On Kaon Fragmentation Functions

Ekaterina Christova

Institute for Nuclear Research and Nuclear Energy, BAS, Sofia

based mainly on a paper written with Elliot Leader - Imperial College, London

Eur. J. Phys. **C51**, 825 (2007)

Plan of the talk

The FFs of Kaons are determined in:

- 1. $e^+e^- \rightarrow K + X \rightarrow \text{sensitive to } D_q^{K^+ + K^-}$
- 2. SIDIS: $e+N \rightarrow e+K+X \rightarrow$ distinguishes $D_q^{K^+}$ & $D_q^{K^-}$

AKK, DSS, 2007

usually made assumptions, especially about unfav. FFs:

$$D_d^{K^+} = D_d^{K^-}, \quad etc.$$

We show:

- 1. how $D_d^{K^+-K^-}=$ 0 can be tested: LO, NLO, no knowledge of FFs required
- 2. how neutral Koans K_s^0 help to determine $D_{q,g}^{K^++K^-}$: LO, NLO...

Why K_s^0 ?

- 1. SU(2) inv. relates $K^+ + K^-$ and K_s^0
- 2. allows to work with NonSinglet and Singlet combinations of FFs

Why NS's?

- in LO, NLO ... no new PD
- in Q^2 evolution no new PD
- $-\Delta q_3$ determined without any assumptions.

We ask:

- What are the meas. quantities that single out NS of FFs in e^+e^- and in SIDIS?
- What other info can we obtain without assumptions?

recall: NS are
$$D_q^{K^+-K^-}$$
, $D_{q-q'}^{K^++K^-}$...

The difference cross sections σ_N^{h-h}

The general formula in SIDIS, $Q^2 \gg M^2$:

$$\sigma_{N}^{h} \propto \sum_{q} e_{q}^{2} \left\{ q \otimes \hat{\sigma}_{qq}(\gamma q \to qX) \otimes D_{q}^{h} + \mathbf{q} \otimes \hat{\sigma}_{\mathbf{q}\mathbf{g}}(\gamma \mathbf{q} \to \mathbf{g}\mathbf{X}) \otimes \mathbf{D}_{\mathbf{g}}^{h} + \mathbf{g} \otimes \hat{\sigma}_{\mathbf{g}\mathbf{q}}(\gamma \mathbf{g} \to \mathbf{q}\bar{\mathbf{q}}\mathbf{X}) \otimes (\mathbf{D}_{\mathbf{q}}^{h} + \mathbf{D}_{\bar{\mathbf{q}}}^{h}) \right\}$$

q(x,t) and $D_{q,g}^h(z,t) \Rightarrow$ from experiment $\hat{\sigma}_{ff'} \Rightarrow$ theor. calculated in perturb. QCD:

C-inv. implies: $D_g^{h-\bar{h}}=$ 0, $D_q^{h-\bar{h}}=-D_{\bar{q}}^{h-\bar{h}}$

 \Rightarrow In $\sigma_N^{h-ar{h}}$, in all QCD orders, all gluons cancel: — no g, no D_g

$$\sigma_N^{h-\bar{h}} \propto \left[4u_V \otimes D_u^{h-\bar{h}} + d_V \otimes D_d^{h-\bar{h}} + (s-\bar{s}) \otimes D_s^{h-\bar{h}} \right] \otimes \hat{\sigma}(\gamma q \to qX)$$

$$\hat{\sigma}_{qq} = \hat{\sigma}_{qq}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}_{qq}^{(1)} + \dots$$

ullet only NS of PDs and FFs $\Rightarrow g$ and D_g^h do not reappear in Q^2 -evol.

each term is a NS

• we know from exp: $|s - \overline{s}| \le 0.02$

[C. Bourelly, J. Soffer, F. Buccella, 2007]

Further: $\sigma_N^{h-\bar{h}}$ depends on the final hadron h.

Tests of
$$D_d^{K^+-K^-}=0$$

 $s - \bar{s} = 0 \Rightarrow$ correct with an accuracy $\leq 2\%$

SIDIS:
$$e + N \to e + K^{\pm} + X \Rightarrow \sigma_N^{K^+ - K^-}$$

LO: $\sigma_p^{K^+ - K^-} \simeq (4u_V D_u + d_V \mathbf{D_d})^{K^+ - K^-}$
 $\sigma_d^{K^+ - K^-} \simeq (u_V + d_V) (4D_u + \mathbf{D_d})^{K^+ - K^-}$

usually $D_d^{K^+-K^-} = 0$ assumed \rightarrow can we test it directly in $\sigma_N^{K^+-K^-}$?

Tests of $D_d^{K^+-K^-}=0$, LO

$$\bullet \quad \mathcal{R}_p^{K^+ - K^-}(\mathbf{x}, z) = \frac{\sigma_p^{K^+ - K^-}}{u_V} \simeq D_u(z) \left[1 + \frac{d_V}{u_V}(x) \frac{\mathbf{D_d}}{4\mathbf{D_u}}(z) \right]^{K^+ - K^-}$$

•
$$\mathcal{R}_d^{K^+-K^-}(\mathbf{x},z) = \frac{\sigma_d^{K^+-K^-}}{u_V+d_V} \simeq D_u(z) \left[1 + \frac{\mathbf{D_d}}{4\mathbf{D_u}}(z)\right]^{K^+-K^-}$$

the x dependence in $\mathcal{R}_p^{K^+-K^-}$ is induced solely by $\frac{\mathbf{D_d}}{4\mathbf{D_u}}(z) \neq \mathbf{0}$

 \Rightarrow tests of $(D_d/D_u)^{K^+-K^-} = 0$:

1.
$$\mathcal{R}_p^{K^+-K^-} = \mathcal{R}_d^{K^+-K^-}$$
, 2. $\mathcal{R}_p^{K^+-K^-}(x,z) = f(z) (= \mathbf{D_u^{K^+-K^-}})$

$$\Rightarrow$$
 test of LO: $\mathcal{R}_d^{K^+-K^-}(x,z) = f(z)$

Tests of $D_d^{K^+-K^-}=0$, NLO

 $\sigma_N^{K^+-K^-}$, NLO: the same PDs & FFs, but simple products \to convolutions

NLO:
$$\sigma_p^{K^+-K^-} \simeq (4u_V \otimes D_u + d_V \otimes \mathbf{D_d})^{K^+-K^-} \otimes (1 + \alpha_s C_{qq})$$
$$\sigma_d^{K^+-K^-} \simeq (u_V + d_V) \otimes (1 + \alpha_s C_{qq}) \otimes (4D_u + \mathbf{D_d})^{K^+-K^-}$$

If $D_d^{K^+-K^-} = 0$: only *one* FF enters *both* σ_p and σ_d :

$$\sigma_p^{K^+-K^-} \simeq u_V \otimes (1 + \alpha_s C_{qq}) \otimes D_u^{K^+-K^-}$$
$$\sigma_d^{K^+-K^-} \simeq (u_V + d_V) \otimes (1 + \alpha_s C_{qq}) \otimes D_u^{K^+-K^-}$$

If we fit data on both $\sigma_p^{K^+-K^-}$ and $\sigma_d^{K^+-K^-}$ with the same FF (=D) and obtain an acceptable fit $\Rightarrow D_d^{K^+-K^-} = 0$ and $D = D_u^{K^+-K^-}$.

• Independently of our knowledge of the FF's and without any assumptions we obtain info about $D_d^{K^+-K^-}=0$ & $D_u^{K^+-K^-}-\mathrm{LO}$ and NLO!

measurability:

- 1) difference cross sections: \Rightarrow high precisions needed
- 2) data in bins in both x and z required

very precise data of HERMES $\Rightarrow \sigma_d^{K^\pm}$, $\sigma_p^{K^\pm}$, in bins $[x_i,z_j]$ A. Hillenbrand, DESY, 2005

If K^{\pm} and K_s^0 measured

no new FFs appear: SU(2) relates K^{\pm} and K_s^0 :

$$SU(2): D_u^{K^+ + K^-} = D_d^{K^0 + \bar{K}^0}, D_d^{K^+ + K^-} = D_u^{K^0 + \bar{K}^0}$$
$$D_s^{K^+ + K^-} = D_s^{K^0 + \bar{K}^0}, D_g^{K^+ + K^-} = D_g^{K^0 + \bar{K}^0}$$

the processes are: $[K_s^0 = (K^0 + \bar{K}^0)/\sqrt{2}]$

$$e^+e^- \rightarrow K^{\pm} + X, \qquad e^+e^- \rightarrow \mathbf{K_s^0} + X$$

 $e + N \rightarrow e + K^{\pm} + X, \qquad e + N \rightarrow e + \mathbf{K_s^0} + X$

we suggest 2 possible combinations [use SU(2)-inv.]:

$$K^{+} + K^{-} - 2K_{s}^{0}$$
 & $K^{+} + K^{-} + 2K_{s}^{0}$

$$e^+e^- \to K^{\pm}, K_s^0 + X$$

The general expressions — all FFs enter:

$$\frac{d\sigma^{K^{+}+K^{-}}}{dz} = 6\sigma_{0} \left\{ \left[\hat{e}_{u}^{2} D_{u} + \hat{e}_{d}^{2} (D_{d} + \underline{D}_{s}) \right] (1 + \alpha_{s} \otimes C_{q}) + \underline{\alpha_{s}} \left(\hat{e}_{u}^{2} + 2 \hat{e}_{d}^{2} \right) C_{g} \otimes D_{g} \right\}^{K^{+}+K^{-}}$$

$$\frac{d\sigma^{K^0+\bar{K}^0}}{dz} = 6\sigma_0 \left\{ \left[\hat{e}_u^2 D_d + \hat{e}_d^2 (D_u + \underline{D}_s) \right] (1 + \alpha_s \otimes C_q) + \underline{\alpha_s \left(\hat{e}_u^2 + 2 \hat{e}_d^2 \right) C_g \otimes D_g} \right\}^{K^+ + K^-}$$

In $d\sigma^{K^++K^--2K_s^0}$ – only **one** FF:

$$d\sigma^{K^{+}+K^{-}-2K_{s}^{0}} = 6\sigma_{0}(\hat{e}_{u}^{2} - \hat{e}_{d}^{2})(1 + \alpha_{s} C_{q} \otimes) D_{u-d}^{K^{+}+K^{-}}$$
$$d\sigma^{K^{+}+K^{-}-2K_{s}^{0}} = d\sigma^{K^{+}} + d\sigma^{K^{-}} - 2d\sigma^{K_{s}^{0}}$$

$$K^{+} + K^{-} - 2K_{s}^{0}$$

In the general expressions for $\sigma^{K^++K^-}$ & $\sigma^{K^0+\bar{K}^0}$, **both** in e^+e^- & SIDIS, **all** FFs enter;

In $d\sigma^{K^++K^--2K_s^0}$ both in e^+e^- & SIDIS – always only one FF enters:

$$d\sigma^{K^++K^--2K_s^0} = 6\sigma_0(\hat{e}_u^2 - \hat{e}_d^2)(1 + \alpha_s C_q \otimes) \mathbf{D}_{\mathbf{u}-\mathbf{d}}^{\mathbf{K}^++\mathbf{K}^-}$$

$$d\sigma_p^{K^++K^--2K_s^0} = [(4u+d)\otimes(1+\alpha_s C_{qq}\otimes) + \alpha_s g\otimes C_{gq}\otimes] \mathbf{D}_{\mathbf{u}-\mathbf{d}}^{\mathbf{K}^++\mathbf{K}^-}$$

$$d\sigma_d^{K^+ + K^- - 2K_s^0} = [(u+d) \otimes (1 + \alpha_s C_{qq} \otimes) + \alpha_s g \otimes C_{gq} \otimes] \mathbf{D}_{\mathbf{u}-\mathbf{d}}^{K^+ + K^-}$$
$$d\sigma^{K^+ + K^- - 2K_s^0} = d\sigma^{K^+} + d\sigma^{K^-} - 2d\sigma^{K_s^0}$$

$$\underbrace{K^{+} + K^{-} - 2K_{s}^{0}}_{}$$

1. all 3 processes measure the same NS: $(D_u - D_d)^{K^+ + K^-}$

- \Rightarrow the combination $(K^+ + K^- 2K_s^0)$ is a NS of the FFs
- \Rightarrow it can be easily evolved in Q^2
- 2. no s-quarks due to SU(2), but g(x) enters
 - \Rightarrow the combination $(K^+ + K^- 2K_s^0)$ is **not** a NS of the PDs
- 3. holds in any QCD order!
- 4. no assumptions

How can we use this?

Test of factorization:

Factorization:

SIDIS:
$$\sigma_N^h \simeq PD_N \times \widehat{\sigma}_\alpha \times \mathbf{FF^h}$$

$$e^+e^-$$
: $\sigma^h \simeq \hat{\sigma}_\alpha \times \mathbf{FF^h}$

two kind of processes for the FFs at very different Q^2 :

$$e^+e^- \to K + X$$
 high Q^2 , $\sim Z^0 - exchange$
 $eN \to e + K + X$ low Q^2 , $\sim \gamma - exchange$

if $\mathbf{K}^+ + \mathbf{K}^- - 2\mathbf{K}_{\mathrm{S}}^0$ – both measure only $D_{u-d}^{K^+ + K^-}$. As it is NS, its Q^2 -evolution does not involve any other FFs. Comparing these measurements one tests factorization directly, without any assumptions.

Test of factorization, LO

In LO it's particularly simple:

For example one could test the relation

$$\frac{9 d\sigma_p^{K^+ + K^- - 2K_s^0}(x, z, Q^2)}{d\sigma^{K^+ + K^- - 2K_s^0}(z, m_Z^2)_{\downarrow Q^2}} = \frac{[4(u + \bar{u}) - (d + \bar{d})](x, Q^2)}{6 \sigma_0 (\hat{e}_u^2 - \hat{e}_d^2)_{m_Z^2}}$$

Here $d\sigma^{K^++K^--2K_s^0}(z,m_Z^2)_{\downarrow Q^2}$ denotes that data is measured at \sim m_Z^2 and then evolved to Q^2 according to the DGLAP equations.

• Independently of our knowledge of the FF's and without any assumptions one tests factorization in SIDIS: PDs \times FFs.

$$K = K^+ + K^- + 2K_s^0$$
, LO

$$LO: d\sigma^{\mathcal{K}} = 6\sigma_{0} \left[(\hat{e}_{u}^{2} + \hat{e}_{d}^{2}) \left(\mathbf{D}_{\mathbf{u}} + \mathbf{D}_{\mathbf{d}} \right) + \hat{e}_{d}^{2} \mathbf{D}_{\mathbf{s}} \right]^{K^{+} + K^{-}}$$

$$d\sigma_{p}^{\mathcal{K}} = \left[(4\tilde{u} + \tilde{d}) \left(\mathbf{D}_{\mathbf{u}} + \mathbf{D}_{\mathbf{d}} \right) + 2\tilde{s} \mathbf{D}_{\mathbf{s}} \right]^{K^{+} + K^{-}}$$

$$d\sigma_{d}^{\mathcal{K}} = \left[(\tilde{u} + \tilde{d}) \left(\mathbf{D}_{\mathbf{u}} + \mathbf{D}_{\mathbf{d}} \right) + 4\tilde{s} \mathbf{D}_{\mathbf{s}} \right]^{K^{+} + K^{-}}$$

Due to SU(2) all three processes measure only 2 FFs:

$$(D_u + D_d)^{K^+ + K^-},$$
 & $D_s^{K^+ + K^-}$

This holds in all QCD orders!

• SIDIS with K^{\pm} and K_s^0 are enough to determine all FF in LO, $(D_u \pm D_d)^{K^+ + K^-}$ and $D_s^{K^+ + K^-}$. No need of data from $e^+ e^-$ at very different Q^2 , whose evolution requires D_q .

$$K = K^+ + K^- + 2K_s^0$$
, NLO

 $\sigma_N^{\mathcal{K}}$ are NS neither in PDs and nor in FFs \rightarrow in NLO D_g enters:

$$(D_u + D_d)^{K^+ + K^-}, \quad D_s^{K^+ + K^-} \quad \& \quad D_g^{K^+ + K^-}$$

measurements of e^+e^- are needed \rightarrow we have 3 measurements for the 3 unknown FFs and **no assumptions** needed.

Summary

two complementary approaches to data:

1. a simultaneous analysis of all data to determine all FFs

The problem: data come with errors and biases are possible, assumptions

- 2. split data into singlets and non singlets and proceed step by step, analyzing them separately precisions of data is important!
- **3.** NS are especially attractive: we work out some NS for 1) K^{\pm} and 2) $K^{\pm} \& K_s^0$ in both e^+e^- and eN semi inclusive processes. We show:

 K^{\pm} : SIDIS: $\sigma_p^{K^+-K^-}$ and $\sigma_d^{K^+-K^-} \to D_d^{K^+-K^-} = 0$?, $D_u^{K^+-K^-}$ in LO, NLO, no assumptions, no knowledge of FFs

 K^{\pm} & K_s^0 : \to 1) $K^+ + K^- - 2K_s^0$ in e^+e^- & SIDIS $\to D_{u-d}^{K^++K^-} = NS$ test of factorization: SIDIS = PDs \times FFs, $e^+e^- = FFs$ in LO, NLO, no assumptions

2) SIDIS $\sigma_N^{K^++K^--2K_s^0}$ & $\sigma_N^{K^++K^-+2K_s^0}$ are enough to determine $D_{u,d,s}^{K^++K^-}$ in LO, no assumptions, no need of e^+e^- data at very different Q^2 .