$\Lambda \bar{\Lambda}$ Spin Correlations

Cheryl Theroux

Dr. Homer Neal

Daniel Scheirich

Analysis Overview

- We are looking for spin correlations between hyperons produced in high energy collisions
 - Specifically, we are looking at Λ Λ pairs where

$$p + p \to \Lambda + \bar{\Lambda} + X$$

 $\Lambda \to p \pi^- \text{ and } \bar{\Lambda} \to \bar{p} \pi^+$

- Hyperon production is not well understood
 - We want to know if Λ $\bar{\Lambda}$ pairs come from the same $s\bar{s}$ pair produced in the vacuum
 - ${lue A}$ correlation between the spins would support the idea that the Λ and $\bar\Lambda$ come from the same $s\bar s$ pair

Analysis Method

- We know that the **angular distribution** of the $\Lambda/\bar{\Lambda}$ daughter p/\bar{p} in the $\Lambda/\bar{\Lambda}$ rest frame depends on the **spin** of the $\Lambda/\bar{\Lambda}$
- It can be shown that y* distribution that we observe is given by

$$dN/dy^*_{observed} = \epsilon \times dN/dy^*_{real}$$
$$dN/dy^*_{real} \alpha 1 - \mathbf{a} \alpha_{\Lambda}^2 y^*$$

- ${\bf v^*}$ is the cosine of the angle between the p/\bar{p} in the $\Lambda/\bar{\Lambda}$ rest frame
- We want to measure the asymmetry a

$$\boldsymbol{a} = \frac{N_{aligned} - N_{antialigned}}{N_{total}} \qquad \begin{array}{c} aligned \implies \uparrow \uparrow \text{ or } \downarrow \downarrow \\ anti-aligned \implies \uparrow \downarrow \text{ or } \downarrow \uparrow \end{array}$$

- We can measure a by studying the y* distribution
- a = 1 => full correlation
 a = -1 => full anti-correlation
 a = 0 => no correlation

 p_2

 π_2

Fitting

- We know that a = 0 in our MC
 - => $dN/dy^*_{observed (MC)} α ε$
 - => Multiplying the MC distribution by dN/dy*_{real} (a) creates a template with the theoretical distribution for that value of a
- To fit, we compare each template to data and calculate the χ^2
- Smallest χ^2 => best fit value for a

Conclusions

- We currently see some asymmetry in data
- Still studying systematic uncertainties
- Possible issues:
 - Low statistics in both MC and data
 - But beginning to look at 2011 MC/data
 - Will be writing a toy MC to validate analysis
 - MC doesn't describe data perfectly
 - Is the difference due only to the asymmetry that is not modeled in MC, or are there other effects?
 - Toy MC will help us understand this as well

