
www.kit.edu ­ www.cern.ch

First Algorithm Parallelism in CMS Software Framework (CMSSW):
Track Seeding

Thomas Hauth, Danilo Piparo, Vincenzo Innocente

http://www.kit.edu/

CERN I EKP2

Framework and Algorithm Parallelism
Beyond Event Level Parallelism

Framework Parallelism
After some modifications (declaring dependencies etc.), parallel execution
of already existing serial modules is possible

Hides most of the multi-threading complexity from the module developer

Scales very well at the price of loading and writing multiple events at the
same time. See the presentation by Chris Jones*

Algorithm Parallelism
Changes mostly contained in one module

Very lightweight scaling (in terms of memory)

Transparent to subsequent Modules

Most profitable to apply on long-running Modules which can only operate
sequentially (like CMS Iterative Tracking)

* Forum on Concurrent Programming Models and Frameworks, 14.03.2012
 http://indico.cern.ch/conferenceDisplay.py?confId=181721

A great potential lies in combining these two levels of parallelism: scale with the
amount of input data and the number of available computing cores.

CERN I EKP3

Triplet Seeding in CMS

Energy deposits of charged particles in the CMS tracker are reconstructed as hits

Before starting the track reconstruction, seeds from three topologically compatible hits in
the tracker are searched: hit-triplets

Starting with two hits which have been already found to be compatible (hit-pair) possible
hits of subsequent tracker layers are evaluated

This seeding procedure amounts to about 10% of the overall runtime of the CMS
Reconstruction

Loop over Hit-Pairs

Loop over Detector Layers

Loop over Layer Hits

Is Compatible ?

Hit-Pairs

Add to Result Triplet Seeds

> Load Hits from this Layer

Yes

CERN I EKP4

Chosen Parallelization Technology: Intel TBB

Intel Threading Building Blocks (TBB) 4.0 update 3 Open Source (GPL license)

Compiled with GCC 4.6.2 (default compiler of CMS Software)

Very nice integration with C++ (in contrast to OpenMP or OpenCL):

Templated thread-safe containers and other data types

Encapsulate parallel code segments in C++11 lambda expressions

The package provides:

Loop parallelism constructs

Concurrent containers

Locking constructs

Atomic operations

Memory allocation

Task-Based programming model

The green functionalities have been used in our implementation

TBB was picked for this work due to its complete function set and easy deployment
on ScientificLinux, but various other technologies are evaluated by CMS
(libdispatch, OpenCL, ...)

http://threadingbuildingblocks.org/

CERN I EKP5

Extension of the CMS Software Framework

Only very punctual and small changes were necessary to accommodate this
parallelization in the framework

Services within CMSSW provide common functionalities to all Modules

A TBB Service was created

Preserves a Thread Pool over event boundaries

Modules can query how many threads they can use for their parallel
processing and partition their work chunks accordingly

The number of threads can be set in the python CMSSW configuration

If the TBB Service is not loaded via the configuration file, the serial version
will be run

The CMSSW reference counting has been made thread-safe with atomic
operations by using a TBB data type:

was changed to

to guarantee atomicity when threads change the reference count

process.TBB = cms.Service("TBB" ,
 threadCount = cms.untracked.uint32(6))

mutable tbb::atomic<unsigned int> referenceCount_;

mutable unsigned int referenceCount_;

CERN I EKP6

Parallel Part

Triplet Seeding in Parallel
Preserving the ordering of the output collection is essential for subsequent algorithms and
validation purposes

Filling an unsorted output collection with multiple threads at the same time can result in non-
reproducible results

We used a scheme to partition the input collection of hit-pairs in equally sized blocks

A private result list is associated with every block and is merged in the correct order into the
global result list at the end of the algorithm execution. No explicit sorting needed.

The distribution of the blocks to the available threads is handled by TBB

Ordered
Hit-Pairs Hit-Pairs partitioned Block Local Result List Global Result List

Block 1

Block 2

Block 3

Block N

CERN I EKP7

How to ensure thread-safe code ?

High quality of CMSSW code base helps, const-correctness enforced everywhere

const is your friend:

const objects and methods can be accessed safely

But not always: C++ mutable keyword

Non-const variables can be assigned to a const reference to ensure safe access within
the mutli-threaded code section:

AClass aobject(size);

AClass const& aobject_threadsafe = aobject;

Use of TBB concurrent containers whenever multi-threaded write access to collections is
necessary

tbb::atomic data type was used to ensure thread safe reference counting

Ultima-Ratio: Explicit Locking

Software Tools for big applications:

Helgrind (part of valgrind) was tested on a simple example outside of CMSSW, but
produced many false positives

Suggestions or hints are very welcome

Use the serial implementation and run a lot of multi-threaded validation, check for crashes and
compare the outputs

Sourcecode of the seeding class: http://hauth.web.cern.ch/hauth/code/PixelTripletLargeTipGenerator.cc
Methods: hitTriplets_single [regular implemenation], hitTriplets_parallel [TBB version]

CERN I EKP8

Validation

We compared the multi-threaded version (10 threads) and the official
(serial) release of CMSSW

Considering 100 samples coming from the 2011 HighPU dataset
Comparing bin2bin all 43k Data Quality Monitoring (DQM) histograms did
not reveal any difference

Tracks are 1:1 identical (momenta,chi2...)

No crashes or segmentation faults have been observed in all test runs

Large scale tests are of course needed but there is no reason to expect
a difference

Part of a complete validation procedure using DQM histograms:

CERN I EKP9

Performance Measurements
The full CMS reconstruction chain (but: no output to disk) was run with different numbers
of threads

Input: 50 events of the highest pile-up sample recorded with the CMS detector in 2011

On average, one event contains ~40 collisions

Test Setup:

Intel(R) Core(TM) i7 CPU X 980 @ 3.33GHz with 6 physical cores

6 GB RAM

Scientific Linux 5.8

CMSSW 5.2 official release (with modifications for the multi-threading code)

The measurements labeled Serial refer to an unchanged version of CMSSW (no
TBB Service, no atomic operations)

The triplet seeding takes about 10% of the runtime in the serial version

Therefore, the maximum speed-up when running multi-threaded is 10% over the serial
runtime

90% 10%

Serial Part Parallel Part

Overall Runtime

CERN I EKP10

CMS Reconstruction Runtime and Memory

Using thread-safe atomic reference counting for all data-structures adds about 1% to the overall
runtime (Serial vs. Serial Thread-Safe)

This effect can be reduced by using thread-safe reference counting only for data structures which
are used in multi-threaded code

Each thread adds less than 2 MB to the overall memory consumption

CERN I EKP11

Scaling behavior of the Implementation
Higher-than-expected scaling from 1 to 2 cores, probably due to the positive effects of
using the L1/L2 caches of two cores simultaneously

Hyperthreading

CERN I EKP12

Final Merge Overhead

The thread-private work blocks are merged after the triplet seeding algorithm is complete

Compared to the overall runtime of the algorithm, the merge step only takes about .1 to .3
percent of the triplet seeding time

This depends on the number of threads: for more threads more blocks are partitioned

CERN I EKP13

Hyperthreading: Food for Thought

Intel Hyperthreading is disabled in CMS Tier-0 because of memory boundaries

With a multi-threaded application we can use more (Hyperthreaded) Cores with
very little memory overhead (less than 2 MB per Thread)

Test Scenario:
Slightly different Machine > need more RAM :)
Intel Core i7-3930K CPU at 3.20GHz
6 Physical Cores (12 Hyperthreaded)
16 GB RAM
Scientific Linux 6.2
50 High-Pileup Data Events

Runtime of 6 Single-Threaded CMSSW Applications: 14.40 min +/- 0.10 min

Runtime of 6 Two-Threaded CMSSW Applications: 13.79 min +/- 0.08 min

Using the Hyperthreading of the machine results in a decrease in runtime of 4.3 %
This number is very close the theoretical decrease of 5% with two threads. The cache
benefit is not visible here, as the Hyperthreading can only use the cache of the 6 physical cores.

A good way to utilize the already purchased resources ?

CERN I EKP14

Conclusions

A multi-threaded track seeding using TBB was implemented within the
CMS Software Framework

Much more than a prototype: Tested and validated in a production
environment with actual CMS proton-proton data

By separating the input in blocks, the multi-threaded implementation
produces exactly the same output as the serial implementation,
independently of the number of threads

The implementation scales as expected with number of available cores

The memory consumption of additional thread is very moderate:

~2MB/ thread

Algorithm Parallelism is a feasible way to speed-up long-running and
serial module chains

Thanks to Benedikt Hegner, Chris Jones and Lassi Tuura for the

fruitful discussions

CERN I EKP15

BACKUP

CERN I EKP16

Triplet Seeding in CMS: Parallel Execution
Before running the multi-threaded code part, the Hit-Pair list is partitioned into N equally
sized work chunks

The available threads process the HitPair Blocks via TBB's parallel_for method and
stores the resulting TripletSeeds in a Block-local Result List

TripletSeeds resulting from a HitPairs Block are merged into the output collection
respective to their order in the input collection

This guarantees the order of the output is not depending of the amount of threads

Loop over HitPairs Blocks

Loop over DetLayers

Loop over Layer Hits

Is Compatible ?

Hit Pairs

Block Result List

HitPairs Block 1

HitPairs Block 2

HitPairs Block 3

Triplet Seeds

Ordered
Reduce

Partition

HitPairs Block N

Multi-Threaded Part

> Load Hits from this Layer

CERN I EKP17

Full CMS Reconstruction Runtime and Memory
Zoom on the End Region

CERN I EKP18

Source Code Excerpt – Private Result Lists

Full Source: http://hauth.web.cern.ch/hauth/code/PixelTripletLargeTipGenerator.cc

tbb::parallel_for(
 tbb::blocked_range<size_t>(0, pairs.size(),
 // ensure we do as little blocks as possible, cause we have this local array overhead
 std::max(pairs.size() / tbbService->GetThreadCount() / 4, (unsigned int)1)),
 [&] (const tbb::blocked_range<size_t>& pairs_block)
 {
 std::vector< OrderedHitTriplet > * thread_local_result =

new std::vector< OrderedHitTriplet >();
 size_t loc = (size_t) pairs_block.begin();

 // create local result list
 {
 ThreadLocalResultsMutexType::scoped_lock lock;
 lock.acquire(threadLocalResultsMutex);
 thread_local_results.insert(loc, thread_local_result);
 }

CERN I EKP19

Source Code Excerpt – Final Merge

Full Source: http://hauth.web.cern.ch/hauth/code/PixelTripletLargeTipGenerator.cc

result.reserve(result_seeds);

// fill the result list in the order, the HitPairs were
for (LocalResultMap::const_iterator map_it = thread_local_results.begin();

map_it != thread_local_results.end();
++ map_it)

{
for (std::vector< OrderedHitTriplet >::const_iterator it = map_it->second->begin();

it != map_it->second->end();
it ++)
{

result.push_back(*it);
}

}

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

