Data Checks and Spectra Studies in ALICE

John Groh, Penn State University Advisors: Michele Floris, Alexander Kalweit

The Quark-Gluon Plasma – What, Where, & How

- State of matter in which quarks are no longer confined in hadrons
- The early universe is thought to have existed as a QGP from ~10⁻¹² to ~10⁻⁶ s after the Big Bang
- The LHC is able to produce QGPs in Pb-Pb collisions

The Quark-Gluon Plasma - Why

Studying the QGP may help us understand:

- The strong force
- The QCD phase diagram
 - This is the only Standard Model phase transition that can be studied in the laboratory!
- The early universe
- The hadronic contents of the universe today

My Work So Far

- Until now, analysis done on ESDs
 - Computationally inefficient
 - Contain too much information
- Migrating to AODs
 - Contain only most important info
 - Needed to be checked for quality
 - Done mostly by plotting stable quantities as a function of the run number

Possible Bad Runs:

Converting to # of standard deviations:

What's Next: π , K, p Spectra

- Identified particle spectra contain several pieces of information
- Spectra measurements depend on efficiency corrections
 - # Produced = # Detected / Efficiency
- Currently using Monte Carlo information for these corrections
 - Unreliable, problems
- My task: recalculate efficiency using a more MCindependent method

π , K, p Spectra: Efficiency Corrections

Idea for more MC-independent efficiency calculation: dE/dx curves

Image: ALICE Collaboration

π, K, p Spectra: Efficiency Corrections

- For fixed vertical slices, these dE/dx curves are (almost) Gaussian
- Identify particles within 3 sigma of a peak (99.7%)
- Multiply by correction factor to account for rejected particles
- Still have to Monte Carlo for other corrections (secondaries, decays, etc)

Questions?

Backup Slides

A check with no major outliers:

Outliers not reproduced in Monte Carlo...

Efficiency Corrections:

- Monte Carlo Correction
 - Accounts for losses in detector material, secondaries produced, etc
 - Will be modified by me soon
- MC-independent Efficiency Correction
 - To be added by me soon
- Geant/Fluka Correction
 - Known problem with Geant3
 - Not a problem with Fluka
- TOF Matching Efficiency Correction
 - Some particles do not reach the TOF