Impact of Beam-Beam Effects on Precision Luminosity Determination at the LHC

W. Kozanecki (CEA Saclay), with W. Herr & T. Pieloni (CERN)

- Introduction: luminosity-determination strategy & precision goals
- **o Beam-beam effects**

- O Do 's & don't 's: lessons learnt
- Do's & don't 's: wish list for 2015 (& somewhat beyond)
 - all known issues not just those beam-beam related
- o In conclusion...

Introduction: luminosity-determination strategy and precision goals

O Physics running

 Max. pile-up parameter (2012): μ_{pk} ≤ 35 inel. pp collisions/BX

$\circ \mathcal{L}$ determination

o absolute calibration

van der Meer scans, $\mu_{pk} \sim 0.5 - 5$

Uncertainty Source	$\delta \mathscr{L} / \mathscr{L}$	
	2010	2011
Bunch Population Product	3.1%	0.5%
Other <i>vdM</i>		
Calibration Uncertainties	1.3%	1.4%
Afterglow Correction		0.2%
BCM Stability		0.2%
Long-Term Consistency	0.5%	0.7%
μ Dependence	0.5%	0.5%
Total	3.4%	1.8%
	LAS	

 high rate effects & μ-dependence: physics conditions

Luminosity Basics

 \succ σ_{vis} is determined in dedicated fills based on beam parameters

Calibrating σ_{vis} in van der Meer (aka "vernier") Scans

 $\odot\,$ Luminosity in terms of beam densities ρ_1 and ρ_2 :

$$\mathcal{L} = n_b f_r n_1 n_2 \int \rho_1(x, y) \rho_2(x, y) dx dy$$

<u>Under the condition</u> that the integral <u>factorises</u> into uncorrelated x & y components:

Horizontal Beam Separation [mm]

W. Herr Lumi Days 2012

The not-so-good: dynamic β

- Colliding beams exert strong force on each other
 - optics changes due to (de)focusing force
 -) for head-on collisions
 - small amplitude: linear force (~ quad)
 - loss or gain in $\mathcal{L}_{\text{peak}}$
 - but no *L*-calibration bias

-) during vdM scan
 - large amplitude: non-linear force
 - distorts scan curve → *L*-calibration error ?

- Focusing by b-b interaction $\Delta k(s)$ leads to phase change $\Delta \mu$ and "optical error" $\Delta \beta(s_0)$
 - In perturbation theory:

$$\Delta\beta(s_0) = -\frac{\beta(s_0)}{2sin(2\pi Q)} \quad X$$
$$\int_{s_1}^{s_1+C} \beta(s)\Delta k(s)cos \left[2(\mu(s) - \mu(s_0)) - 2\pi Q\right] ds$$

- s and s₀ are interaction points (IP)
- must take into account all potential IPs
- \odot special case: s = s₀ (1 IP), head-on

$$\frac{\beta^*}{\beta_0^*} = \frac{\sin(2\pi Q)}{\sin(2\pi(Q + \Delta Q))} = \frac{1}{\sqrt{1 + 4\pi\xi \cot(2\pi Q) - 4\pi^2\xi^2}}$$

- Optics code required
 - If optics change → beam-beam force changes → optics change: self-consistent calculation needed
 - Take into account all IP's
 - ◎ Build beam-beam element → MADX

W. Herr

Dynamic β: head-on ("static") case

 Simulation parameters: May'11 vdM scans [typ. physics]

E _b (TeV)	3.5	
N _p (10 ¹¹)	0.85 [1.5]	
ε _N (μm-rad)	4 [2.0-2.5]	
β [*] ₀ (m)	1.5	
Q _x /Q _y	0.31 / 0.32	

O Observations

- Dynamic β for (multiple) head-on collisions visible
- O Depends on
 -) Beam-beam parameter ξ (N_p, ϵ_N)
 - note $\xi_{vdM} < \xi_{physics}$
 -) Collision pattern
 -) Phase advance between IP's

• Collisions at IP1 only

○ Collisions in IP1 &/or IP5 only

	IP1		IP5	
Collisions	eta_x^*/eta_{0x}^*	eta_y^*/eta_{0y}^*	eta_x^*/eta_{0x}^*	eta_y^*/eta_{0y}^*
no	1.000	1.000	1.000	1.000
IP1	0.994	0.993	0.989	1.018
IP5	0.989	1.018	0.994	0.993
IP1 + IP5	0.983	1.011	0.983	1.011

O Other collision patterns

o see W.H., Proc. Lumi Days 2012

W. Herr

Dynamic β : variation during luminosity scan

- **O During luminosity scan**
 - Strength of the force is changing (both planes)
 - Sign of the force is changing (in scanning plane, defocusing → focusing)
 - Must expect more complicated pattern
 - Illustrate with simulated scans in IP1
 -) Effects for scans at other IPs similar
 - Add'l collisions change starting values

- For a given plane ($\beta^* x$ or y) and scan direction (x or y)
 - Dependence on separation always the same
 - Starting value different, depends on ξ and on collision pattern

Dynamic-*β*: impact on luminosity-scan curves

• Refit gaussians and compute impact on $\sigma_{vis} \sim \Sigma_x \Sigma_y \mu_{vis,pk}$ $\Rightarrow \Delta \sigma_{vis /} \sigma_{vis} = 0.5 \%$ significant in view of total uncertainty $\Delta L / L = \pm 1.8 \%$ included in $\Delta L / L$

T. Pieloni

The bad: beam-beam-induced orbit shift during scan

The ugly: beam-separation scans under physics conditions

- Example of opportunistic study during intensity ramp-up (fill 3109)
 - Beam conditions representative of physics running
 - $β^* = 0.6 \text{ m}, θ_c = +-145 \mu \text{rad}$
 - 50 ns trains, 1.2 E11 p/bunch, 726 bunches
 - o Goals
 - provide check on absolute *L* calibration ? Impractical !
 - **characterize transverse phase space (tails, non-linear x-y correlations)**
 - check stability of scan results wrt scanning protocol (e.g. hysteresis,...)
 - μ-dependence check: quantify relative linearity of different luminometers & algorithms at one point in time (< 1% ?)</p>

The ugly: impact of long-range encounters on \mathcal{L} scans

The ugly: impact of bunch trains on \mathcal{L} -calibration systematics

Do 's and don't 's: lessons learnt (1)

- o Don't use...
 - o bunch trains
 - beam-beam kicks (+ distortions?)
 - from long-range encounters
 - injected phase-space quality
 - satellites & ghost charge
 - more abundant
 - harder to analyze
 - \mathcal{L} afterglow
 - high bunch intensities (> 1 E11 p)
 -) orbit distortions during scan
 - **dynamic** β during scan
 - injected phase-space quality
 - satellites & ghost charge (?)
 - instabilities (impedance? Q spread from LR beam-beam ?)
 - µ too high (if low β*) → potential detector non-linearities

o Do favor...

- o sparse patterns of indiv. bunches
 - no parasitic encounters
 - weaker satellites & ghost charge
 - sparse pattern \rightarrow low afterglow
 - no Xing-angle constraints
 - keep 'your' bunches private
 - allows tailoring of injected phase space
- moderate bunch intensities (~ 8-9 E10 p/b)
 - if higher: scan curve distortions
 - beam-beam kicks → orbit
 - dynamic β
 - if much lower
 - *L*-calibration statistics- & systematics-limited
 - machine-protection constraints

A detour: beam-gas & luminous-region imaging

Absolute- \mathcal{L} calibration challenge: non-factorization effects

- Two very challenging issues in first two 2012 vdM scans (Apr + Jul '12)
 - Scan-to-scan irreproducibility and/or systematic trend: 2-3 %
 (→ σ_{syst, ATL} ~ 3.6 %, σ_{syst, CMS} ~ 4.4 %)
 - Breakdown of x-y factorization in the 3-d \mathcal{L} distribution
 - aka 'non-linear x-y correlations'
 - observed during vdM scans by all of ATLAS, CMS, LHCb (evidence compelling, but available data sets make quantitative comparisons difficult)

These 2 issues

- are clearly beam-dynamics effects, time-dependent & different fill-to-fill (instrumental drifts ruled out)
- appear mutually related

- Factorization assumes that shape of vdM scan curve during an x (y) scan is independent of the separation Δy (Δx) in the orthogonal plane
 - if this assumption is satisfied, the combination of 1 x-scan and 1 y-scan is sufficient to characterize the entire distribution $\mathcal{L}(\Delta x, \Delta y)$
 - if this is violated at a "significant" level, the *vdM* formalism could be generalized to 2-d by performing a full 2-D grid scan (but: <u>impractical</u>!)

Testing factorization of \mathcal{L} (Δx , Δy) during *vdM* scans

<u>Convolved beam size</u> Σ (width of vdM scan curve)

W. Kozanecki

Beam-beam Workshop, CERN, 20 March 2013

<u>Vertical luminous size</u> $\sigma_{\mathcal{L}}$ (beamspot width)

Testing factorization of \mathcal{L} (Δx , Δy) during *vdM* scans

<u>Convolved beam size</u> Σ (width of vdM scan curve)

<u>Vertical luminous size</u> σ_{f} (beamspot width)

Do's and don't 's: lessons learnt (2)

o Don't...

- \odot use small β^*
 - reconstructed luminous width σ_L
 (= beamspot width) becomes resolution-dominated and very difficult to analyze
 - μ ~ 5 too high for comfort:
 potential detector non-linearities
- o push for small emittances
 -) the smaller ϵ , the more $\sigma_{\mathcal{L}}$ is resolution-dominated
- o set nominal crossing angle
 - complicates measurement/ characterization of satellites
 - notable exception: LHCb needs large Xing-angle for beam-gas enhanced ghost-charge measurement
- o scan > 1 IP at a time
 - beam-beam defl + leaking bumps

o Do favor...

- large β^* (present injection optics: $\beta^* = 11 \text{ m}$)
 -) make $\sigma_{\mathcal{L}}$ ALAP ($\leftarrow \rightarrow$ resolution)
- o nominal emittances
 - make $\sigma_{\mathcal{L}}$ ALAP ($\leftarrow \rightarrow$ resolution)
 - BUT <u>avoid</u> anything that creates <u>non-gaussian tails</u> (e.g. ε blowup by screen in transfer line)

Large enough $\sigma_{\mathcal{L}}$ critical for

- (a) non-factorization systematics
- (b) \mathcal{L} calibration by beam-gas imaging
- beams as gaussian as possible in SPS + LHC
 - tailor injected phase space (still an art more than a science...)
 -) avoid strong octupoles
- o zero crossing angle
 - optimize satellite reconstruction

Do 's and don't 's: wish list for vdM scans in 2015 (& beyond...)

 <u>Reproducibly</u> "tailor" injected p phase space to minimize nonlinear correlations

Critical for limiting non-factorization systematics

- \odot "Generous" luminous width $\sigma_{\mathcal{L}}$
 - injection optics or larger ($\beta^* > 10$)
 - \odot "nominal" emittance ($\epsilon_N \sim 3 \mu$)

Large enough $\sigma_{\mathcal{L}}$ critical for BGI and non-factorization systematics

Note that the E_{beam} increase (4 \rightarrow 6.5 TeV) shrinks the beams by $\sqrt{2}$ – while the vertex resolution remains the same

- Round beams ($\beta_x^* = \beta_y^*$)
 - The vdM method <u>can</u> handle tilted elliptical beams (residual x-y coupling!) – but at the cost of additional scans (x/y → x/y/u/v)

- No crossing angle (except LHCb)
 - reconstruct satellites by vtxg
- Crab off (when it appears...)
 - avoid banana shapes, phase/ Xing angle jitter,....
- Sparse patterns (no trains!)
- Low bunch intensities
- Flexible, file-driven scan-control software
 - o allow for complex scan patterns
 -) diagonal scans, off-axis scans,...
 - leapfrog length-scale calibration
 - minimize scanning time, costly cockpit errors
 - must provide for rigorous MPP validation pre-checks

In conclusion...

• Need to refine understanding of head-on beam-beam effects during scans: impact on \mathcal{L} calib. systematics larger than thought so far?

- more careful evaluation (+ correction?) of dynamic- β scan distortions
- quantify (+ correct?) impact of in-plane orbit distortions during scans
- quantify impact of (i) orbit distortions & (ii) b-b induced skew quad on off-axis scans (→ crisper evaluation of non-factorization symptoms)

Limitations in long-term luminosity & beam-background monitoring

- EOF scans impractical because of beam-beam (+ non-linear correlations)
 - makes long-term monitoring of $\mathcal L$ stability much more difficult
- Landau damping vs. instabilities & single-beam bakground monitoring
 - removing non-colliding bunches unfortunate any way to rescue these?
- \odot The need to limit, during *L*-calibration scans, the impact of
 - head-on beam-beam kicks + dynamic β , on scan-shape distortions
 - long-range encounters, on scan-shape distortions
 - vertexing resolution, on B-G imaging & quantification of non-factorization effects

significantly constrains the operational conditions during *vdM* scans \rightarrow iterate with LHC operations group on pragmatic solutions

Additional material

Systematic uncertainties on 2011 \pounds determination (ATLAS)

σ_{vis} uncertainty (vdM scans)

Table 7 Relative systematic uncertainties on the determination of the visible cross-section σ_{vis} from *vdM* scans in 2011.

Scan Number	VI–VII	
Fill Number	1783	
Beam centring	0.10%	
Beam-position jitter	0.30%	
Emittance growth		
and other non-reproducibility	0.67%	
Bunch-to-bunch $\sigma_{\rm vis}$ consistency	0.55%	
Fit model	0.28%	
Background subtraction	0.31%	
Specific Luminosity	0.29%	
Length scale calibration	0.30%	
Absolute ID length scale	0.30%	
Beam-beam effects	0.50%	
Transverse correlations	0.50%	
μ dependence	0.50%	
Scan subtotal	1.43%	
Bunch population product	0.54%	
Total	1.53%	

Total *L* uncertainty (physics runs)

Uncertainty Source	$\delta \mathscr{L} / \mathscr{L}$		
-	2010	2011	
Bunch Population Product	3.1%	0.5%	
Other <i>vdM</i>			
Calibration Uncertainties	1.3%	1.4%	
Afterglow Correction		0.2%	
BCM Stability		0.2%	
Long-Term Consistency	0.5%	0.7%	
μ Dependence	0.5%	0.5%	
Total	3.4%	1.8%	

Direct measurement of µ-dependence: pile-up ('µ') scan

'μ sweep' performed by beam-separation in F 2086 (873 b, $\mathcal{L} \sim 1.9 \ 10^{33}$) → characterize the relative µ-dep. of BCM H/V, FCal, LUCID, TILE, vtx algos

μ-dependence during 2012 physics running: individual runs

W. Kozanecki

Long Term Stability 2012

Day in 2012

Emittance growth for different static offsets with beams colliding in one IP only and no long-range interactions

The mild: beam-beam kicks during scan from shared bunches

Luminosity afterglow

A fundamental assumption: x-y factorization of $\mathcal{L}(\Delta x, \Delta y)$

 A key assumption of the *vdM* scan method as currently applied is that the luminositv

$$\mathcal{L} = n_{\rm b} f_{\rm r} n_1 n_2 \int \hat{\rho}_1(x, y) \hat{\rho}_2(x, y) dx dy$$

factorizes in x & y:

- $\mathcal{L} = n_{\mathrm{b}} f_{\mathrm{r}} n_1 n_2 \,\Omega_x(\rho_{x1}, \rho_{x2}) \,\Omega_y(\rho_{y1}, \rho_{y2}) \qquad \Omega_x(\rho_{x1}, \rho_{x2}) = \int \rho_{x1}(x) \rho_{x2}(x) dx$
- This is equivalent to assuming that the shape of the scan curve during an x (y) scan is independent of the separation Δy (Δx) in the orthogonal plane
 - ◎ if this is the case, the combination of 1 x-scan and 1 y-scan is sufficient to characterize the entire distribution \mathcal{L} (Δx , Δy)
 - if this is violated at a "significant" level, the vdM formalism can be generalized to 2 dimensions by performing a grid scan (impractical!)
- Although linear x-y coupling does violate this assumption, the induced bias is typically very small ($\Delta \pounds \pounds \sim 0.1\%$) with present LHC optics (small x-y coupling coeff., $\varepsilon_x \sim \varepsilon_y$, $\beta^*_x \sim \beta^*_y$)

A complementary approach: correlated fits to vdM scan curves

- To estimate (roughly) the magnitude of a potential NLC-induced bias, ATLAS routinely compared the visible cross-sections (i.e. the *L* calibration scales) obtained by fitting the x- & y- vdM-scan curves using either
 - on uncorrelated model (= baseline): g+g (can simplify to g, or to g+p0)

$$\mathcal{L}(x,y) = A\left(f_x e^{-\Delta x^2/2\sigma_{x_1}^2} + (1-f_x)e^{-\Delta x^2/2\sigma_{x_2}^2}\right) \times \left(f_y e^{-\Delta y^2/2\sigma_{y_1}^2} + (1-f_y)e^{-\Delta y^2/2\sigma_{y_2}^2}\right)$$

a correlated double-gaussian model (naïve & by no means unique)

$$\mathcal{L}(x,y) = A \left(f e^{-\Delta x^2/2\sigma_{x_1}^2} e^{-\Delta y^2/2\sigma_{y_1}^2} + (1-f) e^{-\Delta x^2/2\sigma_{x_2}^2} e^{-\Delta y^2/2\sigma_{y_2}^2} \right)$$

that reduces to the uncorrelated model at $\Delta x = \Delta y = 0$ (but with $f_x = f_y$)

- Observed impact on visible cross-sections at $\sqrt{s} = 7$ TeV (ATLAS)
 - \odot $\Delta \sigma_{vis}$ / σ_{vis} ~ 3%, 2%, 0.9%, 0.5 % for Apr '10, May '10, <u>Oct '10, May '11</u>
 - The more single-gaussian the scan curves, the smaller the potential bias (a property of this model – but probably not a general property?)
 - As the effect looked small for the <u>two main</u> 7 TeV scan sessions, and for lack of manpower, didn't look much further until large 2012 signal

Comparison of uncorrelated & correlated fits to *vdM* **scan curves**

Comparison of uncorrelated & correlated fits to *vdM* **scan curves**

Production of (more) gaussian beams in the injector chain: PSB/PS/SPS MD of 2 Nov 12 for *vdM* improvement

Production of (more) gaussian beams in the injector chain (2)