Multi-turn Extraction: Splitting the PS Beam in Transverse Phase Space

An Update on my Progress

Christopher Frye

CERN — BE

19 July 2012

Importance of my Project

▶ Big Picture: $PS \rightarrow SPS$ beam transfer for fixed target experiments.

Nonlinear magnetic fields create stable islands in the beam's horizontal phase space, separating the beam into parts for clean extraction.

► Goal: Understand/predict population ratios of separated beams.

Current Status

My Project:

- ✓ Get accustomed to the simulations and the code.
- ✓ Learn *Mathematica* in order to analyze their output.
- ✓ Become acquainted with the theory of normal forms.
- √ Study some fundamentals of beam dynamics.
- ✓ Optimize beam-splitting in 2 and 4 dimensions using simulations.
- ✓ Investigate simple Hamiltonian to understand trapping.
- ... Predict trapping fractions for realistic Hamiltonian.

Beam Splitting

Particle Trapping

▶ We make use of the adiabatic invariant, since we cannot solve the system

$$\mathcal{H}=rac{1}{2}\left[p-\delta(t)
ight]^2-\left[1+eta(t)
ight]\cos q\,.$$

Adiabatic trapping is a quasi-random process:

$$P(u \to i) = \frac{\dot{\Sigma}_i}{\dot{\Sigma}_i + \dot{\Sigma}_\ell}$$

- When (say at t*) the area under the separatrix matches the area (say Σ) under a particle's trajectory, the particle meets the separatrix.
- ▶ With ρ(Σ) dΣ particles having orbit-areas between Σ and Σ + dΣ,

$$\#$$
 particles captured at $t_* = rac{\dot{\Sigma}_i}{\dot{\Sigma}_i + \dot{\Sigma}_\ell} \,
ho(\Sigma) \, d\Sigma$.

Predicting Trapping Fractions

▶ If δ varies linearly $(1/2 \to 3/2)$ and β quadratically $(-1 \to \beta(T))$ in

$$\mathcal{H} = rac{1}{2} \left[p - \delta(t)
ight]^2 - \left[1 + eta(t)
ight] \cos q \qquad ext{then.} \ .$$

Agreement with Simulations

What's Next?

► Carry out the same technique with the realistic Hamiltonian:

$$\mathcal{H} = \alpha \, \mathbf{p} + \beta \, \mathbf{p}^2 + \gamma \, \mathbf{p}^2 \, \cos(4q) \, .$$

