

Rejection of surface background in thermal detectors: the ABSuRD project

L. Canonica¹, M. Biassoni², C. Brofferio², C. Bucci¹, S. Calvano¹, M.L. Di Vacri¹, J. Goett³, P. Gorla¹, M. Pavan², M. Yeh⁴

¹ INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ, Italy ² Università di Milano Bicocca e INFN Sezione di Milano Bicocca, Milano, Italy ³ Los Alamos National Laboratory, Los Alamos, NM, USA ⁴ Brookhaven National Laboratory, Upton, NY, USA

> nanks to their excellent s frequently dominant. iscuss the innovative und ratio.

Bolometers features

Thermal detectors have recently achieved a l energy resolution and to the wide choice of a ABSuRD (A Background Surface Rejection application of this technique in r

Thermal detec

A *bolometer* is a particle detector that measures the temperature change of the detector. Bolometers are Phonon-Mediated particle detecto per mil).

Advantages good energy resolution (~0.1%) wide choice of detectors materials true calorimeters

Disadvantages speed: the response is very slow (decay time ~sec) need to work at very low temperature

Bolometers are ideal detectors for many rare events physics applications, such as Neutrinoless Double Beta Decay (0vDBD) and dark matter searches, for which the slowness of the detector response is not a problem.

G Alpha background in rare events searches

The ABSuRD detector

Low energy threshold are needed for bolometric light detector (<1 keV), in order to be able to detect small light signals produced by degraded α . An α of 5.3 MeV (²¹⁰Pb) produces about 10 keV of photons (commercial

3. broad distribution up to Erecoil

An α particle generated near the surface of a detector component releases only a part of its energy before escaping from the material ("degraded α "). In bolometers, that are fully active detectors, the pure thermal signal does not carry any information about the radiation type, preventing α/β discrimination. An alternative strategy to reject this kind of background is to tag surface events. The goal is to find a way to tag α surface events that can induce a background in the ROI.

To tag the events coming from surface contaminations the thermal detector can be encapsulated in a scintillating foil. Adding a bolometric light detector, should make possible to detect the light produced by the interaction of degraded α particles with the scintillating foil.

scintillating foil at room temperature)

For 0vDBD with TeO₂, we need to tag α releasing 2.5 MeV on the crystal. Because of the α decay with lower energy belonging to natural chains is the ²³²Th (Q-value of 4.01) MeV), we need to detect α down to 1.5 MeV. Unfortunately, plastic scintillators have an extremely nonlinear response to alpha particles and the light produced by an α particle of 1.5 MeV is about an order of magnitude smaller than at 5.3 MeV.

Detecting such a small amount of light represents a serious challenge for most of the currently used light detectors at mK temperature.

Low temperature plastic scintillator characterization

In order to be able to identify degraded α events, plastic scintillator with large light yield are needed as well as low energy threshold of the bolometric light detector.

The response of these samples to α and β

First bolometric test with commercial plastic scintillator

interactions at low T has never been measured.

We are developing different kind of scintillating foils in collaboration with Brookhaven National Laboratory and their light and transmittance have been measured at room temperature. A fast and flexible low temperature test facility has been assembled at the Gran Sasso National Laboratory. The use of a Gifford-McMahon cold head and of SiPM light sensor make this facility very appealing for multiple test and temperature characterization.

The low temperature characterization is in progress

13th Vienna Conference on Instrumentation - VCI2013 11-15 February 2013 Vienna University of Technology