
THOUGHTS ON
“WHITEBOARD”

ideas on a concurrent physics framework

Riccardo-Maria BIANCHI (CERN PH-ADT)

Forum on Concurrent Programming Models and Frameworks - 14.03.2012

ALGORITHMS AS TASKS... LET’S TRY TBB!

Our physics data processing mechanism is mainly based on chains of inter-
dependent, but independent, algorithms.

Our algorithms are de-facto “tasks”, which can be seen as nodes of a “graph”... so
let’s try to implement a prototype with the Intel TBB flow::graph!

Algorithms can have one or more IN and OUT data objects

Algorithms can be seen as nodes featuring single/multi ports as input and output

Nodes are then interconnected by edges, according to the IN and OUT data
types of the nodes

2Riccardo-Maria BIANCHI (CERN PH-ADT)

A FIRST DEMONSTRATOR

3Riccardo-Maria BIANCHI (CERN PH-ADT)

A FIRST DEMONSTRATOR

4

User’s Space

The u
ser

decl
ares

 the

algorith
ms an

d as
sign

them
 to one o

r more

jobs

Riccardo-Maria BIANCHI (CERN PH-ADT)

A FIRST DEMONSTRATOR

5

Framework’s Space
Algos an

d jo
bs

are
dyna

mical
ly

sche
dule

d by
 the

fram
ework

Riccardo-Maria BIANCHI (CERN PH-ADT)

A FIRST DEMONSTRATOR

graph
s within

 jobs

are
built

 with

TBB::FLOW::GRAPH

tasks of the job chains

will be run in parallel

the s
chedu

ler a
nd

AlgoChain
dynam

icall
y

build
 the

jobs

6Riccardo-Maria BIANCHI (CERN PH-ADT)

A FIRST DEMONSTRATOR

7

the s
chedu

ler a
nd

AlgoChain
dynam

icall
y

build
 the

jobs

tasks of the job chains

will be run in parallel
graph

s within
 jobs

are
built

 with

TBB::FLOW::GRAPH

This machinery has

been implemented

using Intel
TBB

“graphs”

Riccardo-Maria BIANCHI (CERN PH-ADT)

JOBS CREATED DYNAMICALLY,
TASKS RUN IN PARALLEL

N jobs are created, with M algorithms each

Each AlgoChain inspects the IN and OUT data types of each algorithm, and it builds a
tbb::flow::graph, connecting the algorithms in a producer/consumer way

The jobs are then run, and algorithms are run in parallel when not dependent from
the completion of predecessors

each job (AlgoChain instance) does some work in
Setup(), then it runs the scheduled algorithms

When triggered by its predecessors, each Algorithm
does some work in its body() function. When finished,
it sends a message to all its successors

For the time being all Setup() and body() have been
implemented with a call to Sleep(2) to simulate some
workload

8Riccardo-Maria BIANCHI (CERN PH-ADT)

pa
ra

lle
l r

un

pa
ra

lle
l r

un

FIRST TESTS WITH THE
DEMONSTRATOR

To test the machinery 2 pools of algorithms are declared

Then the Scheduler assigns them to a number of jobs (instances of the AlgoChain class)

Each job dynamically builds its graphs, ending up with the 2 test configurations below

A single job with 3 algorithms
connected in a serial way

the same serial job plus 3 jobs
with 5 algorithms connected in a

more complex pattern

9Riccardo-Maria BIANCHI (CERN PH-ADT)

COMPLEX JOBS CAN BE
BOOSTED UP

Of course the Run A cannot
profit from parallelization

while Run B is boosted with
a large speed-up factor

But this only shows that
this graph-based model
works...

0.9

1.9

2.9

3.9

4.9

5.9

1 5 9 13 17 21 25

Sp
ee

du
p

Number of working threads

Run A (simple serial graph) Run B (complex graph)

complex jobs

serial job

tested on a 2-cores MacBook
using tbb::task_scheduler_init to set

the number of working threads

10Riccardo-Maria BIANCHI (CERN PH-ADT)

MORE TO BE EXPLORED

function_node and multifunction_node can be
used for Algorithms: they can have one or
multiple outputs. The concurrency level of
those nodes can be set.

Tuning options of the task-scheduler should be tested

The TBB (as like as GCD) the non-preemptive task-scheduler is
optimized to handle many non-blocking tasks in flight. Long-waiting
tasks destroy the concurrency of those schedulers, loosing in
performances.

Hence alternative mechanisms should be found and tested for long-
waiting operations, like network or disk I/O.

11Riccardo-Maria BIANCHI (CERN PH-ADT)

STILL TO DO FOR A BETTER VERSION OF
THE DEMONSTRATOR

12

implementation of

some more realistic

work in the

algorithm body, and

test of passing real

values (float, int,

ROOT objects, ...)

prototypes of

persistency

services

implementation of

a basic prototype

of a transient

data store
A very abstract processing diagram

Circles represent data products

Rectangles represent processing modules

Any or all data products may be written to an output file

Input file

Output file

Histogram file

alg1 A

D

alg2 B

E

alg3 C alg4

W

Y

Z

6 / 6

implementation of the

“standard graph” from

M. Paterno and C.Jones

Riccardo-Maria BIANCHI (CERN PH-ADT)

STILL TO DO FOR A BETTER VERSION OF
THE DEMONSTRATOR

13

implementation of

some more realistic

work in the

algorithm body, and

test of passing real

values (float, int,

ROOT objects, ...)

prototypes of

persistency

services

... suggestions

are very

welcome!

A very abstract processing diagram

Circles represent data products

Rectangles represent processing modules

Any or all data products may be written to an output file

Input file

Output file

Histogram file

alg1 A

D

alg2 B

E

alg3 C alg4

W

Y

Z

6 / 6

implementation of the

“standard graph” from

M. Paterno and C.Jones

Riccardo-Maria BIANCHI (CERN PH-ADT)

implementation of

a basic prototype

of a transient

data store

