Fragmentation at CLEO

- Data taken over 3 GeV→11 GeV ECM offers opportunity to compare fragmentation effects over range of energies.
- Many results. Will herein focus on:
 - Charm production @ ECM~10 GeV
 - From Upsilon resonances
 - From χ_J resonances (P-states)
 - Correlated charm continuum prod.
 - Baryon production (and dibaryons)
 - Photons from cont, J/ψ , U(1S)
 - Compare gg and qq recoil systems.

ECM=10 GeV Historical Themes

- Baryon production enhancement in ggg decays of narrow resonances vs. qq fragmentation
- Fragmentation of gg~ggg
- U(1S)→ggg→hidden charm (psi), but not D's
- Direct photon dN/dp in quarkonium→ggγ softer than orthopositronium→γγγ
 - Recoil fragmenting gg system must be included in full calculation of photon momentum spectrum
- From the 80's: "Decuplet" suppression in continuum fragmentation (Δ:p, e.g.).
 - $spin (3/2) \sim 0.1(1/2)$
- Much recent work on the role of color octet/color singlet gluon contributions in particle-specific fragmentation (Braaten, ψ production @CDF)

Mass Levels, Schematically:

Upsilon and ψ provide sources of ggg and gg γ decays!

And transitions (Upsilon, e.g.)

QUARKS

VS

GLUONS

THUMBNAIL of recent results

1) Open Charm from U(1S)→gluons (Mike Watkins thesis, prepreliminary)

Softer by ~0.2 units in x_p vs. contin

$\Upsilon(1S) \rightarrow QCD \rightarrow$	Br %	$\pm \delta$ stat $\%$	$\pm \delta_{ ext{sys}}$ %	$\pm\delta$ Y $_{c}$ %
D^0X	4.03	0.42	0.48	0.0741
$D^{*+}X$	1.55	0.24	0.15	0.0308
D_s^+X	0.78	0.25	0.12	0.1356
$\Lambda_{c}^{+}X$	1.67	0.19	0.22	0.4353

Br(Y (1S) →	Br %	Stat %	Sys %	Br %
Open c + cbar	8.6604	1.0095	1.5018	0.5410
Hidden c cbar	0.1714			0.0571
Total c cbar	4.5016	0.5048	0.7509	0.2765

Old theory ('79): ~ 2%

Photon-tagging to access χ_b states

1160903-007

- Unlike χ_{b0} & χ_{b2}, χ_{b1} cannot decay to 2-gluons on-shell
 - $\chi_{b1} \rightarrow g^*g \rightarrow qq g$
- χ_{b1} expected to yield more open charm than $\chi_{b0},\,\chi_{b2}$
- Investigate w/CLEO III
 - Select inclusive γ , find # χ_{bJ}
 - Select inclusive $D^0 \rightarrow K\pi$, $K\pi\pi$, $K\pi\pi\pi$
 - Require p(D⁰)>2.5 GeV/c
 - Find # χ_{bJ} in such events
- First step is reproducing previous CLEO III results on B[Υ(nS)→γχ_{bJ}]
 - Suppress fake photons w/shower shape
 - Suppress π^{o} decays by pairing with other γ 's
 - Fit background, subtract, fit signal
 - Obtained same result: we have denominator for branching fraction
- Exploit RICH & dE/dx for K & π identification

- Plot E_v for tagged D₀ near M_D
 - D-sideband subtraction
 - Smooth bgd subtraction
 - Fit using lineshapes from inclusive γ's
- >7 σ signals for $\chi_{b1}(1P)$, $\chi_{b1}(2P)$
- Correct for efficiency
 - Assume ρ₈ = 0.1 (non-perturbative model parameter) for p>2.5 GeV/c cut
- Subtract secondary sources of χ_{bJ}
- Correct for χ_{bJ}→ΥX: quote B*

Bodwin, Braaten et al (NRQCD)

Update model used to explain psi production at Tevatron: One non-perturbative parameter ρ_8

=m_b²<Octet 4-quark operator>/<Singlet 4-quark op.> ~0.10

Original model from 1995 recently updated → 2007

2) Charm production from $\overline{q}q(g)$ decays

"NEW"=new CLEO result / "TEST"=consistency check with varied bkgnd parameters

Numbers in excellent agreement with NRQCD prediction with one free parameter (ρ_8)=0.086+/-0.011 (from fit)

Final state	$\chi_{b0}(1P)$	$\chi_{b1}(1P)$	$\chi_{b2}(1P)$
Significant signal for J=1 state (decays	to qqbar+glu	on) for both sta	ates
Br($\chi_{bJ}(1P) \to D^0 X$) /NEW γ -background	$5.63{\pm}3.61~\%$	$12.58{\pm}1.94~\%$	$5.35{\pm}1.89~\%$
Br($\chi_{bJ}(1P) \to D^0 X$) /TEST for γ -background	$6.42{\pm}3.60~\%$	$12.93{\pm}1.92~\%$	$5.73{\pm}1.88~\%$
Final state	$\chi_{b0}(2P)$	$\chi_{b1}(2P)$	$\chi_{b2}(2P)$
Slightly weaker for n=2 state (more de	cay width for	other transitio	ns)
Br($\chi_{bJ}(2P) \to D^0 X$) /NEW γ -background	$4.12{\pm}3.00~\%$	$8.74{\pm}1.47~\%$	$0.16{\pm}1.36~\%$
Br($\chi_{bJ}(2P) \to D^0 X$) /TEST for γ -background	$4.40{\pm}3.00~\%$	$8.80{\pm}1.46~\%$	$0.29{\pm}1.35~\%$

Hidden charm(onium) production in Y(1S)

- Phys.Rev. D70 (2004) 072001
- Also probes color-octet vs. color-singlet contributions

Comparison vs. model

-		
Final state, f	$\mathcal{B}(\Upsilon(1S) \to f + X)$	Feed-down to J/ψ
J/ψ	$(6.4 \pm 0.4 \pm 0.6) \times 10^{-4}$	-
	$\mathcal{B}(\Upsilon(1S) \to f + X)/\mathcal{B}(\Upsilon(1S) \to J/\psi + X)$	
$\psi(2S)$	$0.41 \pm 0.11 \pm 0.08$	$0.24 \pm 0.06 \pm 0.05$
χ_{c0}	< 7.4	< 0.082
χ_{c1}	$0.35 \pm 0.08 \pm 0.06$	$0.11 \pm 0.03 \pm 0.02$
χ_{c2}	$0.52 \pm 0.12 \pm 0.09$	$0.10 \pm 0.02 \pm 0.02$

Although shape not quite right,

Color octet prediction: 6.2x10⁻⁴

3) Continuum/quarkonium direct photons

- Quarkonium production of direct photons:
 - Via ggγ; photon spectrum calculable via SCET
 - Requires some model of recoil system
 - Sum color octet and color singlet contributions of recoil state.
 - Also include 'fragmentation' photons off final-state quark lines (Catani&Hautmann)

Models

 Fleming & Liebovich (SCET, 2003), Garcia-Soto (2005,2007)
 ψ prediction on top, Upsilon bottom (pink=color singlet contributions only) with data overlaid

Direct photon production in quarkonia

U(1S): Measure ratio of ggγ:ggg rates

Experiment	$R_{\gamma}(\%)$
CLEO 1.5 (Y(1S))[7]	$2.54 \pm 0.18 \pm 0.14$
ARGUS (Y(1S))[10]	$3.00 \pm 0.13 \pm 0.18$
Crystal Ball $(\Upsilon(1S))[9]$	
2 3 5 6 6 M M	
CLEO II (Y(1S))[11]	$2.77 \pm 0.04 \pm 0.15$
CLEO III (\Upsilon(1S))	$2.70 \pm 0.01 \pm 0.13 \pm 0.24$
CLEO III $(\Upsilon(2S))$	$3.18 \pm 0.04 \pm 0.22 \pm 0.41$
CLEO III ($\Upsilon(3S)$)	$2.72 \pm 0.06 \pm 0.32 \pm 0.37$

Taglines: a) psi 'continuum' spectra very similar to Upsilon spectra b) rate for psi

BUT: one calculation at U(1S) unphysical for z>0.7

For psi: R=0.134+/-0.001 (stat) +/-0.015 (sys) +/-0.004 (extrapolation \rightarrow 0)

Scaling Upsilon msrmnt, accounting for running of α_s \rightarrow expect ~0.095 (Voloshin)

Aside: Lowest-order QCD: dN/dz~z

4) Direct Photon-tagged events to probe ggγ vs. qqγ

- I.e. compare inclusive particle production in recoil two-gluon system with qq fragmenation via ISR: e+e- → qqbar+photon on continuum
 - Direct quark vs. gluon probe no jet-identification needed
 - Statistically unfold continuum contamination to resonance (~20% effect)
- Start by repeating previous studies (CLEO,ARGUS) of baryon production from quarkonium > ggg vs. nearby continuum (qqbar)

OPAL result (shown yesterday) – Lambda enhancement 1-1.5 for all jetfinders

CLEO: Momentum-dependent ggg/qq enhancements (no photon tagging)

Enhancement dominant at Low momenta (cf. DELPHI)

Note: avg. multiplicity in gg decays
Same as qqbar to within 5%

Several particles ggg vs. qqbar (10 GeV)

Enhanced proton/antiproton rate~1.5

Enhanced lambda rate~2.7

(not in JETSET)

Proton rate in $\chi_b \rightarrow gg/qq(g)$ decays

Dataset	particle	$(\chi_{b2} \rightarrow p + X)/$	$(\chi_{k0} \rightarrow p + X)$
	identification	$(\chi_{b1} \rightarrow p + X)/$	$(\chi_{b1} \rightarrow p + X)$
(3S A)	loose	1.116 ± 0.017	1.19 ± 0.046
(3S B)	loose	1.080 ± 0.016	1.00 ± 0.034
(3S C)	loose	1.086 ± 0.011	1.054 ± 0.047
(3S D)	tight	1.103 ± 0.027	1.091 ± 0.097
3S, all		$1.109 \pm 0.007 \pm 0.040$	$1.082 \pm 0.025 \pm 0.060$
(2S A)	tight	1.066 ± 0.028	1.03 ± 0.13
(2S B)	loose	1.075 ± 0.018	1.36 ± 0.15
(2S C)	loose	1.076 ± 0.017	0.99 ± 0.11
(2S D)	loose	1.065 ± 0.015	1.06 ± 0.11
(2S B)	tight	1.076 ± 0.047	1.39 ± 0.28
(2S C)	tight	1.039 ± 0.040	1.17 ± 0.22
(2S D)	tight	1.024 ± 0.035	$0.88 {\pm} 0.20$
2S, all		$1.068 \pm 0.010 \pm 0.040$	$1.11 \pm 0.15 \pm 0.20$
Monte Carlo (3S A)	loose	1.057 ± 0.016	1.030 ± 0.072
Monte Carlo (3S A)	tight	1.034 ± 0.015	1.042 ± 0.066
Monte Carlo (3S B)	tight	1.041 ± 0.013	1.051 ± 0.049
MC, 3S all sets		1.043 ± 0.008	1.043 ± 0.036
Monte Carlo (2S A)	tight	1.052 ± 0.014	1.121 ± 0.058
Monte Carlo (2S A)	loose	1.043+0.015	1.076 ± 0.061
MC, 2S all sets		1.046 ± 0.010	1.061 ± 0.025

JETSET gets this ratio right.

Momentum-integrated ggγ vs. qqγ

Enhancements approximately 3/4 of ggg enhancements (~N_{parton})

Summary of results on previous slides data vs. JETSET

Particle	$gg\gamma/q\overline{q}\gamma$ data	$gg\gamma/q\overline{q}\gamma$ MC	$ggg/q\overline{q}$ data	$ggg/q\overline{q}~\mathrm{MC}$
Λ (1S)	$1.86 \pm 0.25 \pm 0.03$	1.38 ± 0.039	$2.668 \pm 0.027 \pm 0.051$	1.440 ± 0.003
Λ (2S)	$1.98 \pm 0.27 \pm 0.08$	1.38 ± 0.018	$2.333 \pm 0.019 \pm 0.021$	1.428 ± 0.002
Λ (3S)	$2.18 \pm 0.36 \pm 0.02$	1.49 ± 0.023	$2.128 \pm 0.021 \pm 0.010$	1.450 ± 0.002
p (1S)	$1.21 \pm 0.11 \pm 0.03$	1.582 ± 0.034	$1.623 \pm 0.014 \pm 0.116$	1.331 ± 0.005
p (2S)	$1.26 \pm 0.11 \pm 0.06$	1.495 ± 0.018	$1.469 \pm 0.011 \pm 0.103$	1.177 ± 0.003
p (3S)	$1.51 \pm 0.17 \pm 0.06$	1.53 ± 0.021	$1.348 \pm 0.013 \pm 0.116$	1.214 ± 0.003
\overline{p} (1S)	$1.45 \pm 0.14 \pm 0.26$	1.589 ± 0.034	$1.634 \pm 0.014 \pm 0.111$	1.333 ± 0.005
\overline{p} (2S)	$1.46 \pm 0.12 \pm 0.17$	1.513 ± 0.018	$1.500 \pm 0.011 \pm 0.102$	1.175 ± 0.003
\overline{p} (3S)	$1.39 \pm 0.17 \pm 0.27$	1.51 ± 0.020	$1.323\pm0.013\pm0.115$	1.210 ± 0.003
ϕ (1S)	$1.78 \pm 0.49 \pm 0.08$	0.673 ± 0.013	$1.423 \pm 0.051 \pm 0.065$	0.836 ± 0.003
ϕ (2S)	$1.73 \pm 0.52 \pm 0.06$	0.658 ± 0.012	$1.308 \pm 0.041 \pm 0.041$	0.805 ± 0.001
ϕ (3S)	$1.87 \pm 0.81 \pm 0.06$	0.662 ± 0.015	$1.355 \pm 0.054 \pm 0.047$	0.808 ± 0.002
$f_2(1270)$ (1S)	$1.34 \pm 0.84 \pm 0.15 \ (< 2.74)$	-	$0.658 \pm 0.058 \pm 0.175$	_
$f_2(1270)$ (2S)	$2.22 \pm 1.53 \pm 0.20 \ (< 4.68)$	_	$0.621 \pm 0.094 \pm 0.171$	_
$f_2(1270)$ (3S)	$1.41 \pm 1.48 \pm 0.10 \ (< 3.87)$	_	$0.702 \pm 0.104 \pm 0.175$	

5) Correlated baryon-antibaryon production (BaBar re-analysis)

Charmed baryons 3x more likely to appear opposite an anti-charmed baryon than an anti-charmed meson (per tag)

PHYSICAL REVIEW D 63 112003

TABLE III. Production rates; statistical errors only.

Double tags Single tags	Data fraction	Monte Carlo fraction
$2 \times \frac{\Lambda_c^+ \overline{\Lambda}_c^-}{\overline{\Lambda}_c^-}$	$(7.19\pm1.08)\times10^{-3}$	$(1.49 \pm 0.62) \times 10^{-3}$
$2 \times \frac{\Lambda_c^+ \overline{\Lambda_c^-}}{\overline{\Lambda_c^-}}$ $\frac{\Lambda_c^+ \overline{D^0} }{\overline{D^0}}$	$(2.05\pm0.16)\times10^{-3}$	$(1.82 \pm 0.08) \times 10^{-3}$
$\frac{\Lambda_c^+ D^- }{}$	$(2.03\pm0.26)\times10^{-3}$	$(1.82 \pm 0.14) \times 10^{-3}$
$\frac{D_{-}^{-}}{\Lambda \Lambda_{c}^{-} }$	$(19.3 \pm 1.1) \times 10^{-3}$	$(8.28\pm0.66)\times10^{-3}$

Also, $\Lambda - \overline{\Lambda}$ correlations

	DATA	MC	DATA-MC
$(\Lambda_c \overline{\Lambda}_c)/(\Lambda_c+\overline{\Lambda}_c)~(\times 10^{-3})$	3.91 ± 0.47	1.05 ± 0.44	2.86 ± 0.64
$(\overline{\Lambda}_c \Lambda + \Lambda_c \overline{\Lambda}) / (\Lambda + \overline{\Lambda}) (\times 10^{-4})$	3.43 ± 0.36	2.16 ± 0.30	1.27 ± 0.46
$(\overline{\Lambda}_c \Lambda + \Lambda_c \overline{\Lambda}) / (\Lambda + \overline{\Lambda}) \ (\times 10^{-4})$	20.2 ± 1.0	7.1 ± 0.7	13.1 ± 1.2
$(\Lambda \overline{\Lambda})/(\Lambda + \overline{\Lambda}) \ (\times 10^{-2})$	1.01 ± 0.01	0.67 ± 0.01	0.34 ± 0.02
$(\Lambda \overline{\Lambda})/(\Lambda + \overline{\Lambda}) \ (\times 10^{-2})$	1.16 ± 0.01	1.17 ± 0.01	-0.01 ± 0.01
$(\Lambda\Lambda)/(\Lambda+\overline{\Lambda})$ (×10 ⁻⁵)	3.93 ± 2.10	3.73 ± 1.27	0.20 ± 2.45
$(\Lambda \Lambda)/(\Lambda + \overline{\Lambda}) \ (\times 10^{-5})$	33.0 ± 5.1	41.2 ± 4.1	-8.2 ± 6.6

JETSET 7.4 reproduces same hemisphere ⟨√⟨c⟩ correlations, but deficit of opposite hemisphere correlations

http://xxx.lanl.gov/PS_cache/hep-ex/pdf/0205/0205085v1.pdf

Recent CLEO results:η' production

FIG. 1: Feynman Diagram for $b \to s(g^* \to g\eta')$ (left) and $\Upsilon(1S) \to ggg^* \to \eta' X$ (right).

Expect:
enhanced
coupling of eta' in
gluon-rich
environment?

Find: Total η' rate in ggg events comparable to qqbar

Thus we obtain

$$n(\Upsilon(1S) \to (ggg^*) \to \eta'X) \equiv \frac{N(\Upsilon(1S) \to ggg^* \to \eta'X)}{N(\Upsilon(1S) \to ggg^*)} = (3.2 \pm 0.2 \pm 0.2)\%,$$

$$n(\Upsilon(1S) \to (q\bar{q}) \to \eta'X) \equiv \frac{N(\Upsilon(1S) \to q\bar{q} \to \eta'X)}{N(\Upsilon(1S) \to q\bar{q})} = (3.8 \pm 0.2 \pm 0.3)\%,$$

$$n(\Upsilon(1S) \to \eta'X) \equiv \frac{N(\Upsilon(1S) \to \eta'X)}{N(\Upsilon(1S))} = (3.0 \pm 0.2 \pm 0.2)\%.$$
(6)

The $\Upsilon(1S) \to \eta' X$ branching fractions at high momentum (Z > 0.7) are measured to be

$$n(\Upsilon(1S) \rightarrow (ggg^*) \rightarrow \eta'X)_{Z>0.7} = (3.7 \pm 0.5 \pm 0.3) \times 10^{-4},$$

 $n(\Upsilon(1S) \rightarrow (q\bar{q}) \rightarrow \eta'X)_{Z>0.7} = (22.5 \pm 1.2 \pm 1.8) \times 10^{-4},$
 $n(\Upsilon(1S) \rightarrow \eta'X)_{Z>0.7} = (5.1 \pm 0.4 \pm 0.4) \times 10^{-4}.$ (7)

Deuteron production in aaa+vaa vs v*→aa

Phys.Rev. D75 (2007) 012009

- d=bound (pn)
- "Coalescence models" attempt to describe appearance in fragmentation
 - How often do p & n appear "close enough" in phase space to combine into d?
- Studies from ARGUS [PLB 236, 102 (1990)] in Υ→d+X & ALEPH [PLB 639, 192 (2006)] in Z→d+X
 - Accommodated by string model of Gustafson
 & Hakkinen [Zeit. Phys. C61, 683 (1994)]
 - Appearance in Υ (ggg+γgg) vs γ^* or Z→qq
 - Statistics-limited
- Experimental challenge is that d's can easily be produced in beam-gas and beam-material collisions
 - Look only for anti-d's
 - · dE/dx in drift chamber
- Will present CLEO III data for inclusive anti-d's
 - Separate results for Y vs continuum
 - For Υ(1S), rescale branching fraction to reflect DIRECT production from ggg+γgg : B*

Normalized dE/dx for anti-d

N.B. Raw deuteron:antideuteron rate ~10 (beam-gas/beam-wall interactions

Anti-d Production Result

Phys.Rev. D75 (2007) 012009

- **B***(Υ (1**S**)→ $\overrightarrow{d}X$) = (3.36 ± 0.23 ± 0.25) × 10⁻⁵ □ based on 338 events
- **⊗ B** (Υ (25) \rightarrow **dX**) = (3.37 ± 0.50 ± 0.25) × 10⁻⁵
 - ☐ based on 58 events
- B ($\Upsilon(45) \rightarrow \overline{d}X$) < 1.3 × 10⁻⁵
 - □ based on 3 events
- **B** (γ ^{*} → $q\overline{q}$ → $\overline{d}X$) < 1 × 10⁻⁵ □ based on 4.5 events
- Hence (ggg + γ gg) is about 3 times more likely than γ → qq
 to produce deuterons
- How often is an anti-d compensated by a d as compared to (n, p) combinations?
 - We see roughly equal compensation by nn, np, pp relative to each other
 - ~1% of the time a d compensates
 - 3 d anti-d events observed

anti-d

Implications for coalescence model

- Unclear.
- If anti-deuterons always compensated by deuterons, coalescence disfavored.
 - This result not inconsistent with coalescence...

Conclusions (part 1)

- Open charm produced in gluon hadronization
 @10 GeV, but at rate ~15% wrt qqbar
- Hidden charm enhanced
- Dibaryon production (anti-deuterons) enhanced by factor ~ square of single baryon enhancement from gluons
- Two gluons→baryons~2/3-3/4 3gluonsbaryons, based on ggγ decays
 - Although shape of photon spectrum doesn't match with theory (yet)
- Color octet+singlet models still need some tuning (but an improvement over old school)

Intermezzo (sans music)

CLEO run plan for next few months.

Orange=good.

Everything else=bad.

Conclusions (2)

- "Rumors of my death are exaggerated" (M. Twain)
 - Unfortunately, not in this case: After 30-year physics program, CLEO data-taking ending in 97 hours.
- Still some fragmentation physics to be done:
 - More detailed studies of gg vs. ggg fragmentation
 - BE correlations at ECM=10 GeV vs. ECM=3 GeV
 ΛΛ correlations again at 10 GeV and also at 3 GeV, with polarization correlations.
- Systematics-limited analyses (e.g., D/D*/D $_{\rm s}/\Lambda_{\rm c}$ fractions on continuum) likely competitive for awhile
- and nice spectroscopy at threshold (e.g., first observation of D_s→p+antineutron)
- Expect active physics for another 12-18 mos., then the deluge...