
Performance of
libdispatch Based
Framework Demo

Christopher Jones

libdispatch Performance Concurrent Frameworks 14/03/2012

Outline
Building Port

Measurements

2

libdispatch Performance Concurrent Frameworks 14/03/2012

Building Linux Port
Started from repository
Port from Snow Leopard (OS X 10.6)
https://www.heily.com/trac/libdispatch

Used new compiler
gcc 4.6.2

Compiler optimizations created race conditions in libdispatch
Lock free implementation broken by reordering of memory ‘store’ to be after
an atomic barrier

3

 tail->do_next = NULL;
 prev = dispatch_atomic_xchg(&dq->dq_items_tail, tail);
 if (prev) {
 prev->do_next = head;
 } else {

order reversed

Thread 1
T0) put tail1 on end of list

T5) tail1->do_next = NULL

Thread 2

T2) put tail2 on end of list and prev == tail1
T3) tail2->do_next = NULL
T4) tail1->do_next = head2

https://www.heily.com/trac/libdispatch
https://www.heily.com/trac/libdispatch

libdispatch Performance Concurrent Frameworks 14/03/2012

Building Linux Port(2)
Start from RPM
Port from Lion (OS X 10.7)
http://mark.heily.com/sites/mark.heily.com/files/libdispatch-f16-SRPMS.tgz

Had to use clang
Lion version of libdispatch makes use of Apple’s extension to C ‘blocks’

Use of blocks is not fundamental and could be removed

No threading problems seen with this port

4

http://mark.heily.com/sites/mark.heily.com/files/libdispatch-f16-SRPMS.tgz
http://mark.heily.com/sites/mark.heily.com/files/libdispatch-f16-SRPMS.tgz

libdispatch Performance Concurrent Frameworks 14/03/2012

Test System
Physical Machine
Intel(R) Xeon(R) CPU E5620
16 physical cores @ 2.40GHz

4Cores/CPU with 4 CPUs
47 GB RAM

Virtual Machine
16 virtual cores
15 GB RAM
SL6

libdispatch port needs a more modern kernel than SL5 provides

5

libdispatch Performance Concurrent Frameworks 14/03/2012

Measurement Strategy

6

Dependencies
Got module dependencies (what data each module uses) from CMS framework

Timing
Get per event module timing and read TBranch from file timing for Minimum
Bias reconstruction

Feed dependencies and timing to demo framework

Approximate module timing by
Busy wait: calculate an integral calibrated for # iterations/sec

causes a demo module to take full core
Sleep: call usleep

sleeping releases the core and allows another task to run
simulates having more cores available to the job

Threading tests
Producers and I/O are re-entrant
Producers are re-entrant but I/O can only processes one event at a time

libdispatch Performance Concurrent Frameworks 14/03/2012

Scaling: Busy Wait

Threaded versions flatten out sooner than N single threaded
jobs since threaded jobs use up all 16 cores before reaching 16
concurrent events

7

0

1

2

3

0 4 8 12 16 20 24

Minimum Bias RECO with Thread-Safe Busy Waiting Modules
Ev

en
ts

/S
ec

on
d

Concurrent Events

I/O Non-Reentrant
All Reentrant
N Jobs

libdispatch Performance Concurrent Frameworks 14/03/2012

Scaling

Perfect Scaling is Flat in this Graph

N Job sleeping scaling failed since ran out of memory
8

0

0.1

0.2

0.3

0.4

1 10 100 1000 10000

Minimum Bias Reconstruction with Thread-Safe EDProducers
Ev

en
ts

/S
ec

/S
im

ul
ta

ne
ou

s
Ev

en
ts

Simultaneous Events

I/O not Reentrant, Busy Wait I/O not Reenetrant, Sleeping
All Reentrant, Busy Wait All Reentrant,Sleeping
N Jobs, Busy Wait N Jobs, Sleeping

libdispatch Performance Concurrent Frameworks 14/03/2012

Scaling Large Scale

First Hit Limit of 1024 Threads in System

Raised Limit and Have Hit an Unknown Limit
Not a memory limit since only using 680MB RSS (23GB VSize)
Number of running threads falls from 1600 to 1200 after peak

9

0

75

150

225

300

0 300 600 900 1200 1500

Minimum Bias Reconstruction with Sleeping Modules

Ev
en

ts
/S

ec
on

d

Simultaneous Events

ulimit -u 1024
ulimit -u 2048
N Jobs

libdispatch Performance Concurrent Frameworks 14/03/2012

Conclusion
Promising Results for libdispatch
Scales Linearly up to 1000s of Concurrent Events
Accommodates thread-safe and non-thread-safe code
Easy to use internally to a module

Puzzling Failure of Scaling at Very Large Scale
Will try to find out the cause

Need to be aware that gcc 4.6.2 can cause problems with lock
free implementations
C++11 standard’s memory model will alleviate the problem

Additional Tools Would be Helpful
How many threads are active over time
Load on each CPU over time

10

