

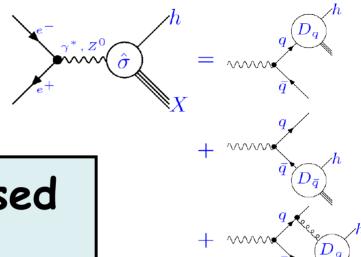
European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Workshop on parton fragmentation processes in the vacuum and in the medium

ECT* - Trento, February 25-29, 2008

The DSS Global QCD Analysis of Fragmentation Functions

Marco Stratmann


work done in collaboration with

Daniel de Florian (Buenos Aires)
Rodolfo Sassot (Buenos Aires)

references

- Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. <u>D75</u> (2007) 114010 (hep-ph/0703242)
- Global analysis of fragmentation functions for protons
 and charged hadrons, Phys. Rev. <u>D76</u> (2007) 074033 (arXiv:0707.1506 [hep-ph])

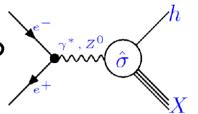
Fortran codes of the DSS fragmentation fcts are available upon request

questions to be addressed in this talk:

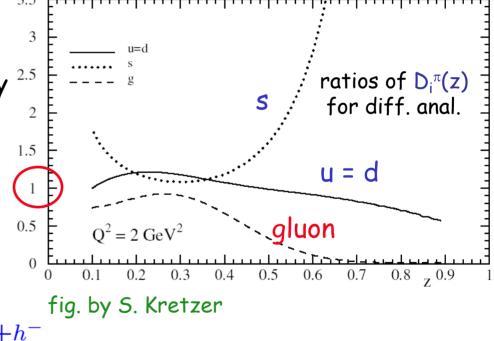
- Is it possible to arrive at a unified description of e⁺e⁻, ep, and pp inclusive hadron data in terms of a universal set of fragmentation functions?
- If so, what are the typical uncertainties?

precise knowledge of fragmentation functions crucial for interpretation & understanding of RHIC & LHC results and QCD in general

unpolarized pp cross sections are an important baseline for

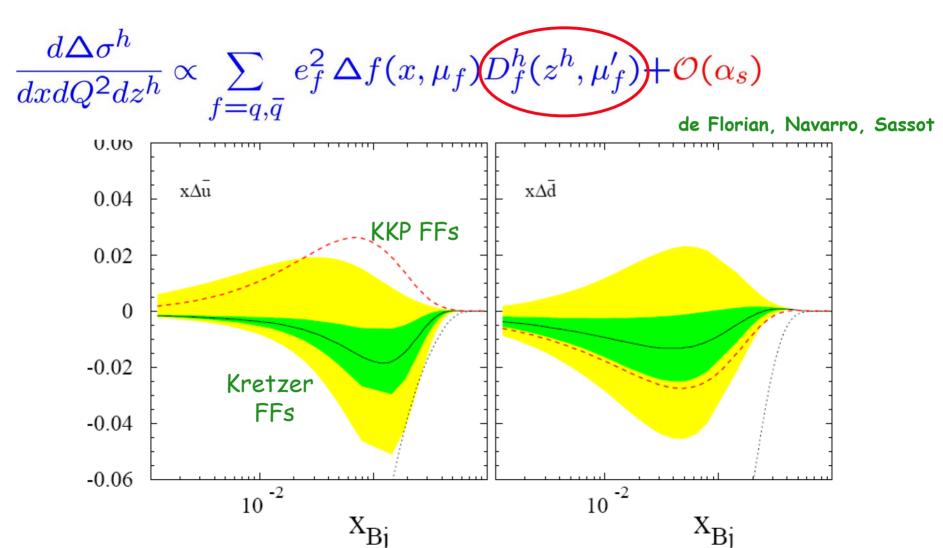

- studies of saturation effects in dAu and AuAu collisions
- understanding of spin asymmetries & extraction of, e.g., Δg

incl. hadron data put fundamental ideas to the test


- fragmentation as fundamental as nucleon structure
- raginemation as fundamental as nucleon structure
- factorization and universality of fragmentation functions

Bourhis et al., Kretzer; Kniehl et al.; Hirai et al.

 \bullet based on e^+e^- annihilation data mainly from LEP


- · considerable progress but also shortcomings
 - singlet FF D_{Σ} at M_{Z} constrained but individual flavors differ wildly at scales relevant for ep, pp data
 - gluon fragmentation largely unknown but crucial for pp
 - cannot distinguish D_q^h and $D_{\overline{q}}^h$ $D_{q+\overline{q}}^{h^+} = D_{q+\overline{q}}^{h^-} \,,\, D_q^{h^++h^-} = D_{\overline{q}}^{h^++h^-}$

 \rightarrow extracted FFs cannot be used for many ep and pp processes without ad-hoc assumptions; limits predictive power mainly to e⁺e⁻₅

actual example:

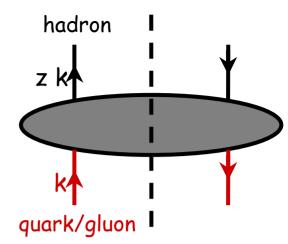
lack of flavor separation has profound impact on the extraction of pol. sea pdfs from SIDIS data

upshot:

we can only hope for further progress on fragmentation functions by performing a global QCD analysis like CTEQ does for pdfs

it roughly goes like this ...

theory toolbox for DSS global analysis



content:

- factorization & properties of $D_i^h(z)$
- status of relevant pQCD calculations
- Mellin technique
- determination of uncertainties

some properties of $D_i^h(z,\mu)$

• non-perturbative universal objects scale $\mu\text{-dep.}$ predicted by pQCD

- needed to consistently absorb final-state collinear singularities like, e.g., in pp $\to \pi^0 X$ ("factorization")
- describe the collinear transition of a parton "i" into a massless hadron "h" carrying fractional momentum z
- bi-local operator: $D(z)\simeq\int dy^-e^{iP^+/zy^-}{\rm Tr}\gamma^+\left<0\right|\psi(y^-)|hX\right>\left< hX\right)\overline{\psi}(0)\left|0\right>$

Collins, Soper '81, '83 no inclusive final-state

 \rightarrow no local OPE \rightarrow no lattice formulation

also: power corrections are much less developed and entwined with mass effects unlike pdfs

• "leading particle" picture incompatible with def. of $D_i^h(z)$

can compute incl. distributions of hadrons with momentum fractions z but *not* a cross section for a "leading hadron"

(under certain kin. conditions it might be a good approximation though)

• "energy-momentum conservation": $\sum_{h} \int_{0}^{1} z D_{i}^{h}(z,\mu) = 1$

(a parton fragments with 100% probability into something preserving its momentum)

of very limited practical use in fits because

- "mass effects" completely spoil framework for $D_i^h(z)$ no systematic way to include entwined mass/higher twist effects
- timelike μ -evolution very singular as z o 0, e.g. P_{gg} o $\frac{2C_A}{z}$ $-\frac{\alpha_s}{2\pi}\frac{4C_A^2}{z}$ $\ln^2 z$

limits use of $D_i^h(z)$ to $z \gtrsim 0.05 \div 0.1$

these properties are more or less at variance with hadronization models in PYTHIA et al.

(color connected "strings", "soft physics", non-collinear)

pQCD framework based on factorization only applicable to certain class of processes characterized by a "hard scale"

single-inclusive ete annihilation (SIA)

relevant: "normalized distribution"
$$\dfrac{1}{\sigma_{tot}}\dfrac{d\sigma^h}{dz}$$

$$=\frac{1}{\sigma_{tot}}\sum_{i=q,\bar{q},g}\left[\int_{z}^{1}\frac{dy}{y}\right]C_{i}(\frac{z}{y},Q,\mu_{r},\mu_{f})D_{i}^{h}(y,\mu_{f})$$

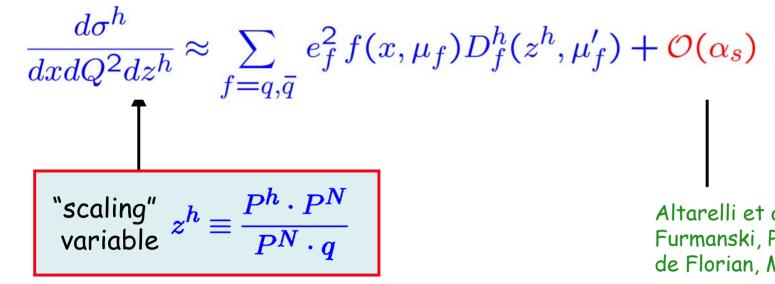
$$\text{"coeff. fct."}$$

$$\text{calculable in pQCD}$$

$$C_i(rac{z}{y},Q,\mu_r,\mu_f) egin{array}{c} D_i^h(y,\mu_f) \ ext{`coeff. fct.''} \ ext{calculable} \ ext{in pQCD} \end{array}$$

LO:
$$C_q = \delta(1-y) \sigma_0$$
; $C_g = 0$

- $O(\alpha_s)$ NLO: Altarelli, Ellis, Martinelli, Pi '79; Furmanski, Petronzio '82
- $O(\alpha_s^2)$ NNLO: Rijken, van Neerven '96,'97; Mitov, Moch '06

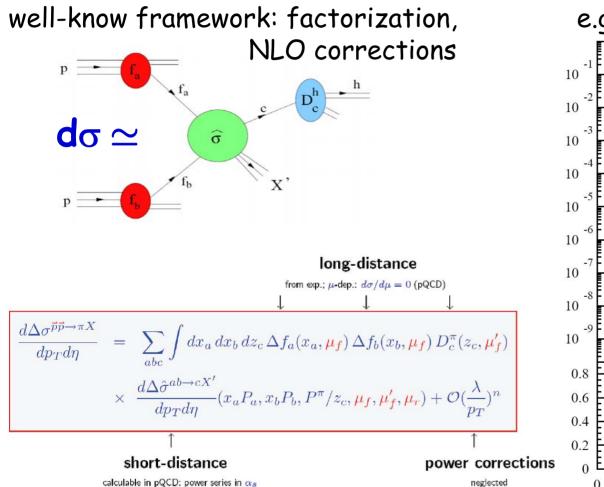

"scaling"
$$z\equiv \frac{2P^h\cdot q}{Q^2}=\frac{2E^h}{Q}$$

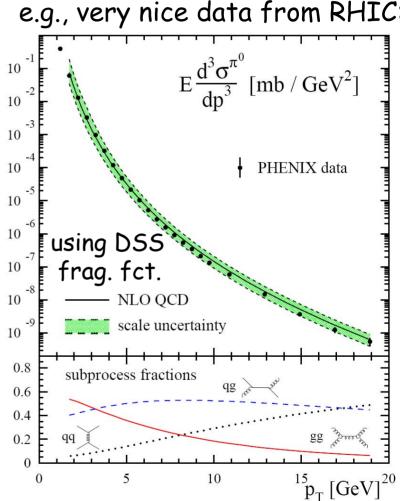
$$s = q^2 = Q^2$$
 where $P_{e^\pm} = (Q/2, 0, 0, \pm Q/2)$ $q = P_{e^+} + P_{e^-}$

semi-inclusive DIS (SIDIS)

H H

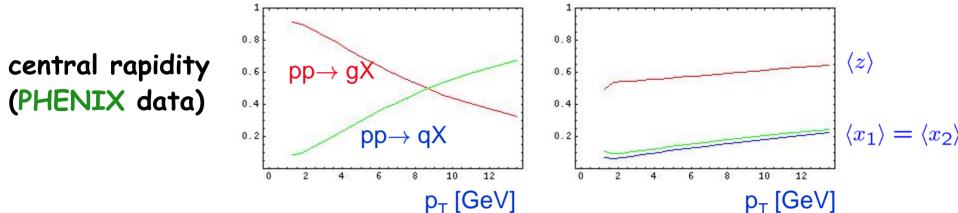
SIDIS = DIS plus one identified hadron with $x_F > 0$

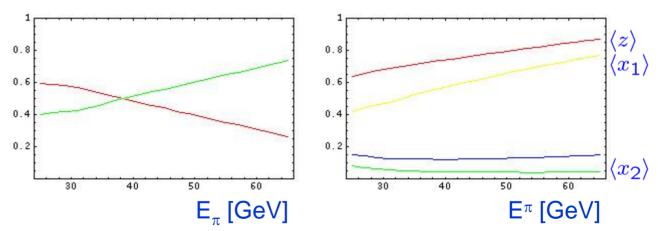

why important?


- charge separated data: π^+ , π^- , K^+ , K^- HERMES; h^+ , h^- EMC
 - → valuable handle on flavor separation

LO analysis: $D_d^{\pi^+} \simeq (1-z) D_u^{\pi^+}$ Christova, Kretzer, Leader

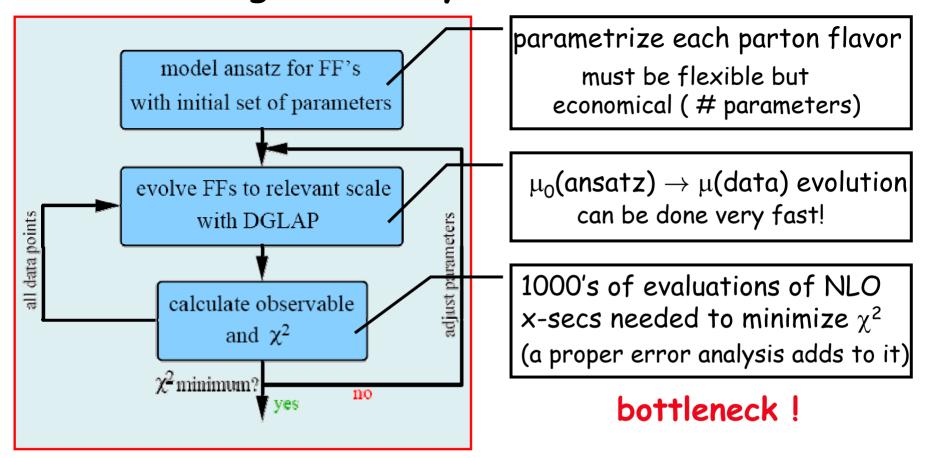
$pp \rightarrow hX$


Aversa et al.; Jäger, Schäfer, MS, Vogelsang; de Florian


plus STAR and BRAHMS

why important?

 \rightarrow low p_T data probe gluon fragmentation



 \rightarrow probe gluon and quark fragmentation at large z

BRAHMS π^{\pm} , K^{\pm} data ($\eta \simeq 3$) \rightarrow flavor separation from pp data

SIA	SIDIS	pp
very precise data		very sensitive to D_g
clean process	allows flavor/charge separation	probes large z
sensitivity to heavy flavor contr.	scale $Q \ll M_Z$ \rightarrow evolution effects	charge sep. data
neavy flavor contr.		different scales p_T
prec. data only at M_Z \rightarrow no handle on D_a	depends on pdfs should be well constrained	depends on pdfs should be well constrained
mainly determines D_{Σ}	rather low scales → non-pert. corr. ?	fixed target data excluded resummations large
no flavor/charge sep	· D _{c,b} play no role	large scale uncert.
not precise at large z		D _{c,b} play no role

outline of a global analysis:

what's the problem:

- DIS and SIDIS data can be analyzed at no extra cost (as fast as evolution)
- other NLO expressions are numerically very time consuming

computing time for a global analysis at NLO becomes excessive

19th century math comes to help ...

idea: re-organize multi-convolutions by taking Mellin moments MS, Vogelsang earlier ideas: Berger, Graudenz, Hampel, Vogt; Kosower

crucial property: convolutions factorize into simple products

example: pp
$$\to \pi$$
 X
$$d\sigma = \sum_{abc} \int f_a \, f_b \, d\hat{\sigma}_{ab \to cX} \, D_c \, dx_a dx_b dz_c$$
 express frag. fct. by their Mellin inverse
$$\frac{1}{2\pi i} \int_{\mathcal{C}_n} dn \, z_c^{-n} \, D_c^n$$

$$=rac{1}{(2\pi i)}\sum_{abc} egin{array}{c} dn \ standard \ Mellin inv. \end{array} egin{array}{c} D_c^n \ fit \end{array} egin{array}{c} Z_c^{-n} f_a f_b d \widehat{\sigma}_{ab
ightarrow cX} dx_a dx_b dz_a \ \equiv d \widetilde{\sigma}_{ab
ightarrow cX}(n) \ pre-calculated on look-up table \end{array}$$

- **features:** very fast and reliable; choice of contour C_n crucial
 - · not limited to single-incl. observables; 2D-grids needed for pdf fits
- fast grid prod. with VEGAS "events"; alternative to "fastNLO" method de Florian, Sassot, Vogelsang, MS

18

estimating uncertainties:

many methods - in DSS we choose "Lagrange multipliers"

idea: see how fit deteriorates when forced to give a different O_i

$$\Phi(\{\lambda_i\},\{a_j\}) = \chi^2(\{a_j\}) + \sum_i \lambda_i O_i(\{a_j\})$$
 fit parameters some observable

- directly examines χ^2 profile; no assumptions like in Hessian method
- · role of each data set can be assessed
- · easy to implement
- · z-dependent errors on Dih(z) less straightforward

for the time being, we study

$$\underline{O_i(\{a_i\})} = \underline{\eta_i(\{a_i\}, z_{\min})} = \int_{-1}^{1} dz \, z \, D_i^h(z, Q^2)$$

"truncated energy fractions"

some details & results of the DSS global analysis

- setup
- comparison with data
- uncertainties

setup

flexible input form

$$D_i^h(z,1\,{
m GeV})=N_iz^{lpha_i}(1-z)^{eta_i}\left[1+\gamma_i(1-z)^{\delta_i}
ight]$$
 naïve ZM-VFNS for i = c, b with Q $_0$ = m $_{
m c}$ b

- take α_s from MRST [impossible to fit with precise SIA data only at M_Z]
- NLO (LO) sets for pions, kaons, protons, charged hadrons [determined as "residuals" of π +K+p]
- try to avoid assumptions on $\{a_i\}$ unless data cannot discriminate

SU(2), SU(3) breaking:
$$D_{d+\bar{d}}^{\pi^+} = ND_{u+\bar{u}}^{\pi^+}$$
 $D_s^{\pi^+} = D_{\bar{s}}^{\pi^+} = N'D_{\bar{u}}^{\pi^+}$

but we have to assume $D_{\bar u}^{\pi^+}=D_d^{\pi^+}$ $D_{\bar u}^{K^+}=D_s^{K^+}=D_d^{K^+}=D_{\bar d}^{K^+}$

data selection

included: ALEPH, DELPHI, OPAL, SLD, TASSO, TPC SIA w/o "flavor tag" HERMES, EMC SIDIS BRAHMS, PHENIX, STAR, CDF, UA1, UA2 "pp"

reluctantly included: SIA "flavor tagged" data only constraint on c, b \rightarrow light hadrons many conceptual problems: no NLO interpretation; leading hadron assumptions; ...

excluded: ep photoproduction data [uncert. from photon structure]

UA1 data for kaons [inconsistent with STAR]

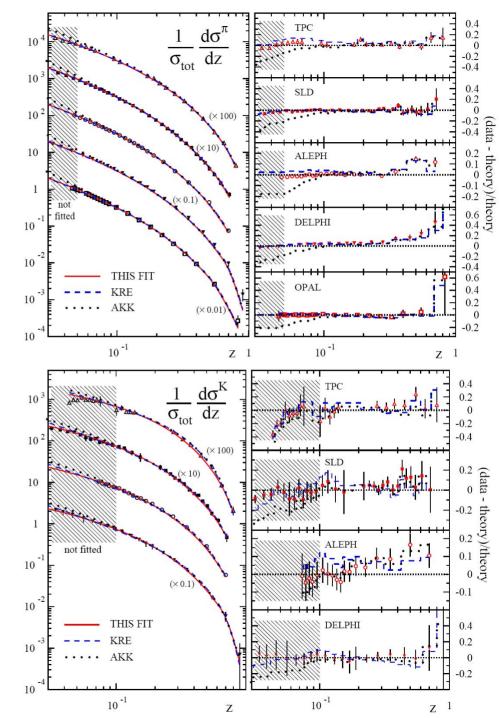
like in pdf fits we allow for

- cuts: z > 0.05 pions, z > 0.1 otherwise
- · relative normalizations/shifts of data sets
- extra "TH errors": scale uncertainty (pp); flavor tag; bin size, ...

some results

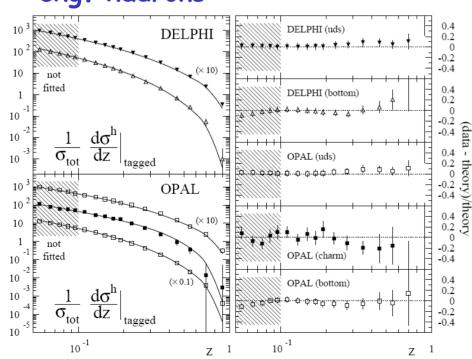
SIA data still work very well within a global fit

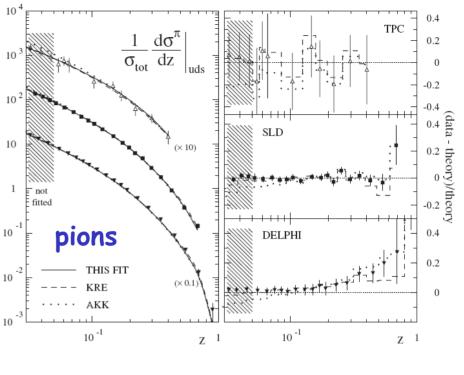
pions

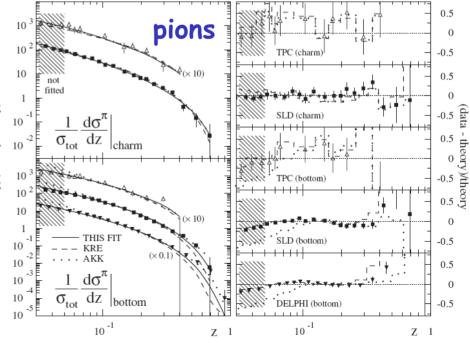

kaons

similar for protons and and charged hadrons

KRE: S. Kretzer

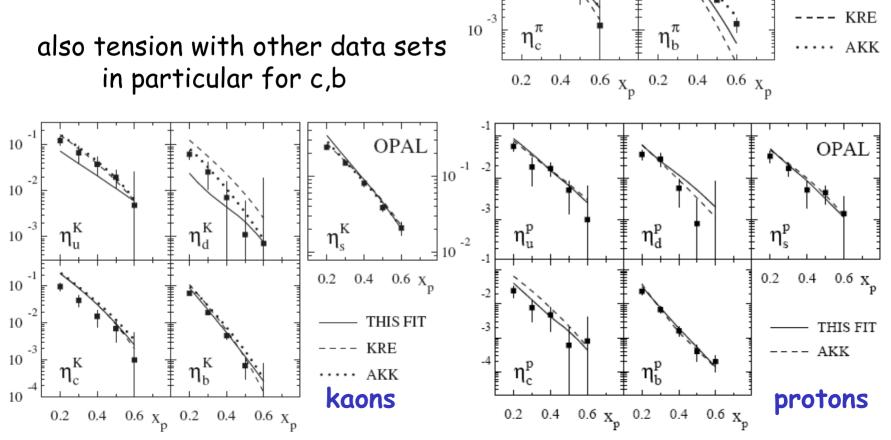

AKK: S. Albino et al.


AKK uses z > 0.1



even for "uds", "c", "b" flavor tagged data

chg. hadrons



some tension with OPAL "tagging probabilities"

1 a - h

[recall: not really defined in NLO]

10

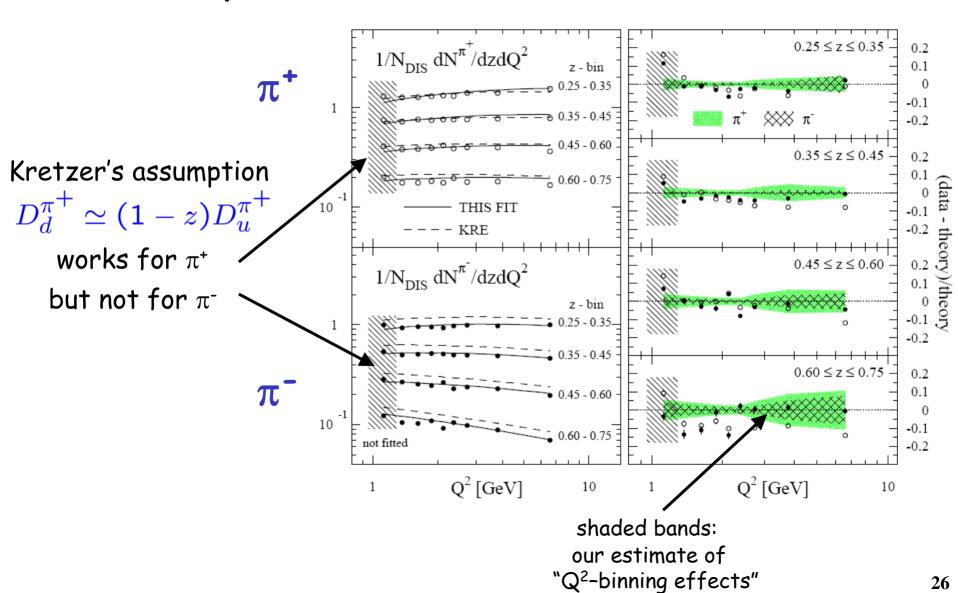
10

10

pions

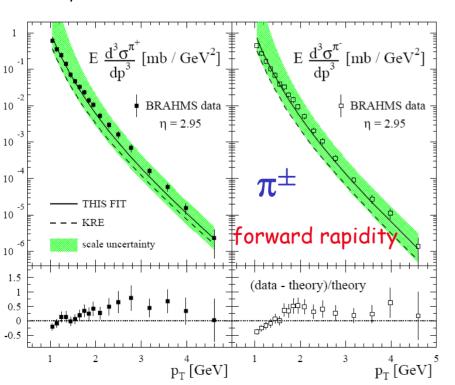
0.2

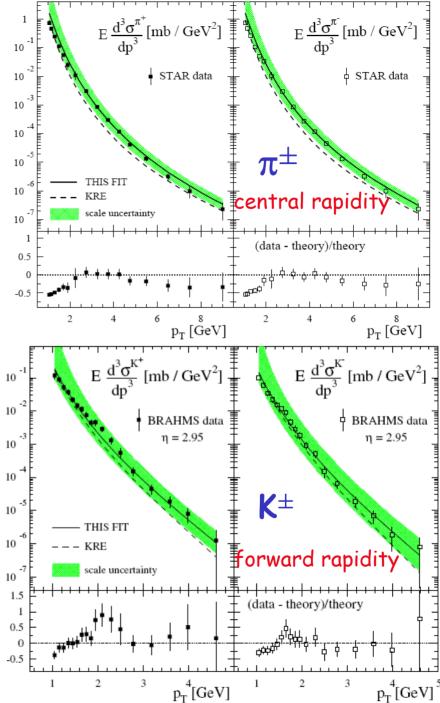
0.4

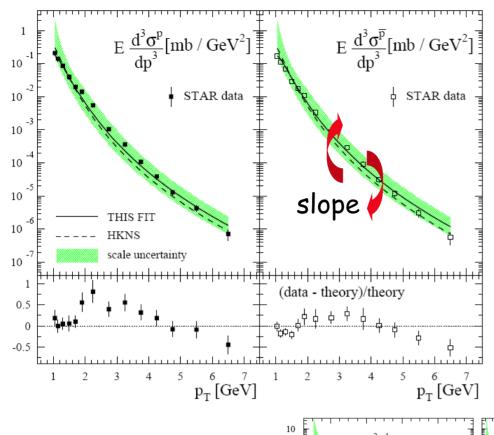

OPAL

0.6 X_p

THIS FIT


good description of SIDIS multiplicities

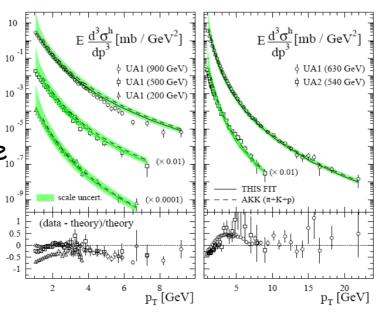

HERMES data (not final) A. Hillenbrand (thesis)

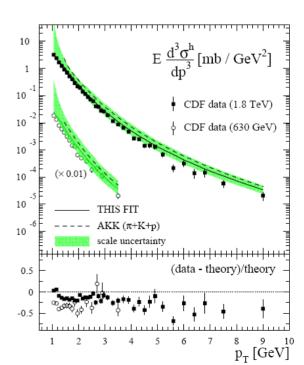


"pp" data also well reproduced

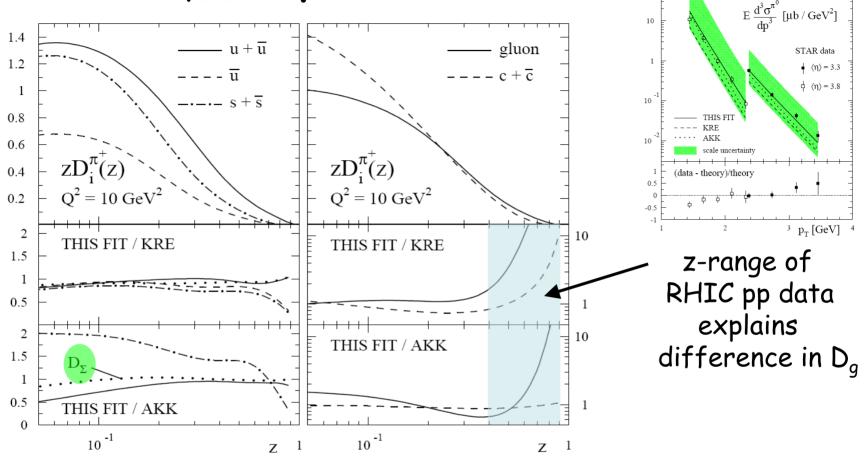
- · large scale uncertainties
- probe z values well below 0.1
 but x-sec mainly samples z > 0.5
- \cdot $p_{T,min}$ cut has no impact on fit

(anti-)protons:

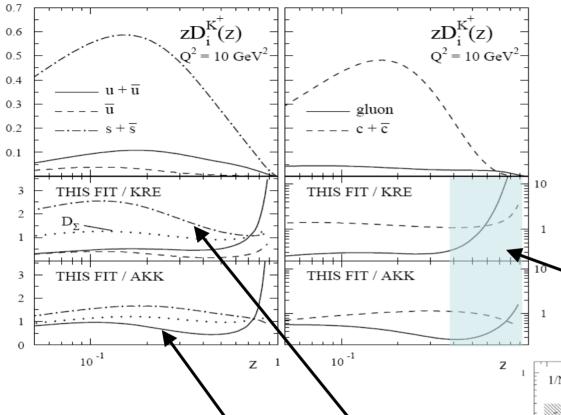

fit works too well (?) at $p_{T}{\simeq}\ m_{p}$ need large p_{T} data to check slope


issue with BRAHMS data at y \simeq 3 find proton = 10 \times antiproton yield

charged hadrons:


mainly a prediction:

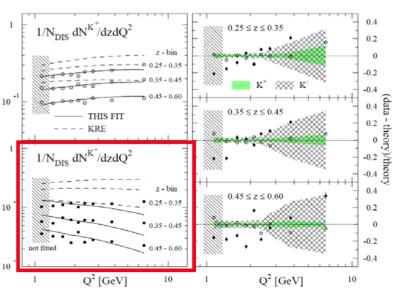
 π +K+p almost saturate₁₀ $D^h(z)$ with a small and ₁₀ positive $D^{res}(z)$


meet the $D_i(z)$'s: pions

- singlet fragmentation D_{Σ} very similar (fixed by SIA at M_{Z})
- \cdot u-frag. smaller than in AKK (due to SIDIS); compensated by larger D_s in SIA
- find: SU(2) violation < 10%; SU(3) violation \simeq 20%

⟨z⟩ ≥ 0.6

meet the $D_i(z)$'s: kaons



again, RHIC pp data explain different D_g

 $E \frac{d^3 \sigma^{K_S^0}}{d r^3} [mb / GeV^2]$

smaller u & larger s-frag. required by SIDIS

note: some issues with K- data (slope!) await eagerly final HERMES data

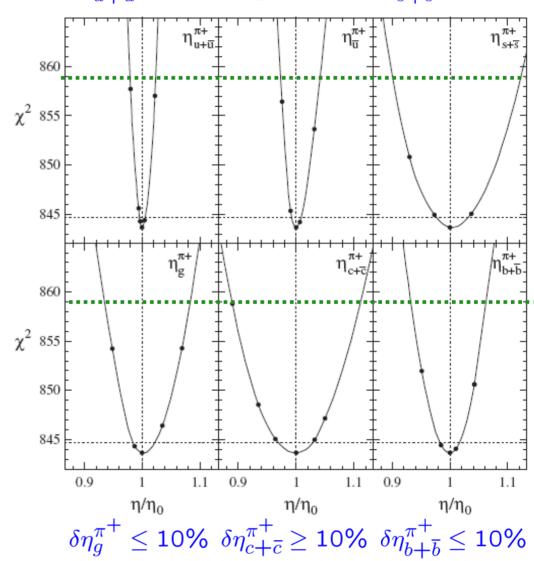
uncertainties from Lagrange multipliers: pions

recall:

$$O_i(\{a_j\}) = \eta_i(\{a_j\}, z_{\min})$$

= $\int_{z_{\min}}^{1} dz \, z \, D_i^h(z, Q^2)$

here:


$$z_{min}$$
= 0.2, Q = 5 GeV η_0 : best fit value

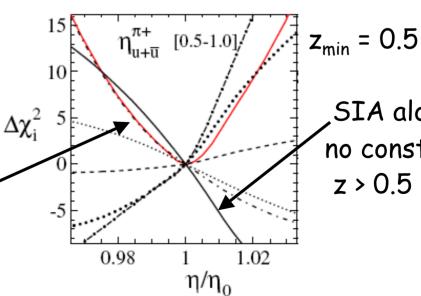
next:

generate the χ^2 profiles

choose the $\Delta\chi^2$ **you** want to tolerate, e.g., $\Delta\chi^2$ =15 and read off uncertainties

$$\delta \eta_{u+\bar{u}}^{\pi^{+}} \leq 3\% \quad \delta \eta_{\bar{u}}^{\pi^{+}} \leq 5\% \quad \delta \eta_{s+\bar{s}}^{\pi^{+}} \simeq 10\%$$

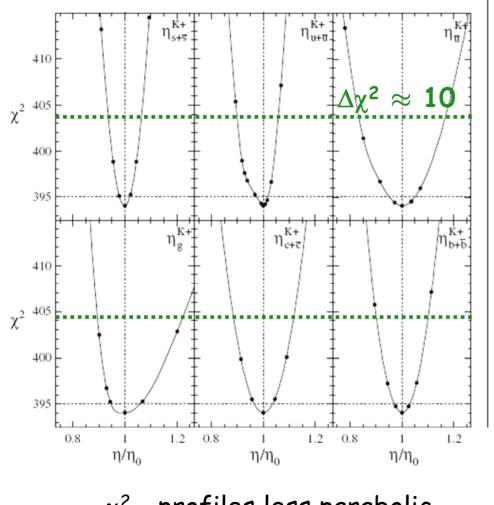
assessing the role of each data set:

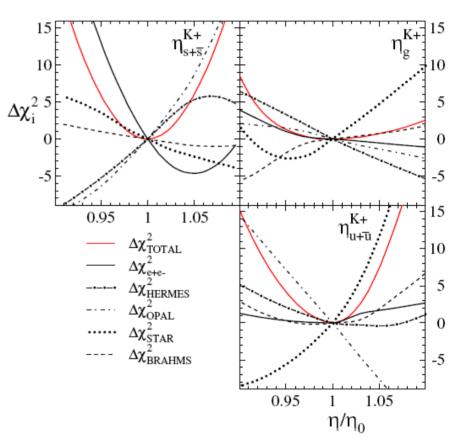

define:

$$\Delta \chi_i^2 = \chi_i^2 - \chi_i^2 \Big|_{0}$$

partial contribution of data subset i to $\Delta \chi^2$

"tension": SIA data prefer, slightly different minimum


"complementarity": data sets conspire to a constraining χ^2 - profile


SIA alone gives no constraint for z > 0.5 (no data!)

uncertainties: kaons

at least twice as large than for pions

 χ^2 - profiles less parabolic



partial $\Delta\chi^2_i$ from subsets show again "tension" and "complementarity"

remarks on the overall quality of the fits

- typically $\chi^2/d.o.f.\simeq 2$ mainly from a few isolated points, e.g., SIDIS π^- and K^- some tension among data sets with flavor tagging
- χ^2 grows \approx 25% for LO fits mainly from pp data (fits try to make up for large NLO corrections)
- predictive power

NLO p_T distribution of forward π^0 crucially dependent on D_g Daleo, de Florian, Sassot

summary & outlook

first global analysis of fragmentation functions it works!

can be only the beginning:

must be an ongoing effort like CTEQ/MRST for pdfs more/new data usually call for refinements

more groups (AKK, ...) essential for progress on "the known knowns, the known unknowns, and the unknown unknowns"*)

studies of uncertainties must be further refined

treatment of charm and bottom contributions needs improvement

need more data: HERMES (final set), BELLE/BaBar, RHIC,...

^{*)} courtesy of a Rumsfeld poem