



#### Chris Hays, Oxford University



# Evolution of a propagator



# Probing new particles



Chris Hays, Oxford University

27 March 2012

### Electroweak measurements

| <b>162</b> <sup>+215</sup> |                                    |                            | Status in 2011 (Gfitter)                                  |                          |                |                                           |                                           |                                         |
|----------------------------|------------------------------------|----------------------------|-----------------------------------------------------------|--------------------------|----------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|
|                            |                                    | 54 <sup>+43</sup> -36      | Parameter                                                 | Input value              | Free<br>in fit | Results from §<br>Standard fit            | global EW fits:<br>Complete fit           | Complete fit w/o<br>exp. input in line  |
|                            |                                    | <b>559</b> <sup>+486</sup> | $M_Z$ [GeV]                                               | $91.1875 \pm 0.0021$     | yes            | $91.1874 \pm 0.0021$                      | $91.1877 \pm 0.0021$                      | 91.19 <b>8</b> 3 +0.0133<br>-0.0155     |
|                            |                                    |                            | $\Gamma_Z$ [GeV]                                          | $2.4952 \pm 0.0023$      | -              | $2.4959 \pm 0.0015$                       | $2.4955 \pm 0.0014$                       | $2.4951\substack{+0.0017\\-0.0016}$     |
|                            |                                    | 45 <sup>+62</sup><br>-22   | $\sigma_{ m had}^0$ [nb]                                  | $41.540\pm0.037$         | -              | $41.478\pm0.014$                          | $41.478\pm0.014$                          | $41.469 \pm 0.015$                      |
|                            |                                    |                            | $R^0_\ell$                                                | $20.767\pm0.025$         | _              | $20.743\pm0.018$                          | $20.741\pm0.018$                          | $20.718 \substack{+0.027 \\ -0.026}$    |
| -                          |                                    | 95 <sup>+30</sup> -24      | $A_{ m FB}^{0,\ell}$                                      | $0.0171 \pm 0.0010$      | _              | $0.01641 \pm 0.0002$                      | $0.01620 \substack{+0.0002 \\ -0.0001}$   | $0.01606 \pm 0.000$                     |
| 10                         | <sup>2</sup> 2 × 10 <sup>2</sup> 1 | ⊔<br>∩ <sup>3</sup>        | $A_{\ell}^{(\star)}$                                      | $0.1499\pm0.0018$        | _              | $0.1479 \pm 0.0010$                       | $0.1472^{+0.0009}_{-0.0006}$              | _                                       |
| 10                         |                                    | 0<br>'1                    | $A_c$                                                     | $0.670\pm0.027$          | -              | $0.6683^{+0.00044}_{-0.00043}$            | $0.6680 \substack{+0.00040 \\ -0.00028}$  | $0.6679^{+0.00042}_{-0.00025}$          |
|                            | M <sup>H</sup> [Gev                | 1                          | $A_b$                                                     | $0.923 \pm 0.020$        | _              | $0.93470 \substack{+0.00009 \\ -0.00008}$ | $0.93463 \substack{+0.00008 \\ -0.00005}$ | $0.93463 \substack{+0.0000\\-0.00005}$  |
|                            |                                    |                            | $A_{ m FB}^{0,c}$                                         | $0.0707 \pm 0.0035$      | _              | $0.0741 \pm 0.0005$                       | $0.0737 \substack{+0.0005 \\ -0.0004}$    | $0.0738 \pm 0.000$                      |
| I                          | G fitter sm <sup>₿</sup> 0.1       |                            | $A_{\rm FB}^{0,b}$                                        | $0.0992 \pm 0.0016$      | _              | $0.1037 \pm 0.0007$                       | $0.1035 \substack{+0.0003 \\ -0.0004}$    | $0.1038 \substack{+0.0003 \\ -0.0005}$  |
| I                          | 0.1                                |                            | $R_c^0$                                                   | $0.1721 \pm 0.0030$      | _              | $0.17226 \pm 0.00006$                     | $0.17226 \pm 0.00006$                     | $0.17226 \pm 0.000$                     |
|                            | -1.7                               |                            | $R_{b}^{0}$                                               | $0.21629 \pm 0.00066$    | _              | $0.21578 \substack{+0.00005\\-0.00008}$   | $0.21577 \substack{+0.00005\\-0.00008}$   | $0.21577 \substack{+0.0000 \\ -0.0000}$ |
|                            | -1.0                               |                            | $\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$        | $0.2324 \pm 0.0012$      | -              | $0.23141 \pm 0.00012$                     | $0.23150 \substack{+0.00008 \\ -0.00011}$ | $0.23152 \substack{+0.0000\\-0.0001}$   |
|                            | 0.2                                |                            | $M_H$ [GeV] $^{(\circ)}$                                  | Likelihood ratios        | yes            | 95 <sup>+30[+74]</sup><br>-24[-43]        | $125^{+8[+21]}_{-10[-11]}$                | $95^{+30[+74]}_{-24[-43]}$              |
|                            | -0.7                               | <                          | $M_W$ [GeV]                                               | $80.399 \pm 0.023$       | _              | $80.382 \substack{+0.014 \\ -0.015}$      | $80.368\substack{+0.007\\-0.010}$         | $80.360 \substack{+0.012 \\ -0.011}$    |
|                            | 0.9                                |                            | $\Gamma_W$ [GeV]                                          | 2.085 ± 0.042            | _              | 2.003 ± 0.001                             | $2.092 \pm 0.001$                         | $2.091 \substack{+0.002 \\ -0.001}$     |
|                            | 2.5                                |                            | $\overline{m}_{c}$ [GeV]                                  | $1.27^{+0.07}_{-0.11}$   | yes            | $1.27^{+0.07}_{-0.11}$                    | $1.27^{+0.07}_{-0.11}$                    | _                                       |
|                            | 0.6                                |                            | $\overline{m}_{b}$ [GeV]                                  | 4.20 + 0.17              | yes            | $4.20^{+0.16}_{-0.07}$                    | $4.20 + 0.16 \\ -0.07$                    | _                                       |
|                            | 0.1                                |                            | $m_t$ [GeV]                                               | $173.2 \pm 0.9$          | yes            | $173.3 \pm 0.9$                           | $173.5 \pm 0.9$                           | $177.2^{+2.9}_{-3.1}(\bigtriangledown)$ |
|                            | -0.8                               |                            | $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)^{(\dagger \Delta)}$ | $2749 \pm 10$            | yes            | $2750 \pm 10$                             | $2748 \pm 10$                             | $2716^{+60}_{-45}$                      |
|                            | -0.1                               |                            | $\alpha_s(M_Z^2)$                                         | _                        | yes            | $0.1192\pm0.0028$                         | $0.1193 \pm 0.0028$                       | $0.1193 \pm 0.002$                      |
|                            | -1.3                               |                            | $\delta_{ m th} M_W$ [MeV]                                | $[-4,4]_{theo}$          | yes            | 4                                         | 4                                         | _                                       |
|                            | -0.0                               |                            | $\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)      | $[-4.7, 4.7]_{\rm theo}$ | yes            | 4.7                                       | 4.7                                       | -                                       |
|                            | -0.0                               |                            |                                                           |                          |                |                                           |                                           |                                         |

Chris Hays, Oxford University

27 March 2012

4

-3 -2 -1 0

1 2 3

(O<sub>fit</sub> - O<sub>meas</sub>) / σ<sub>meas</sub>

m<sub>c</sub> m<sub>b</sub> m,

G fitter 🚮

6 10 20

M<sub>z</sub> Γ<sub>z</sub> G<sup>0</sup><sub>had</sub> A<sup>0,1</sup><sub>FB</sub> A<sub>1</sub>(LEP) A<sub>1</sub>(SLD) sin<sup>2</sup>⊙<sup>lept</sup><sub>FB</sub>(Q<sub>FB</sub>)

 $\begin{array}{c} A_{FB}^{0,c}\\ A_{FB}^{0,c}\\ A_{C}^{0,c}\\ A_{c}\\ A_{b}\\ R_{c}^{0}\\ R_{b}^{0}\\ \end{array}$ 

A<sub>I</sub>(LEP)

A<sub>(SLD)</sub>

Standard fit

 $\bm{A}_{\rm FB}^{\rm 0,b}$ 

Mw

### W mass measurement at the Tevatron

#### High statistics from resonant single W production



In situ calibration lepton and recoil measurements

Mass determined from a combined fit to charged-lepton  $p_T$ , neutrino  $p_T$ , and  $m_T$ 

Momentum of charged lepton (e, µ) dominates mass information

Neutrino  $\ensuremath{p_{T}}$  calculated from lepton and recoil measurements



$$m_T = \sqrt{2p_T(l)p_T(\nu)[1 - \cos(\phi_l - \phi_\nu)]}$$

First Tevatron Run 2 measurement: 200 pb<sup>-1</sup> of 2 TeV pp data

63 964 W  $\rightarrow$  ev candidates 51 128 W  $\rightarrow$   $\mu\nu$  candidates

 $m_W = [80.413 \pm 0.034(\text{stat}) \pm 0.034(\text{sys}) = 80.413 \pm 0.048] \text{ GeV}$ 



Systematic uncertainties

| Source                   | Uncertainty (MeV) |
|--------------------------|-------------------|
| Lepton scale             | 23.1              |
| Lepton resolution        | 4.4               |
| Lepton efficiency        | 1.7               |
| Lepton tower removal     | 6.3               |
| Recoil energy scale      | 8.3               |
| Recoil energy resolution | 9.6               |
| Backgrounds              | 6.4               |
| PDFs                     | 12.6              |
| W boson $p_T$            | 3.9               |
| Photon radiation         | 11.6              |

Chris Hays, Oxford University

27 March 2012

# New CDF m<sub>W</sub> measurement (2.2 fb<sup>-1</sup>)

Charged lepton model and calibration

Recoil model and calibration

W boson sample and mass fits

# Charged lepton model and calibration

QED radiation in production process

Ionization energy loss and bremsstrahlung in the tracker

Tracker alignment with cosmicray muons and W electrons

Track momentum calibration with  $J/\psi$  & Y mesons, Z bosons

Shower leakage from EM calorimeter

Electron energy calibration using tracker & Z bosons



# QED radiation model

Based on PHOTOS & HORACE

**PHOTOS:** Leading log FSR, with weight to correct to matrix-element calculation

HORACE: Leading log ISR/FSR, with weight to match O(α) calculation; equivalent weight applied to all emitted photons

Uncertainties derived from comparisons of PHOTOS to HORACE, leading log to corrected leading log, and variation of the photon cutoff energy



# Energy loss model

Custom fast simulation & reconstruction based on parameterizations of standard CDF simulation and full GEANT simulation

Ionization energy loss model uses fine-grained lookup table of tracker for Bethe-Bloch parameters

Correct a priori energy loss by 4.3% using data fits to  $J/\psi$  mass

Mass as a function of the mean inverse  $p_T$  of the muons is linearly dependent on energy loss

$$\frac{\Delta m}{m} = \frac{E_I^{\mu^+}}{2p_T^{\mu^+}} + \frac{E_I^{\mu^-}}{2p_T^{\mu^-}} \approx E_I \langle p_T^{-1} \rangle$$



# Bremsstrahlung and conversions

Fine-grained lookup table provides radiation length information in tracker

Bremsstrahlung reduces track momentum relative to cluster energy (high E/p)

Correct a priori radiation lengths by 2.6% using fits to electrons from W & Z decays

Low-energy radiation ( $E_{\gamma} < 20$  MeV) Migdal-suppressed through coherent interference effects

Suppression model incorporates knowledge of heavy and light elements in tracker



# Tracker alignment

Track momentum determined using central outer tracker + beam position

Tracker wire positions measured under load during contruction

Relative positions at end plates determined to ~3 microns using *in situ* alignment with cosmic-ray muons

Positions between endplates adjusted using parameter differences between incoming and outgoing cosmic-ray tracks as a function of z



### Track curvature corrections

Class of biases unconstrained by cosmic-ray alignment

Study remaining charge-dependent biases using difference in mean E/p between electrons and positrons from W decays

Small non-zero value of inclusive E/p difference: consistent with alignment to O(micron) precision

Remove differences (including azimuthal & polar dependences) with correction to track curvature



 $e^{-}$  has reduced  $p_T$ ,  $e^+$  has increased  $p_T$ 

Calorimeter energy is independent



### Momentum calibration

Combines high-statistics measurements of three resonance decays to muons

Wide range of momenta to test linearity, alignment, resolution



### $J/\psi$ meson measurement

>5 million candidate  $J/\psi$  decays to muon pairs for calibration

Two muons with  $p_T > 2.2 \text{ GeV}$ 

Requires calibration of hit resolution, energy loss distribution, meson  $p_T$ , decay angle

Fits in bins of  $\cot\theta$  and  $\Delta \cot\theta$  provide corrections for alignment, tracker length scale, magnetic field nonuniformities



### Y meson measurement



Chris Hays, Oxford University

27 March 2012

# Combined calibration (J/ $\psi$ and Y)

#### Combination of fits without beam constraint:

| 1 | $(\Delta p)$ | $-(-1.329 \pm 0.004$ to $\pm 0.068$ meV $\cdot 10^{-1}$    | -3 |
|---|--------------|------------------------------------------------------------|----|
|   | n            | $= (1.525 \pm 0.004 \text{stat} \pm 0.000 \text{syst})$ 10 |    |
|   | (P)          | $J/\psi + NBC \Upsilon$                                    |    |

| Source                 | $J/\psi~(\cdot 10^{-3})$ | NBC- $\Upsilon$ (·10 <sup>-3</sup> ) | common $(\cdot 10^{-3})$ |
|------------------------|--------------------------|--------------------------------------|--------------------------|
| QED                    | 0.080                    | 0.045                                | 0.045                    |
| B field non-uniformity | 0.032                    | 0.034                                | 0.032                    |
| Ionizing material      | 0.022                    | 0.014                                | 0.014                    |
| Resolution             | 0.010                    | 0.005                                | 0.005                    |
| Backgrounds            | 0.011                    | 0.005                                | 0.005                    |
| Misalignment           | 0.009                    | 0.018                                | 0.009                    |
| Trigger efficiency     | 0.004                    | 0.005                                | 0.004                    |
| Fitting window         | 0.004                    | 0.005                                | 0.004                    |
| $\Delta p/p$ step size | 0.002                    | 0.003                                | 0                        |
| World-average          | 0.004                    | 0.027                                | 0                        |
| Total systematic       | 0.092                    | 0.068                                | 0.058                    |
| Statistical            | 0.004                    | 0.025                                | 0                        |
| Total                  | 0.092                    | 0.072                                | 0.058                    |

Including fit with beam constraint:

$$\delta m_Z^{\text{scale}} = 9 \text{ MeV}$$

$$\left(\frac{\Delta p}{p}\right)_{final} = (-1.257 \pm 0.004_{\text{stat}} \pm 0.101_{\text{syst(total)}}) \cdot 10^{-3}$$

Chris Hays, Oxford University

### Z boson measurement

#### 59738 $Z \rightarrow \mu\mu$ events

# Test momentum calibration with a blinded fit for $m_{\rm Z}$ Blinding offset a random number between -75 & 75 MeV

Systematic uncertainties on fit: momentum scale (9 MeV), QED (5 MeV), alignment (2 MeV)

### Z boson measurement

#### 59738 Z $\rightarrow \mu\mu$ events

Test momentum calibration with a blinded fit for  $m_{\rm Z}$  Blinding offset a random number between -75 & 75 MeV

Systematic uncertainties on fit: momentum scale (9 MeV), QED (5 MeV), alignment (2 MeV)



# Charged lepton model and calibration

QED radiation in production process

Ionization energy loss and bremsstrahlung in the tracker

Tracker alignment with cosmicray muons and W electrons

Track momentum calibration with  $J/\psi$  & Y mesons, Z bosons

Shower leakage from EM calorimeter

Electron energy calibration using tracker & Z bosons



# Calorimeter shower model

Custom GEANT simulation of calorimeter used to parameterize response and sampling resolution as functions of electron and photon energy

Test response model using electrons with E/p < 1 (region sensitive to shower leakage)

0-3% correction to calorimeter + solenoid material as a function of tower in |η|



### Calorimeter uniformity calibrations



Chris Hays, Oxford University

27 March 2012

22

### Calorimeter non-linearity

Fit E/p distribution in bins of  $E_T$  for W & Z electrons

Logarithmic response model for electrons and photons in simulation



## Calorimeter energy calibration

Fit to inclusive E/p distribution calibrates calorimeter energy scale

Width of peak sets constant resolution term



### Z boson measurement

16134  $Z \rightarrow ee$  events

Verify tracker energy loss modelling with a track-only fit to the Z mass

Low E/p (<1.11) most statistically sensitive Tests modelling of soft radiation in calibration peak



Chris Hays, Oxford University

27 March 2012

### Z boson measurement

#### 16134 Z $\rightarrow$ ee events

Test energy calibration with a blinded fit for  $m_Z$ Same blinding offset used in all  $m_Z$  fits

Systematic uncertainties on fit: E/p (10 MeV), p scale (8 MeV), QED (5 MeV), alignment (2 MeV)



# New CDF m<sub>w</sub> measurement (2.2 fb<sup>-1</sup>)

Charged lepton model and calibration

Recoil model and calibration

W boson sample and mass fits

### Recoil reconstruction

Sum over momentum calculated from each calorimeter tower and the primary vertex

Steel-scintillator calorimeter: ~uniform hadronic response

Improve uniformity with relative

central-plug alignment correction



~2 additional interactions (396 ns bunch spacing)



Chris Hays, Oxford University

27 March 2012

### Recoil reconstruction

Remove calorimeter towers with energy depositions from W decay lepton

Model removed recoil energy in simulation

Measure energy in rotated window in W events & include  $\eta,\,u_{|\,|},\,u_{\perp}$  dependence





Chris Hays, Oxford University

# Recoil model

Fully parametrize detector response to boson  $p_T$  by tuning to Z boson data

Two main components: response to the "jet" (-boson p<sub>T</sub>) response to the underlying event + additional interactions

"jet" model includes energy response & resolution, angle resolution

 $\begin{array}{c} Boson \ p_T \ model: \\ RESBOS \ with \ one \ non-perturbative \\ and \ one \ perturbative \ parameter \\ tuned \ using \ the \ Z \ boson \ p_T \end{array}$ 



Chris Hays, Oxford University

27 March 2012

# Recoil response

Tune jet response using the balance of boson  $p_{\rm T}$  and recoil, projected along direction of boson  $p_{\rm T}$ 



 $\vec{p}_T^T$ 

 $\vec{p}_{T_{-}}^{l^+}$ 

### Recoil resolution

Energy resolution parameterized with a sampling term Angular resolution modelled as a function of boson  $\ensuremath{p_{T}}$ 

Tuned using RMS of recoil-boson  $p_T$  balance

Tuned using angle between recoil and boson  $\ensuremath{p_{T}}$ 



### Underlying event & additional interactions

Parametrize sum of calorimeter E<sub>T</sub> using zero- & minimum-bias data

Underlying event: Convolute a single interaction distribution to match the measured minimum bias  $\Sigma E_T$ 

Additional interactions: Add energy drawn from zero bias  $\Sigma E_T$ 



33

Resolution as a function of  $\Sigma E_{\rm T}$  extracted from minimum bias data

One parameter (underlying event scale) tuned using recoil balance RMS

### Recoil measurements

#### Distributions of recoil test model in W & Z events



### Recoil measurements

 $u_{||}$  a key test of the model

Since u << lepton  $p_T$ ,  $m_T$  can be approximated as

$$m_T \approx 2p_T \sqrt{1 + u_{\parallel}/p_T} \approx 2p_T + u_{\parallel}$$



# New CDF m<sub>W</sub> measurement (2.2 fb<sup>-1</sup>)

Charged lepton model and calibration

Recoil model and calibration

W boson sample and mass fits

# W boson sample

#### Kinematic selection aims to maximize mass information & minimize background

 $30 < [p_T(l^{\pm}) \& p_T(v)] < 55 \text{ GeV}$ 

 $60 < m_T < 100 \text{ GeV}$ 

 $470126 \text{ W} \rightarrow \text{ev} \text{ events}$  $624708 \text{ W} \rightarrow \mu\nu \text{ events}$ 





27 March 2012

# W boson sample background

Electroweak backgrounds ( $W \rightarrow \tau v \& Z \rightarrow ll$ ): Model with standard CDF simulation with tunes to improve recoil, muon & electron response

#### QCD backgrounds (jets and $\pi/K$ meson DIF): Measure using control regions in data



### Parton distribution functions

Transverse mass distribution sensitive to  $p_z^W$  modelling

Consistent results for central value and uncertainty using CTEQ6.6 and MSTW2008 (NLO & NNLO)



 $\delta m_W^{PDF} = 10 \text{ MeV}$ 

### W boson mass fits



### W boson mass fits



# Stability

|                           | Good consistency        | Distribution                              | W-boson mass (MeV)                            | $\chi^2/{ m dof}$ |
|---------------------------|-------------------------|-------------------------------------------|-----------------------------------------------|-------------------|
|                           | hetween fits            | $m_T(e,  u)$                              | $80~408 \pm 19_{\rm stat} \pm 18_{\rm syst}$  | 52/48             |
|                           |                         | $p_T^\ell(e)$                             | $80~393 \pm 21_{\rm stat} \pm 19_{\rm syst}$  | 60/62             |
|                           |                         | $p_T^{ u}(e)$                             | $80~431 \pm 25_{\rm stat} \pm 22_{\rm syst}$  | 71/62             |
|                           | No significant          | $m_T(\mu, u)$                             | $80\ 379 \pm 16_{\rm stat} \pm 16_{\rm syst}$ | 58/48             |
|                           | variation with charge,  | $p_T^\ell(\mu)$                           | $80\ 348 \pm 18_{\rm stat} \pm 18_{\rm syst}$ | 54/62             |
|                           | phi, or fit window      | $p_T^ u(\mu)$                             | $80\ 406 \pm 22_{\rm stat} \pm 20_{\rm syst}$ | 79/62             |
| m <sub>T</sub>            |                         | m <sub>T</sub>                            |                                               |                   |
| (NeW) <sup>M</sup> W ⊽ 20 | $W{\rightarrow \mu\nu}$ | () 50<br>40<br>₩) <sup>#</sup> W 30<br>20 |                                               |                   |
| 10<br>0<br>-10            |                         |                                           |                                               | ł ł               |
| -20<br>-30<br>-40<br>-50  | 60 62 64 66 68 7        | -20<br>-30<br>-40<br>-50<br>-50<br>-50    | 86 88 90 92                                   | 94 96             |
|                           | Start of fit window     | (0ev)                                     | End of f                                      | it window (GeV)   |
| 4                         | 42 Chris H              | ays, Oxford Univer                        | sity 27 Marc                                  | h 2012            |

### Combination

# Combination of 6 fits $(\chi^2 \text{ probability: } 25\%)$

 $M_W = 80\ 387 \pm 12_{\text{stat}} \pm 15_{\text{syst}} = 80\ 387 \pm 19\ \text{MeV}$ 

| Source                             | Uncertainty $(MeV)$ |
|------------------------------------|---------------------|
| Lepton energy scale and resolution | 7                   |
| Recoil energy scale and resolution | 6                   |
| Lepton removal                     | 2                   |
| Backgrounds                        | 3                   |
| $p_T(W)$ model                     | 5                   |
| Parton distributions               | 10                  |
| QED radiation                      | 4                   |
| W-boson statistics                 | 12                  |
| Total                              | 19                  |

# Comparison to previous results



### Latest results



27 March 2012

### Summary

New CDF measurement of the W boson mass is more precise than the previous world average

Improves world precision on  $m_W$  from 23 to 16 MeV (now at 15 MeV)

Result accepted by PRL (arXiv:1203.0275)



Chris Hays, Oxford University