;

// create compute context on default platform

openclam::context context(wrapper);

Figure 7: Instantiation of an OpenCL Compute Context on the default Platform.

// create wrapper for OpenCL API

calls openclam::opencl wrapper;

// create compute context on default platform

openclam::context context( wrapper,

openclam::opencl::PlatformNameNVIDIA());

Figure 8: Instantiation of an OpenCL Compute Context on the NVIDIA Platform.

5.2 Memory buffer management and data transfer

The OpenCL concept of memory management is explicit. This means that memory re-
gions for output and input values must be allocated by calls to the OpenCL API and

2http://code.google.com/p/openclam

14

http://code.google.com/p/openclam


// create wrapper for OpenCL API calls

openclam::opencl wrapper;

// create compute context on Intel platform

openclam::context context( wrapper,

openclam::opencl::PlatformNameIntel(),

// only select CPUs

openclam::icontext::cpu,

// compile options for CL Kernels

"-cl-fast-relaxed-math",

// options to the OpenCL command queue

0,

// disable profiling of kernels

false,

// limit the use of CPU cores to 4

4);

Figure 9: Instantiation of an OpenCL Compute Context on the Intel Platform and using
4 CPU cores.

memory from within the host C++ program’s heap or stack must be transferred from
and to the OpenCL memory regions explicitly.
This form of low-level memory management could remind of the C malloc and free func-
tions. Unfortunately, this form of memory management is characterized by very similar
caveats and pitfalls. No type safety during the access to OpenCL memory regions is en-
forced and the validity of the accessed range is not checked. This can lead to catastrophic
memory violations or simply faulty calculations which are very hard to spot and debug.
The manual transfer of input values might result cumbersome and is more or less a vari-
ation of a crude C-style memcpy command. Moreover, OpenCL buffers must be explicitly
released to free the associated memory.

For large-scale applications like CMSSW, where OpenCL buffers could need to be
allocated and used within different modules, a direct usage of the OpenCL memory man-
agement system would be very hard to implement and maintain. For this reason, a C++
template-based system to allocate, use and release OpenCL buffers was developed. The
application developer is relieved of the low-level memory handling but can use templated
and type-safe C++ classes to pass memory from and to the OpenCL compute kernels.
The device memory associated with an OpenCL buffer is automatically released once the
C++ object is destroyed. Therefore, no additional effort is necessary to ensure a consis-
tent memory management except following the regular C++ principles.
For the tests described in this document, this mechanism was used to provide a vector and
a matrix data type but this idea can be extended to every type of data. The code snip-
pet 10 shows how to create a square 10-dimensional matrix of double precision numbers
and to transfer it to an OpenCL compute context.

15



// define a Matrix datatype for our case

typedef openclam::matrix<double,10> Matrix;

// create a std::vector to have initial values

std::vector < double> arr( Matrix::value_elements, 1.0 );

// create one matrix with the intial values from the std::vector

Matrix m1 ( arr, 1, wrapper, context );

Figure 10: Allocation of a custom matrix data type on an OpenCL compute context.

5.3 Defining OpenCL Compute Kernels

As mentioned before, at the time of writing, OpenCL kernels cannot be natively inter-
leaved with the regular C++ code, but must be provided as external text files or as string
variables. Furthermore, the parameters of a kernel call must be set one by one via the
OpenCL API: depending on the amount of parameters this procedure can easily span
several lines of C++ code.

Starting from the openclam’s framework, we created a system to conveniently define
OpenCL kernels. They are syntax and type checked during the compilation of the host
program and can be called with all parameters in one single line of C++ code. Figure 11
shows how a simple kernel with two parameters can be defined.

KERNEL2_CLASS( kernel_add_scalar, const cl_mem, const double,

__kernel void kernel_add_scalar( __global double * a,

const double b)

{

unsigned int x = get_global_id(0);

a[x] += b;

} );

Figure 11: Definition of a simple kernel with two parameters. The kernel only adds a
constant value b to the values contained in the input array a.

As soon as the C++ class containing this kernel definition is instantiated, the kernel
code is compiled using the OpenCL runtime and registered as kernel add scalar.
More complex kernels with more parameters have been created using this scheme but are
not presented here for the sake of compactness. These kernels include matrix multiplica-
tion algorithms or rather complex calculations (see below) with more than 100 instructions
and up to 6 parameters.

5.4 Running Kernels

Running OpenCL kernels in the scheme described above is straightforward. The run()
method of the defined kernel can be called. This method takes the parameters which
are passed to the kernel and allows to specify the amount and size of the OpenCL work
dimensions. Figure 12 shows how to call an already defined kernel.

16



kernel_add_scalar.run( matrix.range_linear(), matrix.mem_,

5 );

Figure 12: Calling an already defined kernel.

5.5 Full Kernel Example code

Figure 13 shows how to define and call a kernel. The C++ class matrix add scalar
wraps the kernel definition. The apply(...) method can now be called by external code
to run the kernel.

struct matrix_add_scalar : private boost::noncopyable

{

KERNEL2_CLASS( kernel_add_scalar, const cl_mem, const double,

_kernel void kernel_add_scalar( __global double * a,

const double b) {

unsigned int x = get_global_id(0);

a[x] += b;

} );

explicit matrix_add_scalar(openclam::icontext const& context) :

kernel_add_scalar(context) {}

template<class TMatrix, class TScalar>

void apply( TMatrix const & matrix,

TScalar const& scalar) const {

kernel_add_scalar.run( matrix.range_linear(),

matrix.mem_, scalar );

}

};

Figure 13: Full example of defining and calling a kernel.

17



6 Conclusions

6.1 Performance

As the benchmarks in section 4 show, all OpenCL implementations exhibited a scheduling
overhead. The Intel OpenCL runtime performance reaches the results of the OpenMP
reference implementation for the single core case, but does not scale as well with the
number of threads. The scheduling overhead is a relevant factor especially for the Intel’s
OpenCL.
The NVIDIA OpenCL implementation also shows some scheduling overhead, but far less
then the Intel version (5 µs with respect to 90-100 µs in the tests performed). Overall, the
NVIDIA implementation shows a better performance compared to the OpenMP reference
implementation.
The AMD APP OpenCL SDK on the AMD machine is also well behaved in terms of
performance. The AMD OpenCL GPU benchmarks show a very small scheduling overhead
and the kernel run on the AMD GPU reaches the lowest runtime of all the tests.

The current benchmark scenario used various numbers of input particle tracks to
evaluate the runtime of the implementations. For both, the well-established OpenMP and
the newer OpenCL, it becomes clear that a sufficient amount of input must be available
to allow a profitable track-based parallelism. The work-chunks which can be handed to
individual cores must be large enough to allow for a distribution of the load to all available
cores. If this work-chunks are to small, the whole working set cannot be parallelized
beyond two or three cores.

Section 4.4 showed that, depending on the memory usage pattern of the application, an
overhead in transfering data from and to the OpenCL devices can be observed. Moreover,
as described in section 4.2, OpenCL imposes a scheduling overhead which is associated
with starting the kernels. This overhead is not linked to the number of input elements
and therefore is constant. This scheduling overhead can be amortized with processing of
several input elements with one kernel run.

Therefore, if the OpenCL or OpenMP technology would be used to speed up the CMS
tracking reconstruction step, a sufficient amount of tracks must be gathered together to
make the parallel processing profitable. One possible way to achieve this is to reconstruct
the particle tracks from different events at once.

6.2 Portability

For the tests described throughout this document, the OpenCL technology has shown a
remarkable portability. It can be considered as a powerful tool to implement algorithms
to run both on CPUs and GPU resources transparently.

6.3 Usability

By providing a consistent and easy-to-use C++ wrapper around the OpenCL API, the
level of simplicity of programming with regular C++ classes was almost reached. In par-
ticular, the encapsulation of the OpenCL memory buffers in templated C++ classes, fully
type-checked and featuring an automatic releasing of the resources, allows to greatly re-
duce the complexities and potential mistakes dealing with OpenCL memory management.
The definition of the OpenCL kernels within regular C++ code was demonstrated to be
very convenient for the application developers. Further functionalities and data types can

18



be added to the currently developed C++ wrapper. Therefore, from the usability stand-
point, there are no major obstacles in using OpenCL in the CMS event reconstruction
code.

19


	Introduction
	Evaluated hardware and runtime environments
	Intel OpenCL SDK
	NVIDIA OpenCL
	AMD APP OpenCL SDK
	OpenMP

	The CMSSW use case: exploiting parallelism on track level
	The multiple scattering algorithm

	Multiple scattering runtime
	Intel machine: performance measurement
	Measuring the OpenCL scheduling overhead
	AMD machine: performance measurement
	Data transfer overhead
	Compiled Performance Numbers
	Auto-Vectorization with OpenMP

	A possible simplification of OpenCL development
	Platform management and OpenCL compute context
	Memory buffer management and data transfer
	Defining OpenCL Compute Kernels
	Running Kernels
	Full Kernel Example code

	Conclusions
	Performance
	Portability
	Usability


