Review on parton fragmentation studies in BABAR

Fabio Anulli

INFN – Sezione di RomaOn behalf of the BABAR Collaboration

Workshop on parton fragmentation processes in the vacuum and in the medium ECT* - Trento

February 25-29, 2008 Trento

Outline:

- Physics motivation
- BABAR and PEPII
- ➤ Inclusive production of light particles at ~10 GeV
- ➤ Inclusive studies on charmed baryons at ~10 GeV
 - Inclusive Λ_c and Ξ_c spectra
 - $\Lambda_{\rm c}^{+}\Lambda_{\rm c}^{-}$ correlated production and popcorn mesons
- > Studies of exclusive state at ~10 GeV
 - $e^+e^- \rightarrow p\bar{p}p\bar{p}$
 - $e^+e^- \rightarrow \rho\rho$, $\phi\rho$, $\phi\eta$
- $\triangleright e^+e^-$ interactions at low energy via Initial State Radiation
- Conclusions

$\sigma(e^+e^- \rightarrow hadrons)$

- \triangleright High E_{cm} : perturbative QCD holds ==> $e^+e^- \rightarrow q\bar{q}(g) \rightarrow jets$
 - > QCD predicts energy dependence of "rare" few-body processes
- \triangleright Low E_{cm} : resonances, quasi 2-,3-body processes,...
 - ➤ lots of physics: spectroscopy, form factors, QCD tests,...
- \triangleright the same also at $c\bar{c}$ and $b\bar{b}$ threshold (and at Z^0)
- ➤ difficult predictions (and models poorly tested) in the "transition" region
- \triangleright total σ_{had} is the experimental input for evaluation of hadronic contribution to $(g-2)_{\mu}$ and $\alpha_{OED}(M_Z)$

The asymmetric *B*-factory PEP-II

Both machine and detector optimized for study the CP violation in B mesons decays very well suited also for any type of physics at this energy

> PEP-II largely outperformed the design parameters:

$$L_{peak} = 1.2 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

- \triangleright Best 24h : $L = 910 \text{ pb}^{-1}$
- ➤ logging efficiency >96%

Trento, February 27, 2008

Fabio

The BABAR detector

Excellent detector performances:

- > SVT: $\varepsilon \approx 97\%$, ~15 µm z hit resolution
- > Tracking (SVT+DCH): $\sigma(p_T)/p_T \cong (0.13 \ p_T(GeV/c) \oplus 0.45) \%$
- \triangleright K- π separation >3 σ (p ~ 4 GeV/c)
- > EMC energy resolution: $\sigma(E)/E \approx (2.3 \ E^{-1/4} \oplus 1.8) \%$
- Polar angle coverage in c.m. frame (w.r.t. e^- beam): $0.9 < \cos \vartheta^* < 0.85$

➤ Analysis presented here make use of very good PID performances

- ●PID eff > 90% for most of interesting range
- ●mis-ID < 3% almost everywhere

Inclusive Hadronic Particle Spectra

> The total fragmentation function for a hadron h in e^+e^- annihilation at an energy E_{cm} is:

$$F^{h}(x, E_{cm}^{2}) = \frac{1}{\sigma_{tot}} \frac{d\sigma}{dx} (e^{+}e^{-} \rightarrow V \rightarrow hX),$$
where $V = \gamma, Z^{0}$ and $x = 2E_{h}/E_{cm}$

- > precise measurements of IPS at different energies needed to:
 - better comprehension of fragmentation processes
 - check consistency with a number of fragmentation models
 - test scaling violation
 - test QCD predictions
- many recent high-energy results
- limited precision measurements at low-energy before B-factories

- > So far, BABAR have measured IS of:
 - > 3 light mesons (π^{\pm} , K^{\pm} , η)
 - > 1 light baryon (p/\overline{p})
 - > 3 Heavy baryons (Λ_c , Ξ_c , Ξ'_c)
- > measurements performed both at $\sqrt{s}=10.54$ GeV and at $\gamma(4S)$ mass peak

IHPS: $\pi^+, K^+, \eta, p/\overline{p}$

- > BABAR measurement based on:
 - 0.9 fb⁻¹ off-resonance
 - 3.6 fb⁻¹ on-resonance
- > plot scaled momentum distribution $x_p = 2p^*/E_{cm}$
- > data available at $E_{cm} = 10\text{-}200 \text{ GeV}$ (some example shown here)
- good consistency between BABAR and ARGUS data
 - ARGUS extends to lower values
 - BABAR covers the high side of the spectrum
 - precision of data already limited by systematics effects.
- reviewed analysis of BABAR data ongoing

IHPS: π^+ , K^+ , η , p/\overline{p}

- with some models on the market:
 - good consistency for pions
 - reasonable agreement with other scalar mesons, for most of the energy range
 - no model really works with protons (and baryons in general)

IHPS: π^+ , K^+ , η , p/\overline{p}

> same data shown in previous slide, in log scale

IHPS: cross section scaling

- * Hadronization should be scale invariant except for "small" effects of hadron masses, running of α_s ,...
- scaling violations at low x_{p} , due to masses are well known and modeled adequately (here JETSET is shown for comparison)

- expect substantial scaling violations at high x_p
 - seen clearly in π and K data; reproduced by models
 - NOT seen in p/\bar{p} data! Wrong model predictions

π^{\pm} , K^{\pm} , η , p/\bar{p} : test QCD predictions

In the *Modified Leading Logarithmic*Approximation (MLLA),

distributions versus $\xi = -\ln(x_p)$ should

be Gaussian near the peak.

peak position ξ * from symmetric gaussian fits

π^+	2.36 ± 0.01
K ⁺	1.64 ± 0.01
p	1.61 ± 0.01
η	1.44 ± 0.02

 \triangleright QCD prediction is that $\xi*$ falls monotonically with increasing particle mass.

while it is observed $\xi^*_p \approx \xi^*_K$

π , K , p/\bar{p} : test QCD predictions

- All data are consistent with the expected logarithm dependence with the center-of-mass energy
- > but, different slopes, protons data above kaons...

π^{\pm} , K^{\pm} , p/\bar{p} : production rate

 \triangleright total number of particles produced per event extrapolated using fit to $d\sigma/d\xi$ distributions

	BABAR	ARGUS	CLEO	JETSET	UCLA	Herwig
π^+	6.40 ± 0.17	6.38 ± 0.12	8.3 ± 0.4	6.22	6.44	6.13
<i>K</i> ⁺	0.910 ± 0.018	0.888 ± 0.030	1.3 ± 0.2	0.934	1.01	1.01
p/\overline{p}	0.235 ± 0.012	0.271 ± 0.018	0.40 ± 0.06	0.336	0.217	0.460
η	0.276±0.017	0.19±0.04 ±0.04		0.410		0.233

FITTIFITT	
	• BABAR π [±] — JETSET
1	· ··· UCLA -
·	— SLD JETSET
F //	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
F /	
	K [±] - BABAR - JETSET -
Jan Carlon	··· UCLA - — SLD JETSET -
[- <i>j</i> / `}	\ SED JE 13E1
į "	,
·	•
F #	1
 	
	• BABAR p/p — JETSET —
	P'P ··· UCLA = = = = = = = = = = = = = = = = = = =
//	=
	\
	<u>}</u>
	13/
0 0.5 1 1.5 2	2.5 3 3.5 4 4.5
	$\xi = -\ln(x_p) = \ln(E_{cm}/2p_{cm})$
	, b, cm_rem,

Charm production at BABAR

- Heavy hadrons produced in e^+e^- annihilations provide a laboratory for the study of heavy-quark jet fragmentation
- Relevant quantities are
 - Relative production rates for different spin, parity, etc
 - Associated momentum spectra
 - Differences among mesons and baryons
- Measurements at 10.54 GeV, below $B\bar{B}$ production threshold, are the ideal place to study $e^+e^- \rightarrow c\bar{c}$ reactions, and test charm fragmentation functions, the charmed hadrons being made of one of the leading quarks
- Large amount of data to study $b \rightarrow c$ decays from inclusive measurements at the Y(4S):
 - B-mesons \rightarrow charmed mesons/baryons
- > Great potential for charm spectroscopy (search for new states, precise measurements of fundamental quantities, e.g. masses, spin, I-spin,...)!
 - last results on this topic shown yesterday by S. Pacetti

Inclusive Λ_c studies

- The Λ_c^+ (cud) is the lightest c-baryon
- We precisely measured its mass reconstructing two low-Q decays, to minimize systematic uncertainties
- > We find (PRD 72, (2005) 052006)
 - $m(\Lambda_c^+) = 2286.46 \pm 0.14 \text{ MeV}/c^2$
- More precise and 2.5σ higher than the previous PDG value:
 - $m_{PDG}(\Lambda_c^+) = 2284.9 \pm 0.6 \text{ MeV}/c^2$

Inclusive Λ_c spectrum measurement

PRD 75, 012003 (2007)

9.5 fb⁻¹ off-resonance 81 fb⁻¹ on-resonance

- > reconstruct $\Lambda_c^+ \to p K^- \pi^+$ from tracks consistent from originating from interaction point
- \triangleright evaluate track efficiencies from data in two-dimensional (p, θ) bins
- weight events according to inverse efficiency matrix
- \rightarrow fit mass peak in each x_p bin

- > Determine $e^+e^- \rightarrow c\bar{c}$ events from off-resonance data (E_{cm} =10.54 GeV)
- \triangleright Determine $e^+e^- \rightarrow B\overline{B}$ events from on-resonance data subtracting the off-resonance cross section scaled by the different c.m. energy

Inclusive Λ_c spectrum measurement

- We measure (at E_{cm} =10.54 GeV):
- $< x_p > = 0.574 \pm 0.009$
- > Total rate per event: $N_{\Lambda_C}^{q\bar{q}} = 0.057 \pm 0.002 (\exp) \pm 0.015 (\Lambda_C BF)$
- assuming Λ_C^+ from $e^+e^- \rightarrow c\bar{c}$ we get a production rate per c-jet of: $N_{\Lambda_C}^{c-jet} = 0.071 \pm 0.003 (\exp) \pm 0.018 (\Lambda_C BF)$
- Result consistent with previous CLEO and Belle measurements

- Compare to other baryons or mesons
- \rightarrow Λ_C peak slightly lower w.r.t. Ξ_c
- > D mesons (both PS and V state), show broad peaks and differ significantly for $x_p \sim 1$

Inclusive Λ_c spectrum measurement

- > Several fragmentation functions implemented in JETSET generator
 - distributions affected by JETSET simulation of gluon radiation
 - test each models against our data using a binned χ^2
- No model seems to correctly reproduce the data, but
- > The fitted values of the free parameters are quite different from those used for light hadrons and charmed mesons
- These results indicate the needs of different functions for baryons and mesons (like in DIS, where there is a dependency on the number of spectator quarks)

Inclusive Λ_c spectrum at the Y(4s)

- Spectrum for Y(4S) decays obtained subtracting the much harder $e^+e^- \rightarrow c\bar{c}$ spectrum
- \rightarrow Kinematic limit $x_{\rm p} = 0.47$
- > Shape consistent with previous results
- > We measure

$$N_{\Lambda_C}^{Y} = 0.091 \pm 0.006 (\exp) \pm 0.024 (\Lambda_C BF)$$

> i.e. $(4.5 \pm 1.2)\%$ of $B_{u,d}$ decays include a Λ_c

- > Data suggest a dominance of quasi-two-body decays like:
 - B \rightarrow $(\Lambda_c^{\ +}\bar{p}, \Lambda_c^{\ +}\bar{n}, \Lambda_c^{\ +}\Delta, \Sigma_c\bar{p}) + m\pi$
 - \bullet comparing with MC simulations the favorite range for the number of pions is 3 < m < 5
 - also B decays into 2 charmed baryons seem to contribute significantly

More c-baryons inclusive spectra: Ξ_c

hep-ex/0607086

State	Mass (MeV/c²)	JP
Ξc	2470	1/2+
$\Xi_{ m c}$	2575	1/2+
Ξ_c*	2645	3/2+

- \triangleright Ξ'_{c} first observed by CLEO in 1999
- $\Delta m = m(\Xi'_{c}) m(\Xi_{c}) = 107 \text{ MeV}/c^{2}$
 - electromagnetic decay $\Xi'_c \to \Xi_c \gamma$

\rightarrow first evidence of $B \rightarrow \Xi'_c$ decays

$$\mathcal{B}(B \to \Xi_c^{'+} X) \times \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (1.69 \pm 0.17 (\text{exp.}) \pm 0.10 (\text{model})) \times 10^{-4}$$

$$\mathcal{B}(B \to \Xi_c^{'0} X) \times \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (0.67 \pm 0.07 (\text{exp.}) \pm 0.03 (\text{model})) \times 10^{-4}$$

Correlated $\Lambda_c^+ \overline{\Lambda}_c^-$ production

- > What about baryon number conservation?
 - Measurements at high energies shows small rapidity differences between Baryon antiBaryon couples ==> "local baryon correlation"
 - if "local" correlation and two charmed baryons produced from leading c-quarks, we expect to see two more baryons ==> kinematically suppressed @ E_{cm} ~10 GeV

• CLEO measured $\frac{P(\Lambda_c \Lambda_c X)}{P(\Lambda \overline{D}^{(*)} Y)} \approx 3.5$ PRD 63, 112003 (2001)

- ► BABAR looks for $e^+e^- \to \Lambda_c^+ \overline{\Lambda_c}^- X$ events
- \rightarrow Observe 649 ± 31 events vs ~150 expected ==> ratio of ~4.2 consistent with CLEO result
- > very few additional baryons observed
- > most of additional tracks are pions produced at the e^+e^- vertex ==> we measure $2.6 \pm 0.3 \pi^{\pm}$ /event
- > there is room for additional ~ 1.3 popcorn π^0 /event
- > 2.2 units of rapidity differences observed on average

all indicate these are "jetty" events with long-range baryon number conservation!

For details see the talk by S. Pacetti

Exclusive reactions at 10.6 GeV

- Very rare final states can be studied with the full BABAR statistics
- Select events with a specific set of identified tracks, reconstructed photons and π^0 's, η 's
- > Look at mass combinations, momentum and angular distributions, etc
- clear signals in each channel ==> interesting features of hadronic interactions can be studied

22

$e^{+}e^{-} \rightarrow \rho^{0}\rho^{0}, \phi\rho^{0}$ PRL 97, 112002 (2006)

we observe clear $\rho^0 \rho^0$ signal in $\pi^+ \pi^- \pi^+ \pi^-$ events and $\phi \rho^0$ in $K^+ K^- \pi^+ \pi^-$

- Both channels have C = +1:
 - ==> forbidden in single γ^* annihilation
 - ==> allowed (and expected ~at this level) in $2-\gamma^*$ annihilation (TVPA)
 - ==> check angular distributions....

$e^+e^- \rightarrow \rho^0\rho^0$, $\phi\rho^0$ - angular distribution

- ρ^0 , ϕ production angle θ^* :
 - TVPA predicts $\frac{1+\cos^2\theta^*}{1-\cos^2\theta^*}$
 - other process may give $\sin^2 \theta^*$, flat, $1 + \cos^2 \theta^*$

- Decay helicity angles :
 - TVPA predicts transverse ρ , ϕ polarization, *i.e.* $\sin^2\theta_{\rm H}$ distribution for decay helicity angles

- > First observation of TVPA!
- > (Fiducial) cross sections:
 - $(20.7 \pm 0.7 \pm 2.7)$ fb for $\rho^0 \rho^0$
 - $(5.7 \pm 0.5 \pm 0.8)$ fb for $\phi \rho^0$
 - consistent with vector-dominance two-photon exchange (hep/ph-0606155)

Initial State Radiation essential

ISR studies at the $\Upsilon(4S)$ yield the same observables as the low energy e^+e^- experiments with enough statistics can probe the transition region from form factors to jets

$$\frac{d\sigma_{e^+e^-\to\gamma X}(s,s',\theta_{\gamma}^*)}{ds'd\cos\theta_{\gamma}^*} = W(s,s',\theta_{\gamma}^*)\cdot\sigma_{e^+e^-\to X}(s')$$

$$m_{X}^{2} = s' = s(1-x) \qquad x = \frac{2E_{\gamma}^*}{\sqrt{s}}$$

- The radiator function W is known at $\sim 1\%$ level
- Features:
 - access to wide s' range
 - very small point-to-point systematic errors
 - c.m. boost $==> \varepsilon \neq 0$ at threshold
- disadvantages:
 - mass resolution > beam-energy spread
 - required very high luminosity

Fabio Anulli

26

The BABAR ISR physics program

- \triangleright Measure cross section for all significant $e^+e^- \rightarrow f$ processes, threshold up to 4-5 GeV
- Purpose:
 - improve understanding of spectroscopy of $J^{PC}=1^{-}$ states, and of resonant substructures observable in their decays
 - time-like form factors measurements (e.g. proton, Λ , Σ)
 - improve precision on determination of $R(s) = \sigma_{hadron}(s)/\sigma_{\mu\mu}(s)$ in the energy region $1 < E_{cm} < 3$ GeV, by summing the measured exclusive cross sections
- >Published (or accepted or submitted):

$$\begin{split} & \mu^+\mu^-,\,p\overline{p},\,\Lambda\Lambda,\,\Sigma^0\Sigma^0,\,\,\pi^+\pi^-\pi^0,\,\pi^+\pi^-\pi^+\pi,\\ & K^+K^-\pi^+\pi^-,\,\,K^+K^-\pi^0\pi^0,\,K^+K^-K^+K^-,\\ & \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-,\,\,\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0,\\ & K^+K^-\pi^+\pi^-\pi^+\pi^-,\,\,K_S^{0}K^-\pi^+,\,\,K^+K^-\pi^0,\\ & K^+K^-\eta,\,\,\,J/\psi\,\,\pi^+\pi^-,\,\,\psi(2S)\,\,\pi^+\pi^- \end{split}$$

- >Analysis on progress :
 - $\pi^+\pi^-\pi^0\pi^0$, $\pi^+\pi^-\pi^+\pi^-\pi^0$, $\pi^+\pi^-$, K^+K^- , J/ $\psi\gamma\gamma$, DD, ISR inclusive,...

shown here as an example, for a general discussion see talk by S. Pacetti

Analysis strategy

- Events selection:
 - require exact topology: "hard" γ + all particles inside a fiducial volume
 - $\rightarrow \pi/K/p$ discrimination using dE/dx and Cherenkov angle
 - kinematic fit requiring :
 - $\triangleright p$ and E conservation
 - \triangleright add mass constraint for each π^0
 - fit result used to select signal events and reject background
- Monte Carlo simulations used for detector acceptances, selection efficiencies and estimates of different background sources:
 - > ISR generators based on:
 - H.Czyz et al, Eur. Phys. J. C 35(2004)527
 - > multiple ISR soft photons:
 - M.Caffo et al, N. C. 110A(1997)515
 - > final state radiation: (PHOTOS)
 - E. Barberio et al, Comp. Phys Comm. 66(1991)115

Trento, February 27, 2008

Fabio Anulli

event selection for $\pi^+\pi^-\pi^0$ final state

$e^+e^- \rightarrow \gamma + \pi^+ \pi^- \pi^+ \pi^- \pi^+ \pi^-$

topology ISR photon + 6 charged hadrons
IC fit in 6π hypothesis. Cut at $\chi^2 < 20$

- Good agreement with existing data
- ➤ Total systematic error ~8%

$e^+e^- \rightarrow \gamma + \pi^+ \pi^- \pi^+ \pi^- \pi^0 \pi^0$

- ISR photon $+4 h + 4\gamma$
- 5C fit (constrain π^0 masses). Cut at χ^2 <20

- Agreement with existing data only at low masses
- > Total systematic error ~10%
- ➤ A structure observed around 1.9 GeV, already seen by DM2 and FOCUS experiments
- > ... but resonance fit gives inconsistent parameters (?)
- \triangleright is this the "same dip" visible in $\pi^+\pi^-\pi^0\pi^0$ channel or is it something else?
- > is it connected to the observed enhancement of the proton FF at threshold?

$e^+e^- \rightarrow \gamma + \pi^+ \pi^- \pi^+ \pi^- \pi^0 \pi^0$

substructures in $2(\pi^+\pi^-)\pi^0\pi^0$ final state

- Very rich resonance structure:
 - $\eta,\omega \rightarrow \pi^+\pi^-\pi^0$
 - $f_0 \rightarrow \pi^+ \pi^-$
 - $f_2(1270)/f_0(1370) \rightarrow \pi^0 \pi^0$?
 - $J/\psi \rightarrow 2(\pi^+\pi^-) \pi^0\pi^0$

- > Observed submode $e^+e^- \rightarrow \omega(\pi^+\pi^-\pi^0) \eta(\pi^+\pi^-\pi^0)$
- $> J/\psi$ peak clearly visible (measure the decay rate)
- > Fit the large peak to a resonant shape, we find:
 - $m = 1645 \pm 8 \text{ MeV}/c^2$
 - $\Gamma = 114 \pm 14 \text{ MeV}$
- > is the ω(1650) (Γ =315), or the φ(1680) (Γ ~50) ?
- > or something new...?

$e^+e^- \rightarrow \gamma + \pi^+ \pi^- \pi^+ \pi^- \pi^+ \pi^-$

substructures in $3(\pi^+\pi^-)$ final state

- The only structure observed in $2/3 \pi$ combinations is the $\rho(780)$
- > data consistent with $e^+e^- \rightarrow \rho \pi^+\pi^ \pi^+\pi^-$

$(4\pi 2\pi^0)/(6\pi)$ production ratio

- > The $2(\pi^+\pi^-)\pi^0\pi^0/3(\pi^+\pi^-)$ production ratio is flat and ~4
 - except where the $\omega\eta$ submode contribute
- difficult to explain, also because the former has a much richer substructure
- inclusive distribution of $3(\pi^{+}\pi^{-})$ somewhat consistent with "jetty" behavior, but... hard to make any guess at this energy

Summary

- \triangleright PEP-II is not only a *B*-factory, but also a $q\bar{q}$ -factory (q=u,d,s,c)
- > The large amount of data make possible stringent test on hadronic reactions at low energies, with unprecedented accuracy
- IS measured for light mesons $(\pi^{\pm}, K^{\pm}, \eta)$, for proton, and for some charmed baryons $(\Lambda_c^+, \Xi^{(\prime)}_c)$ covering most of the scaled momentum range
- > Jets in the "extreme" region studied:
 - $\triangleright e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- X = > long range baryon number conservation$
 - $ightharpoonup e^+e^- \rightarrow p\,\bar{p}p\,\bar{p} = >$ first observation, consistent with "jetty" behavior
- > exclusive reactions studied both at 10 GeV and at lower energies via ISR
- Many new charmed states discovered and studied with inclusive measurements at Y(4S) energy
- *PEP-II* shutdown on April 6th, 2008 after an exciting journey lasted 9 years
- This would not be the end of the story: expect many more results from analysis of BABAR data for the years to come!

BACKUP SLIDES

PID performances

IHPS: $\pi^+, K^+, p/\bar{p}$ from Y(4S) decays

Inclusive Λ_c spectrum

Correlated $\Lambda_c^+ \Lambda_c^-$ production

- > What about baryon number conservation?
 - Measurements at high energies shows small rapidity differences between Baryon antiBaryon couples ==> "local baryon correlation"
 - if "local" correlation and two charmed baryons produced from leading c-quarks, we expect to see two more baryons

- @ $E_{cm} \sim 10 \text{ GeV}$, m(B_c+ \overline{B} + \overline{B}_{c} +B) > 6.5 GeV/c2 • kinematically suppressed
- CLEO measured $\frac{P(\Lambda_c \overline{\Lambda}_c X)}{P(\Lambda_c \overline{D}_c^{(*)} Y)} \approx 3.5$

PRD 63, 112003 (2001)

primary c-quarks do not fragment independently!

Correlated $\Lambda_c^+ \Lambda_c^-$ production

- ► BABAR looks for $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- X$ events
- Analysis strategy:
 - reconstruct Λ_c in pK-KS
 - reject Y(4S) decays by $p_A^* > 2.3 \text{ GeV/}c$
- \triangleright Observe 649 ± 31 events
 - \sim 150 expected (based on single Λ_c rate)
 - ratio of ~4.2 consistent with CLEO result

- very few additional baryons (13 ± 8) events compatible with 4 baryons)
- very few additional K^{\pm} , K_S , ρ , K^* mesons observed
- most of additional tracks are pions produced at the e^+e^- vertex

Trento, February 27, 2008

Fabio Anulli

Correlated $\Lambda_c^+ \Lambda_c^-$

- Very few two-body or quasi-two-body events observed
 - no evidence for $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$
 - small fraction of additional mesons coming from heavier baryons decays
 - no evidence for unknown baryons
- \rightarrow we measure $2.6 \pm 0.3 \, \pi^{\pm}$ /event
- there is room for additional ~ 1.3 popcorn π^0 /event
- > 2.2 units of rapidity differences observed on average

- measurements indicate these are jetty events with long-range baryon number conservation==> new type of events
- among the various models, only UCLA is able to qualitatively produce these type of events:
 - production rate too high
 - suppression of kaons and vector mesons production
- π multiplicity distribution broad, with peak at 1 and average of 1.8 Trento, February 27, 2008 Fabio Anulli

Fit of $e^+e^- \rightarrow 6\pi$ cross sections

Dip of cross section near 1.9 GeV is confirmed, but wider than in DM2 (e^+e^-) and in FOCUS (diffractive photoproduction)

	$M(GeV/c^2)$	Γ(GeV)	phase
BABAR 3(π ⁺ π ⁻)	1.88 ± 0.03	0.13 ± 0.03	20 ± 40
BABAR $2(\pi^+\pi^-)\pi^0\pi^0$	1.86 ± 0.02	0.16 ± 0.02	−3 ± 15
FOCUS $3(\pi^+\pi^-)$	1.91 ± 0.01	0.037 ± 0.013	10 ± 30

Trento, February 27, 2008

Fabio Anulli

40