Hadronization of pions and kaons from nuclei using DIS at CLAS

K. Hicks (CLAS Collaboration)
ECT Workshop on Fragmentation
Feb. 29, 2008

Introduction

- Goal: measure observables of quark propagation through cold QCD matter.
- Primary: pions (PhD thesis of H. Hakobyan)
- Extension: kaons (Ohio postdoc A. Daniel)
 - Do kaons propagate differently from pions?
 - Do s-quarks affect the hadron propagation?
 - HERMES: K+ and K- attenuation ratios differ.
 - There is no difference between π^+ , π^- or π^0 .
 - CLAS: K⁰ attenuation ratios (first time shown)

12 GeV Science Review

- 9 3 primary aims: GlueX, GPD, <u>nuclear effects</u>.
- "Precise knowledge of the hadronization process in nuclear matter is required to extract fragmentation functions [in nuclei]"
- "A better understanding of these processes would be valuable to research outside this field such as the heavy ion program at RHIC."

Relevance to RHIC

Relativistic Heavy-Ion Collisions

These experiments try to recreate conditions of the early universe.

Deep Inelastic Scattering

Initial quark energy is known Properties of medium are known

Hadronization Variables

v

energy transferred by the electron (initial energy of struck quark)

four-momentum transferred by the electron (initial size of struck quark)

Zh

 \mathbf{p}_{T}

= E_{hadron}/v , fraction of struck quark energy carried by hadron; $0 < z_h < 1$ quark/hadron momentum transverse to virtual photon direction.

Observables

Hadronic multiplicity ratio:

$$R_{M}^{h}(z, \mathbf{v}) = \frac{\begin{cases} N_{h}(z, \mathbf{v}) \\ N_{e}^{DIS}(\mathbf{v}) \end{cases}_{A}}{\begin{cases} N_{h}(z, \mathbf{v}) \\ N_{e}^{DIS}(\mathbf{v}) \end{cases}_{D}}$$

Transverse momentum:

$$\Delta p_T^2 \equiv \langle \overline{p_T^2} \rangle_A^{DIS} - \langle p_T^2 \rangle_D^{DIS}$$

Binning:

 Q^2 (range 1.0-2.5 GeV²)

v (range 2.6-4.3 GeV)

z (range 0.1-1.0)

Theoretical Models

- No (dynamical) lattice calculations yet.
- Accardi et al. (nucl-th/0211011):
 - gluon radiation and absorption included.
 - good agreement with HERMES data.
 - increased *deconfinement* in nuclei.
- Many other phenomenological models.

Inside the Models

CLAS – the CEBAF Large Acceptance Spectrometer

- Charged particle angles 8° 144°
- ■Neutral particle angles 8° 70°
- ■Momentum resolution ~0.5% (charged)
- ■Angular resolution ~0.5 mr (charged)
- ■Identification of p, π^+/π^- , K+/K-, e-/e+

eg2: pion attenuation

Examples of multi-variable (preliminary) CLAS data

p_T Broadening and Quark Energy Loss

- Quarks lose energy by gluon emission as they propagate
 - In vacuum
 - Even more within a medium

nucleus

- This energy loss is manifested by Δp_T^2
- Δp_T^2 is a signature of the *production time* τ_p
- $\Delta E \sim L$ dominates in QED
- $\Delta E \sim L^2$ dominates in QCD?

$$dE/dx \approx \frac{\alpha_s}{\pi} N_c \langle p_T^2 \rangle_I$$

Medium-stimulated loss calculation by BDMPS

CT Trento, Feb. 29, 2008

14

eg2: pion p_T broadening

A-dependence of Δp_T^2

CLAS data: binning

Examples of Experimental Data and Theoretical Predictions

K^0 from $M(\pi^+\pi^-)$

Sidebands used to subtract background

z-dependence of K⁰ peak

All events

 $1.0 < Q^2 < 2.0$ GeV² cut

Ken Hicks, Onio U.

Sidebands

(Same ordering as before)

K^o Multiplicity Ratio

Note the smaller attenuationthan for π 's.

Ken Hicks, Ohio U.

23

 $1.0 < Q^2 < 2.0$

2.0 < v < 3.0

All events

Summary

- There is good statistical precision of the pion data at 5 GeV.
 - Hadronization ratios and Δp_T^2 .
 - Cronin Effect looks interesting (preliminary)
- There is modest statistical precision for the K⁰ data at 5 GeV.
 - Can we learn how the s-quark hadronizes?