Hadronic composition as a characteristics of jet quenching at the LHC

Sebastian Sapeta

Jagellonian University, Cracow, Poland

in collaboration with Urs Achim Wiedemann

based on arXiv:0707.3494[hep-ph]

Workshop on parton fragmentation processes in the vacuum and in the medium, ECT* - Trento, February 25-29, 2008

JETS AT SMALL x

JETS AT SMALL x

VACUUM

JETS AT SMALL x

- perturbative approach of Modified Leading Logarithmic Approximation (MLLA)
- hypothesis of Local Hadron-Parton Duality (LPHD)

THE PROCESS

THE PROCESS

Highly energetic jet superimposed on the top of the heavy ion background

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects a.k.a. collisional energy loss
- medium components kicked into the jet cone
- momentum exchange between medium and projectile

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects a.k.a. collisional energy loss
- medium components kicked into the jet cone
- momentum exchange between medium and projectile

Possible mechanisms medium affects hadrochemistry:

- color transfer effects
- flavor and baryon number exchange between medium and projectile
- recombination of partons from jet and medium
- recoil effects a.k.a. collisional energy loss
- medium components kicked into the jet cone
- momentum exchange between medium and projectile

This is likely to underestimate the medium-modifications of jet hadrochemistry. However, it may serve as a baseline on top of which other signatures of hadrochemical modifications can be established.

[Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1980s]

parton cascade

[Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1980s]

parton cascade

resummation of angular and energy logarithms – leading and subleading, running coupling, energy-momentum conservation

[Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1980s]

parton cascade

- resummation of angular and energy logarithms leading and subleading, running coupling, energy-momentum conservation
- the above boils down to the probabilistic picture of parton splittings with the prescription of exact angular ordering being the consequence of the quantum interference

[Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1980s]

parton cascade

- resummation of angular and energy logarithms leading and subleading, running coupling, energy-momentum conservation
- the above boils down to the probabilistic picture of parton splittings with the prescription of exact angular ordering being the consequence of the quantum interference
- pair of evolution equations for parton distributions inside a quark and gluon jets

$$\frac{\partial}{\partial \ln \theta} \begin{bmatrix} D_Q(\nu, \ln \theta) \\ D_G(\nu, \ln \theta) \end{bmatrix} = \hat{\Phi} \left(\nu + \frac{\partial}{\partial \ln \theta} \right) \begin{bmatrix} D_Q(\nu, \ln \theta) \\ D_G(\nu, \ln \theta) \end{bmatrix}$$

 ν - Mellin conjugate to x

the solution: hump-backed plateau

$$D_g(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, Q_0, \Lambda)$$

 Q_0 – cutoff on k_{\perp} , Λ – QCD scale

the solution: hump-backed plateau

$$D_g(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, Q_0, \Lambda)$$

 Q_0 – cutoff on k_{\perp} , Λ – QCD scale

● *limiting spectrum* $Q_0 = \Lambda$ **−** a specific way to model confinement

$$D_g^{\lim}(\xi, E_{\text{jet}}, \theta_c, \Lambda)$$

the solution: hump-backed plateau

$$D_g(\xi = \ln \frac{1}{x}, E_{\rm jet}, \theta_c, Q_0, \Lambda)$$

 Q_0 – cutoff on k_{\perp} , Λ – QCD scale

● *limiting* spectrum $Q_0 = \Lambda$ – a specific way to model confinement

$$D_g^{\lim}(\xi, E_{\text{jet}}, \theta_c, \Lambda)$$

Description Local Parton-Hadron Duality (LPHD); K_{LPHD} of the order of unity

$$\frac{dN^h}{d\xi} = K_{\text{LPHD}} D(\xi, E_{\text{jet}}, \theta_c, Q_0, \Lambda)$$

the solution: hump-backed plateau

$$D_g(\xi = \ln \frac{1}{x}, E_{\text{jet}}, \theta_c, Q_0, \Lambda)$$

 Q_0 – cutoff on k_{\perp} , Λ – QCD scale

● *limiting* spectrum $Q_0 = \Lambda$ – a specific way to model confinement

$$D_g^{\lim}(\xi, E_{\text{jet}}, \theta_c, \Lambda)$$

D Local Parton-Hadron Duality (LPHD); K_{LPHD} of the order of unity

$$\frac{dN^h}{d\xi} = K_{\text{LPHD}} D(\xi, E_{\text{jet}}, \theta_c, Q_0, \Lambda)$$

MLLA + LPHD - IDENTIFIED HADRONS

[Ya.I.Azimov, Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1985-1992]

- lacktriangle the endpoint of the evolution identified with hadron mass $Q_0pprox M_h$
- factor γ_h possible to account for other quantum numbers

MLLA + LPHD - IDENTIFIED HADRONS

[Ya.I.Azimov, Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1985-1992]

- lacktriangle the endpoint of the evolution identified with hadron mass $Q_0pprox M_h$
- factor γ_h possible to account for other quantum numbers

$$\frac{dN^{h}}{d\xi} = K_{\text{LPHD}} \gamma_{h} D_{g}(\bar{\zeta}(\xi, M_{h}, E_{\text{jet}}), E_{\text{jet}}, \theta_{c}, M_{h}, \Lambda)$$

$$= K_{\text{LPHD}} \gamma_{h} K_{0}(M_{h}) D_{g}^{\text{lim}}(\bar{\zeta}(\xi, M_{h}, E_{\text{jet}}), E_{\text{jet}}, \theta_{c}, \Lambda)$$

MLLA + LPHD - IDENTIFIED HADRONS

[Ya.I.Azimov, Yu.L.Dokshitzer, V.A.Khoze, S.I.Troyan; 1985-1992]

- lacktriangle the endpoint of the evolution identified with hadron mass $Q_0pprox M_h$
- factor γ_h possible to account for other quantum numbers

$$\frac{dN^{h}}{d\xi} = K_{\text{LPHD}} \gamma_{h} D_{g}(\bar{\zeta}(\xi, M_{h}, E_{\text{jet}}), E_{\text{jet}}, \theta_{c}, M_{h}, \Lambda)$$

$$= K_{\text{LPHD}} \gamma_{h} K_{0}(M_{h}) D_{g}^{\text{lim}}(\bar{\zeta}(\xi, M_{h}, E_{\text{jet}}), E_{\text{jet}}, \theta_{c}, \Lambda)$$

We have fair theoretical control on jets in vacuum

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances the singular part of splitting functions, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances the singular part of splitting functions, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

jet multiplicity distribution softens this is expected to be a generic feature of medium induced radiative energy loss!!!

THE MODEL OF MEDIUM MODIFICATION

[N.Borghini, U.A.Wiedemann; 2005]

medium enhances the singular part of splitting functions, e.g.

$$P_{qq}(z) = C_F \left\{ \frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right\}$$

- jet multiplicity distribution softens this is expected to be a generic feature of medium induced radiative energy loss!!!
- enough to account for the observed suppression of single inclusive spectra

JETS AT THE LHC

jet cone size: $\theta_c=0.28$ factor 0.7 for kaons from jet $K_{\rm LPHD}$ assumed to be unchanged

Pure jets

significant difference of hadron ratios for medium modified and unmodified jets at high momenta

jet cone size: $\theta_c=0.28$ factor 0.7 for kaons from jet $K_{\rm LPHD}$ assumed to be unchanged

Pure jets

- significant difference of hadron ratios for medium modified and unmodified jets at high momenta
- ratios level off at high hadron momenta

$$D^{p,K} \left(\ln \frac{p}{M_{p,K}} \right) / D^{\pi} \left(\ln \frac{p}{M_{\pi}} \right)$$

ratios in medium-modified jets larger

- ratios in medium-modified jets larger
- there is always a region of the ratio enhancement

- ratios in medium-modified jets larger
- there is always a region of the ratio enhancement

THE MODEL OF UNDERLYING EVENT

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- recombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx 0.7$ (LHC), $v_{\perp}\approx 1.75$ MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

THE MODEL OF UNDERLYING EVENT

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- precombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx0.7$ (LHC), $v_{\perp}\approx175$ MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

THE MODEL OF UNDERLYING EVENT

[R.J.Fries, B.Müller, C.Nonaka, S.A.Bass; 2003] [L.Maiani, A.D.Polosa, V.Riquer, C.A.Salgado; 2003]

Two competing mechanisms

- precombination of constituent quarks $v_{\perp}=0.55$ (RHIC), $v_{\perp}\approx0.7$ (LHC), T = 175 MeV
- fragmentation of perturbative partons KKP parametrization, suppression of particles with high p taken into account

LHC spectra expected to be dominated by recombination component up to the momenta higher by 2 GeV w.r.t. RHIC spectra

HADRON SPECTRA

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

- characteristically different spectra for the soft background and jets
- despite the high multiplicity environment the harder distribution of jets dominates rapidity over the background at momenta around 5-7 GeV
- the larger jet energy the stronger the effect
- proton spectra particularly well separated

HADRON SPECTRA

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

- the slope steepens in the presence of medium
- medium affects hadrochemistry within the jet cone
- medium modification varies with hadron species and jet energy
- modified spectra well separated from the background

jet cone size: $\theta_c=0.28$ factor 0.7 for kaons from jet

- difference of hadron ratios persists
- mild dependence on energy for $E_{\rm jet}$ and θ_c for certain p-range

MODIFICATION FACTORS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

$$J_{\mathrm{AA}} \equiv \frac{\left. \frac{dN}{dp} \right|_{\mathrm{med}}}{\left. \frac{dN}{dp} \right|_{\mathrm{vac}}}$$

- critical momentum varies significantly both with hadron species and with energy
- protons the least sensitive to the background

MODIFICATION FACTORS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

MODIFICATION FACTORS

jet cone size: $\theta_c = 0.28$ factor 0.7 for kaons from jet

$$D_{\text{med}}^p / D_{\text{med}}^{\pi} > D_{\text{vac}}^p / D_{\text{vac}}^{\pi}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$D_{\text{med}}^p / D_{\text{vac}}^p > D_{\text{med}}^{\pi} / D_{\text{vac}}^{\pi}$$

SUMMARY

The prediction

Central result: enhanced parton splitting alone without modification of hadronization can lead to significant changes in the hadronic composition of jets at the LHC

SUMMARY

- Though formulated within a specific approach our result is to large extend generic for radiative energy loss mechanisms
- Modifications of spectra and ratios vary with hadron species and jet energies
- Because of characteristically different hadrochemistry of jets and the soft background this signature persists even if one does not separate the two