Multi-turn Extraction: Splitting the PS Beam in Transverse Phase Space
 An Update on my Progress

Christopher Frye
CERN - BE
19 July 2012

Importance of my Project

- Big Picture: PS \rightarrow SPS beam transfer for fixed target experiments.

Nonlinear magnetic fields create stable islands in the beam's horizontal phase space, separating the beam into parts for clean extraction.

- Goal: Understand/predict population ratios of separated beams.

Current Status

- My Project:
\checkmark Get accustomed to the simulations and the code.
\checkmark Learn Mathematica in order to analyze their output.
\checkmark Become acquainted with the theory of normal forms.
\checkmark Study some fundamentals of beam dynamics.
\checkmark Optimize beam-splitting in 2 and 4 dimensions using simulations.
\checkmark Investigate simple Hamiltonian to understand trapping.
... Predict trapping fractions for realistic Hamiltonian.

Beam Splitting

Final distribution

Final distribution

Final distribution

Particle Trapping

- We make use of the adiabatic invariant, since we cannot solve the system

$$
\mathcal{H}=\frac{1}{2}[p-\delta(t)]^{2}-[1+\beta(t)] \cos q
$$

- Adiabatic trapping is a quasi-random process:

$$
P(u \rightarrow i)=\frac{\dot{\Sigma}_{i}}{\dot{\Sigma}_{i}+\dot{\Sigma}_{\ell}}
$$

- When (say at \mathbf{t}_{*}) the area under the separatrix matches the area (say $\boldsymbol{\Sigma}$) under a particle's trajectory, the particle meets the separatrix.
- With $\rho(\Sigma) d \Sigma$ particles having orbit-areas between Σ and $\Sigma+d \Sigma$,

$$
\text { \# particles captured at } t_{*}=\frac{\dot{\Sigma}_{i}}{\dot{\Sigma}_{i}+\dot{\Sigma}_{\ell}} \rho(\Sigma) d \Sigma \text {. }
$$

Predicting Trapping Fractions

- If δ varies linearly $(1 / 2 \rightarrow 3 / 2)$ and β quadratically $(-1 \rightarrow \beta(T))$ in

$$
\mathcal{H}=\frac{1}{2}[p-\delta(t)]^{2}-[1+\beta(t)] \cos q \quad \text { then. } .
$$

Trapping
Fraction

\frac{4}{\pi} \sqrt{1+\beta(T)}-\frac{1}{2} \& for \& \frac{\pi^{2}}{16}-1 \leq \beta(T) \leq \frac{9 \pi^{2}}{64}-1,

1 \& for \& \beta(T) \geq \frac{9 \pi^{2}}{64}-1 .

\hline\end{array}\right.\)

Agreement with Simulations

What's Next?

- Carry out the same technique with the realistic Hamiltonian:

$$
\mathcal{H}=\alpha p+\beta p^{2}+\gamma p^{2} \cos (4 q)
$$

