
Performance of
OpenMP Based
Framework Demo

Christopher Jones FNAL

OpenMP Study Concurrent Frameworks

Outline
OpenMP Overview

Measurements

Conclusion

2

OpenMP Study Concurrent Frameworks

OpenMP
Portable multiprocessing programming framework
Available for linux, Mac OS X, Windows, etc.

Built into compilers
gcc 4.6 has OpenMP 3.0
gcc 4.7 has OpenMP 3.1

Uses pragmas, libraries and environment variables

3

int ncount = 0;
#pragma omp parallel
#pragma omp shared(ncount)
{
 #pragma omp for
 for(i=0; i < 100; ++i) {
 int value = calculate(i);
 #pragma omp critical
 {
 ncount += value;
 }
 }
}

OpenMP Study Concurrent Frameworks

Test System
Physical Machine
Intel(R) Xeon(R) CPU E5620
16 physical cores @ 2.40GHz

4Cores/CPU with 4 CPUs
47 GB RAM

Virtual Machine
16 virtual cores
15 GB RAM
SL6

Exact same system as used for libdispatch tests

4

OpenMP Study Concurrent Frameworks

Measurement Strategy
Dependencies
Got module dependencies (what data each module uses) from CMS framework

Timing
Get per event module timing and read TBranch from file timing for Minimum
Bias reconstruction

Feed dependencies and timing to demo framework

Approximate module timing by
Busy wait: calculate an integral calibrated for # iterations/sec

causes a demo module to take full core

Threading tests
Producers and I/O are re-entrant

Subset of tests done for libdispatch

5

OpenMP Study Concurrent Frameworks

Throughput Scaling

6

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 4 8 12 16 20

OpenMP Throughput Relative to Single Threaded
Th

ro
ug

hp
ut

/ S
in

gl
e

Th
re

ad
ed

 T
hr

ou
gh

pu
t

Simultaneous Events

Only Parallelize Events
Parallel Modules w/locks
Parallel Modules w/locks & 2000 Threads
Parallel Modules w/taskyield

OpenMP Study Concurrent Frameworks

Why Bad Scaling?
Want to only run a module once per event
Multiple simultaneous data requests means some tasks must wait

Only three ways to make a task wait
Implicitly at the end of a code block

This is the traditional way to work with OpenMP
A lock

This freezes the thread
Having more threads than CPU helps some

taskyield construct
Allows a task to give up its thread temporarily so other work can be done
Spin wait on taskyield was too CPU intensive

libdispatch & TBB allow task notification
Can associate a new task to start when a group of tasks finish
Allows efficient waiting without using any thread resources
OpenMP does not (directly) support this behavior

7

OpenMP Study Concurrent Frameworks

Conclusion
OpenMP is not a good fit for parallel module system
Bad scaling since no ‘task notification’ system

Not an easy to use API
Compilers do not issue warnings/errors for pragmas

#pragma omp taskyield was not available in gcc 4.6 but it compiled fine
I had a hard time reasoning about when variables would be replicated across
threads and what value they would have

CMS will not be using OpenMP for the framework

8

void Module::prefetch(const Event& iEvent)
{
 for (auto& const g: m_getters) {
 Getter* temp = &g;
#pragma omp task untied default(shared), firstprivate(temp)
 iEvent.prefetch(temp);
 }
#pragma omp taskwait
}

