On Kaon Fragmentation Functions

Ekaterina Christova
Institute for Nuclear Research and Nuclear Energy, BAS, Sofia

based mainly on a paper written with
Elliot Leader - Imperial College, London
Eur. J. Phys. C51, 825 (2007)

Plan of the talk

The FFs of Kaons are determined in:

1. $e^{+} e^{-} \rightarrow K+X \rightarrow$ sensitive to $D_{q}^{K^{+}+K^{-}}$
2. SIDIS: $e+N \rightarrow e+K+X \rightarrow$ distinguishes $D_{q}^{K^{+}}$\& $D_{q}^{K^{-}}$

AKK, DSS, 2007
usually made assumptions, especially about unfav. FFs:

$$
D_{d}^{K^{+}}=D_{d}^{K^{-}}, \quad \text { etc. }
$$

We show:

1. how $D_{d}^{K^{+}-K^{-}}=0$ can be tested: LO, NLO, no knowledge of FFs required
2. how neutral Koans K_{s}^{0} help to determine $D_{q, g}^{K^{+}+K^{-}}$: LO, NLO...

Why K_{s}^{0} ?

1. $\mathrm{SU}(2)$ inv. relates $K^{+}+K^{-}$and K_{s}^{0}
2. allows to work with NonSinglet and Singlet combinations of FFs

Why NS's?

We know $g_{1}^{p}-g_{1}^{n}=\frac{1}{6} \Delta q_{3} \otimes\left(1+\frac{\alpha_{s}}{2 \pi} \delta C_{q}+\ldots\right)$

$$
\underbrace{\Delta q_{3}}_{\text {NS }}=(\Delta u+\Delta \bar{u})-(\Delta d+\Delta \bar{d})
$$

- in LO, NLO ... no new PD
- in Q^{2} evolution - no new PD
$-\Delta q_{3}$ determined without any assumptions.
We ask:
- What are the meas. quantities that single out NS of FFs in $e^{+} e^{-}$ and in SIDIS?
- What other info can we obtain without assumptions?
recall: NS are $D_{q}^{K^{+}-K^{-}}, D_{q-q^{\prime}}^{K^{+}+K^{-}} \ldots$

The difference cross sections $\sigma_{N}^{h-\bar{h}}$

The general formula in SIDIS, $Q^{2} \gg M^{2}$:

$$
\begin{aligned}
\sigma_{N}^{h} \propto \sum_{q} e_{q}^{2} & \left\{q \otimes \hat{\sigma}_{q q}(\gamma q \rightarrow q X) \otimes D_{q}^{h}\right. \\
& +\mathbf{q} \otimes \hat{\sigma}_{\mathbf{q g}}(\gamma \mathbf{q} \rightarrow \mathbf{g X}) \otimes \mathbf{D}_{\mathbf{g}}^{\mathbf{h}} \\
& \left.+\mathbf{g} \otimes \hat{\sigma}_{\mathbf{g q}}(\gamma \mathbf{g} \rightarrow \mathbf{q} \overline{\mathbf{q}} \mathbf{X}) \otimes\left(\mathbf{D}_{\mathbf{q}}^{\mathbf{h}}+\mathbf{D}_{\overline{\mathbf{q}}}^{\mathbf{h}}\right)\right\}
\end{aligned}
$$

$q(x, t)$ and $D_{q, g}^{h}(z, t) \Rightarrow$ from experiment $\widehat{\sigma}_{f f^{\prime}} \Rightarrow$ theor. calculated in perturb. QCD:

C-inv. implies: $D_{g}^{h-\bar{h}}=0, D_{q}^{h-\bar{h}}=-D_{\bar{q}}^{h-\bar{h}}$
\Rightarrow In $\sigma_{N}^{h-\bar{h}}$, in all QCD orders, all gluons cancel: - no g, no D_{g}

$$
\begin{aligned}
\sigma_{N}^{h-\bar{h}} & \propto\left[4 u_{V} \otimes D_{u}^{h-\bar{h}}+d_{V} \otimes D_{d}^{h-\bar{h}}+(s-\bar{s}) \otimes D_{s}^{h-\bar{h}}\right] \otimes \hat{\sigma}(\gamma q \rightarrow q X) \\
\widehat{\sigma}_{q q} & =\widehat{\sigma}_{q q}^{(0)}+\frac{\alpha_{s}}{2 \pi} \widehat{\sigma}_{q q}^{(1)}+\ldots
\end{aligned}
$$

- only NS of PDs and FFs $\Rightarrow g$ and D_{g}^{h} do not reappear in Q^{2}-evol.
- each term is a NS
- we know from exp: $|s-\bar{s}| \leq 0.02$
[C. Bourelly, J. Soffer, F. Buccella, 2007]

Further: $\sigma_{N}^{h-\bar{h}}$ depends on the final hadron h.

$$
\text { Tests of } D_{d}^{K^{+}-K^{-}}=0
$$

$s-\bar{s}=0 \Rightarrow$ correct with an accuracy $\leq 2 \%$

SIDIS: $e+N \rightarrow e+K^{ \pm}+X \Rightarrow \sigma_{N}^{K^{+}-K^{-}}$

$$
\begin{array}{ll}
\mathrm{LO}: & \sigma_{p}^{K^{+}-K^{-}} \simeq\left(4 u_{V} D_{u}+d_{V} \mathrm{D}_{\mathrm{d}}\right)^{K^{+}-K^{-}} \\
& \sigma_{d}^{K^{+}-K^{-}} \simeq\left(u_{V}+d_{V}\right)\left(4 D_{u}+\mathrm{D}_{\mathrm{d}}\right)^{K^{+}-K^{-}}
\end{array}
$$

usually $D_{d}^{K^{+}-K^{-}}=0$ assumed \rightarrow can we test it directly in $\sigma_{N}^{K^{+}-K^{-}}$?

Tests of $D_{d}^{K^{+}-K^{-}}=0, \mathrm{LO}$

- $\mathcal{R}_{p}^{K^{+}-K^{-}}(x, z)=\frac{\sigma_{p}^{K^{+}-K^{-}}}{u_{V}} \simeq D_{u}(z)\left[1+\frac{d_{V}}{u_{V}}(x) \frac{\mathrm{D}_{\mathrm{d}}}{4 \mathrm{D}_{\mathrm{u}}}(z)\right]^{K^{+}-K^{-}}$
- $\mathcal{R}_{d}^{K^{+}-K^{-}}(x, z)=\frac{\sigma_{d}^{K^{+}-K^{-}}}{u_{V}+d_{V}} \simeq D_{u}(z)\left[1+\frac{\mathrm{D}_{\mathrm{d}}}{4 \mathrm{D}_{\mathrm{u}}}(z)\right]^{K^{+}-K^{-}}$ the x dependence in $\mathcal{R}_{p}^{K^{+}-K^{-}}$is induced solely by $\frac{\mathrm{D}_{\mathrm{d}}}{4 \mathrm{D}_{\mathrm{u}}}(z) \neq 0$

$$
\Rightarrow \text { tests of }\left(\mathrm{D}_{\mathrm{d}} / \mathrm{D}_{\mathrm{u}}\right)^{\mathrm{K}^{+}-\mathrm{K}^{-}}=0
$$

1. $\mathcal{R}_{p}^{K^{+}-K^{-}}=\mathcal{R}_{d}^{K^{+}-K^{-}}, \quad$ 2. $\mathcal{R}_{p}^{K^{+}-K^{-}}(x, z)=f(z)\left(=\mathrm{D}_{\mathrm{u}}^{\mathrm{K}^{+}-\mathrm{K}^{-}}\right)$
\Rightarrow test of LO: $\mathcal{R}_{d}^{K^{+}-K^{-}}(x, z)=f(z)$

$$
\text { Tests of } D_{d}^{K^{+}-K^{-}}=0, \mathrm{NLO}
$$

$\sigma_{N}^{K^{+}-K^{-}}$, NLO: the same PDs \& FFs, but simple products \rightarrow convolutions
NLO : $\quad \sigma_{p}^{K^{+}-K^{-}} \simeq\left(4 u_{V} \otimes D_{u}+d_{V} \otimes \mathrm{D}_{\mathrm{d}}\right)^{K^{+}-K^{-}} \otimes\left(1+\alpha_{s} C_{q q}\right)$

$$
\sigma_{d}^{K^{+}-K^{-}} \simeq\left(u_{V}+d_{V}\right) \otimes\left(1+\alpha_{s} C_{q q}\right) \otimes\left(4 D_{u}+\mathrm{D}_{\mathrm{d}}\right)^{K^{+}-K^{-}}
$$

If $D_{d}^{K^{+}-K^{-}}=0$: only one FF enters both σ_{p} and σ_{d} :

$$
\begin{array}{r}
\sigma_{p}^{K^{+}-K^{-}} \simeq u_{V} \otimes\left(1+\alpha_{s} C_{q q}\right) \otimes D_{u}^{K^{+}-K^{-}} \\
\sigma_{d}^{K^{+}-K^{-}} \simeq\left(u_{V}+d_{V}\right) \otimes\left(1+\alpha_{s} C_{q q}\right) \otimes D_{u}^{K^{+}-K^{-}}
\end{array}
$$

If we fit data on both $\sigma_{p}^{K^{+}-K^{-}}$and $\sigma_{d}^{K^{+}-K^{-}}$with the same FF $(=D)$ and obtain an acceptable fit $\Rightarrow D_{d}^{K^{+}-K^{-}}=0$ and $D=D_{u}^{K^{+}-K^{-}}$.

- Independently of our knowledge of the FF's and without any assumptions we obtain info about $D_{d}^{K^{+}-K^{-}}=0 \& D_{u}^{K^{+}-K^{-}}$- LO and NLO!

measurability:

1) difference cross sections: \Rightarrow high precisions needed
2) data in bins in both x and z required
very precise data of HERMES $\Rightarrow \sigma_{d}^{K^{ \pm}}, \sigma_{p}^{K^{ \pm}}$, in bins $\left[x_{i}, z_{j}\right]$
A. Hillenbrand, DESY, 2005

If $K^{ \pm}$and K_{s}^{0} measured

no new FFs appear: SU(2) relates $K^{ \pm}$and K_{s}^{0} :

$$
\begin{array}{lll}
S U(2): & D_{u}^{K^{+}+K^{-}}=D_{d}^{K^{0}+\bar{K}^{0}}, & D_{d}^{K^{+}+K^{-}}=D_{u}^{K^{0}+\bar{K}^{0}} \\
& D_{s}^{K^{+}+K^{-}}=D_{s}^{K^{0}+\bar{K}^{0}}, & D_{g}^{K^{+}+K^{-}}=D_{g}^{K^{0}+\bar{K}^{0}}
\end{array}
$$

the processes are: $\left[K_{s}^{0}=\left(K^{0}+\bar{K}^{0}\right) / \sqrt{2}\right]$

$$
\begin{array}{r}
e^{+} e^{-} \rightarrow K^{ \pm}+X, \quad e^{+} e^{-} \rightarrow \mathbf{K}_{\mathrm{S}}^{0}+X \\
e+N \rightarrow e+K^{ \pm}+X, \quad e+N \rightarrow e+\mathbf{K}_{\mathrm{s}}^{0}+X
\end{array}
$$

we suggest 2 possible combinations [use $\operatorname{SU}(2)-i n v$.$] :$

$$
K^{+}+K^{-}-2 K_{s}^{0} \quad \& \quad K^{+}+K^{-}+2 K_{s}^{0}
$$

$$
\underline{\underline{e^{+} e^{-}} \rightarrow K^{ \pm}, K_{s}^{0}+X}
$$

The general expressions - all FFs enter:

$$
\begin{aligned}
\frac{d \sigma^{K^{+}+K^{-}}}{d z}= & 6 \sigma_{0}\left\{\left[\hat{e}_{u}^{2} D_{u}+\hat{e}_{d}^{2}\left(D_{d}+\underline{D_{s}}\right)\right]\left(1+\alpha_{s} \otimes C_{q}\right)\right. \\
& \left.+\underline{\underline{\alpha_{s}}\left(\hat{e}_{u}^{2}+2 \hat{e}_{d}^{2}\right) C_{g} \otimes D_{g}}\right\}^{K^{+}+K^{-}} \\
\frac{d \sigma^{K^{0}+\bar{K}^{0}}}{d z}= & 6 \sigma_{0}\left\{\left[\hat{e}_{u}^{2} D_{d}+\hat{e}_{d}^{2}\left(D_{u}+\underline{D_{s}}\right)\right]\left(1+\alpha_{s} \otimes C_{q}\right)\right. \\
& \left.+\underline{\underline{\alpha_{s}\left(\hat{e}_{u}^{2}+2 \hat{e}_{d}^{2}\right) C_{g} \otimes D_{g}}}\right\}^{K^{+}+K^{-}}
\end{aligned}
$$

In $d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}-\text { only one FF: }}$

$$
\begin{gathered}
d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}=6 \sigma_{0}\left(\hat{e}_{u}^{2}-\hat{e}_{d}^{2}\right)\left(1+\alpha_{s} C_{q} \otimes\right) D_{u-d}^{K^{+}+K^{-}} \\
d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}=d \sigma^{K^{+}}+d \sigma^{K^{-}}-2 d \sigma^{K_{s}^{0}}
\end{gathered}
$$

$$
\underline{\underline{K^{+}}+K^{-}-2 K_{s}^{0}}
$$

In the general expressions for $\sigma^{K^{+}+K^{-}} \& \sigma^{K^{0}+\bar{K}^{0}}$, both in $e^{+} e^{-} \&$ SIDIS, all FFs enter;

$$
\begin{gathered}
\text { In } d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}} \text { both in } e^{+} e^{-} \& \text { SIDIS - always only one FF enters: } \\
d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}=6 \sigma_{0}\left(\hat{e}_{u}^{2}-\hat{e}_{d}^{2}\right)\left(1+\alpha_{s} C_{q} \otimes\right) \mathbf{D}_{\mathbf{u}-\mathrm{d}}^{\mathrm{K}^{+}+\mathrm{K}^{-}} \\
d \sigma_{p}^{K^{+}+K^{-}-2 K_{s}^{0}}=\left[(4 u+d) \otimes\left(1+\alpha_{s} C_{q q} \otimes\right)+\alpha_{s} g \otimes C_{g q} \otimes\right] \mathbf{D}_{\mathbf{u}-\mathrm{d}}^{\mathrm{K}^{+}+\mathrm{K}^{-}} \\
d \sigma_{d}^{K^{+}+K^{-}-2 K_{s}^{0}}=\left[(u+d) \otimes\left(1+\alpha_{s} C_{q q} \otimes\right)+\alpha_{s} g \otimes C_{g q} \otimes\right] \mathbf{D}_{\mathbf{u}-\mathrm{d}}^{\mathrm{K}^{+}+\mathrm{K}^{-}} \\
d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}=d \sigma^{K^{+}}+d \sigma^{K^{-}}-2 d \sigma^{K_{s}^{0}}
\end{gathered}
$$

$$
\underline{\underline{K^{+}+K^{-}-2 K_{s}^{0}}}
$$

1. all 3 processes measure the same NS: $\left(D_{u}-D_{d}\right)^{K^{+}+K^{-}}$
\Rightarrow the combination $\left(K^{+}+K^{-}-2 K_{s}^{0}\right)$ is a NS of the FFs
\Rightarrow it can be easily evolved in Q^{2}
2. no s-quarks due to $\mathrm{SU}(2)$, but $g(x)$ enters
\Rightarrow the combination $\left(K^{+}+K^{-}-2 K_{s}^{0}\right)$ is not a NS of the PDs
3. holds in any QCD order!
4. no assumptions

How can we use this?

Test of factorization:

Factorization:

SIDIS: $\sigma_{N}^{h} \simeq P D_{N} \times \widehat{\sigma}_{\alpha} \times \mathbf{F F}^{\mathbf{h}}$
$\mathbf{e}^{+} \mathbf{e}^{-}: \sigma^{h} \simeq \widehat{\sigma}_{\alpha} \times \mathbf{F F}^{\mathrm{h}}$
two kind of processes for the FFs at very different Q^{2} :

$$
\begin{array}{crc}
e^{+} e^{-} \rightarrow K+X \quad \text { high } \quad Q^{2}, & \sim & Z^{0}-\text { exchange } \\
e N \rightarrow e+K+X \quad & \text { low } \quad Q^{2}, & \sim \gamma-\text { exchange }
\end{array}
$$

if $\mathbf{K}^{+}+\mathrm{K}^{-}-2 \mathrm{~K}_{\mathrm{s}}^{0}-$ both measure only $D_{u-d}^{K^{+}+K^{-}}$. As it is NS , its Q^{2}-evolution does not involve any other FFs. Comparing these measurements one tests factorization directly, without any assumptions.

Test of factorization, LO

In LO it's particularly simple:
For example one could test the relation

$$
\frac{9 d \sigma_{p}^{K^{+}+K^{-}-2 K_{s}^{0}}\left(x, z, Q^{2}\right)}{d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}\left(z, m_{Z}^{2}\right)_{\downarrow Q^{2}}}=\frac{[4(u+\bar{u})-(d+\bar{d})]\left(x, Q^{2}\right)}{6 \sigma_{0}\left(\hat{e}_{u}^{2}-\bar{e}_{d}^{2}\right)_{m_{Z}^{2}}^{2}}
$$

Here $d \sigma^{K^{+}+K^{-}-2 K_{s}^{0}}\left(z, m_{Z}^{2}\right)_{\downarrow Q^{2}}$ denotes that data is measured at \sim m_{Z}^{2} and then evolved to Q^{2} according to the DGLAP equations.

- Independently of our knowledge of the FF's and without any assumptions one tests factorization in SIDIS: PDs \times FFs.

$$
\mathcal{K}=K^{+}+K^{-}+2 K_{s}^{0}, \mathbf{L O}
$$

$$
\begin{array}{r}
L O: d \sigma^{\mathcal{K}}=6 \sigma_{0}\left[\left(\widehat{e}_{u}^{2}+\widehat{e}_{d}^{2}\right)\left(\mathbf{D}_{\mathbf{u}}+\mathbf{D}_{\mathrm{d}}\right)+\widehat{e}_{d}^{2} \mathbf{D}_{\mathbf{s}}\right]^{K^{+}+K^{-}} \\
d \sigma_{p}^{\mathcal{K}}=\left[(4 \tilde{u}+\widetilde{d})\left(\mathbf{D}_{\mathbf{u}}+\mathbf{D}_{\mathrm{d}}\right)+2 \tilde{s} \mathbf{D}_{\mathbf{s}}\right]^{K^{+}+K^{-}} \\
d \sigma_{d}^{\mathcal{K}}=\left[(\tilde{u}+\widetilde{d})\left(\mathbf{D}_{\mathbf{u}}+\mathbf{D}_{\mathrm{d}}\right)+4 \tilde{s} \mathbf{D}_{\mathbf{s}}\right]^{K^{+}+K^{-}}
\end{array}
$$

Due to $\operatorname{SU}(2)$ all three processes measure only 2 FFs:

$$
\left(\mathrm{D}_{\mathrm{u}}+\mathrm{D}_{\mathrm{d}}\right)^{\mathrm{K}^{+}+\mathrm{K}^{-}}, \quad \& \quad \mathrm{D}_{\mathrm{s}}{ }^{\mathrm{K}^{+}+\mathrm{K}^{-}}
$$

This holds in all QCD orders!

- SIDIS with $K^{ \pm}$and K_{s}^{0} are enough to determine all FF in LO, $\left(D_{u} \pm D_{d}\right)^{K^{+}+K^{-}}$and $D_{s}^{K^{+}+K^{-}}$. No need of data from $e^{+} e^{-}$at very different Q^{2}, whose evolution requires D_{g}.

$$
\mathcal{K}=K^{+}+K^{-}+2 K_{s}^{0}, \mathrm{NLO}
$$

$\sigma_{N}^{\mathcal{K}}$ are NS neither in PDs and nor in FFs \rightarrow in NLO D_{g} enters:

$$
\left(\mathrm{D}_{\mathrm{u}}+\mathrm{D}_{\mathrm{d}}\right)^{\mathrm{K}^{+}+\mathrm{K}^{-}}, \quad \mathrm{D}_{\mathrm{S}}^{\mathrm{K}^{+}+\mathrm{K}^{-}} \quad \& \quad \mathrm{D}_{\mathrm{g}}^{\mathrm{K}^{+}+\mathrm{K}^{-}}
$$

measurements of $e^{+} e^{-}$are needed \rightarrow we have 3 measurements for the 3 unknown FFs and no assumptions needed.

Summary

two complementary approaches to data:

1. a simultaneous analysis of all data to determine all FFs

The problem : data come with errors and biases are possible, assumptions
2. split data into singlets and non singlets and proceed step by step, analyzing them separately - precisions of data is important!
3. NS are especially attractive: we work out some NS for 1) $K^{ \pm}$and 2) $K^{ \pm} \& K_{s}^{0}$ in both $e^{+} e^{-}$and $e N$ semi inclusive processes. We show:
$K^{ \pm}: \quad$ SIDIS: $\sigma_{p}^{K^{+}-K^{-}}$and $\sigma_{d}^{K^{+}-K^{-}} \rightarrow D_{d}^{K^{+}-K^{-}}=0$?, $D_{u}^{K^{+}-K^{-}}$
in LO, NLO, no assumptions, no knowledge of FFs
$K^{ \pm} \& K_{s}^{0}: \rightarrow$ 1) $K^{+}+K^{-}-2 K_{s}^{0}$ in $e^{+} e^{-} \&$ SIDIS $\rightarrow D_{u-d}^{K^{+}+K^{-}}=\mathrm{NS}$ test of factorization: SIDIS $=$ PDs \times FFs, $e^{+} e^{-}=\mathrm{FFs}$ in LO, NLO, no assumptions
2) SIDIS $\sigma_{N}^{K^{+}+K^{-}-2 K_{s}^{0}} \& \sigma_{N}^{K^{+}+K^{-}+2 K_{s}^{0}}$ are enough to determine $D_{u, d, s}^{K^{+}+K^{-}}$
in LO, no assumptions, no need of $e^{+} e^{-}$data at very different Q^{2}.

