

Beam-beam Studies for HL-LHC

A.Valishev (Fermilab/US LARP) for WP2 Task 2.5 ICFA Mini-Workshop on Beam-Beam in Hadron Colliders CERN, March 18-22, 2013

The Task: D.Banfi, A.Burov, S.Fartoukh, B.Muratori, K.Ohmi, S.Paret, T.Pieloni, J.Qiang, D.Shatilov, S.White, F.Zimmermann

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404. Fermi Research Alliance, LLC operates Fermilab under Contract DE-AC02-07CH11359 with the US Department of Energy. This work was partially supported by the US LHC Accelerator Research Program (LARP).

HL-LHC Beam-Beam Study

Evaluate beam-beam for HL-LHC scenarios, identify minimum requirements – β^* , crossing scheme

- Evaluate limitations
- Luminosity leveling techniques talk by T.Pieloni/B.Muratori
- Develop self-consistent simulations of beam-beam with other dynamical effects
 - Interplay with machine impedance talk by S.White
 - Crab cavity, noise, offset, etc. talks by K.Ohmi, S.Paret
- Support new ideas talk by A.Burov

Methods

- Analytical calculations, where possible
- Weak-strong
 - Tune footprint (very fast)
 - Dynamic Aperture (fast)
 - Full-scale multi-particle simulation of intensity and emittance life time (slow)
- Strong-strong
 - Self-consistent multi-effect simulation (short reach as far as the number of turns, slowest)

Simulation Tools

- Weak-strong
 - SixTrack. Well-tested code, the backbone of tracking studies for LHC design.
 - Lifetrac. Many years of use for electron machines and Tevatron. Well-tested 6D beam-beam with crossing angle and crab cavity.
- Strong-Strong
 - BeamBeam3D. Many users LBNL, FNAL, BNL
 - COMBI. Good for multi-bunch simulations

Study Topics

- Evaluate the options for HL-LHC
 - Choice of basic options β^* , crossing scheme
 - Luminosity leveling techniques
 - Imperfections, mitigation of beam-beam
- Develop self-consistent simulations of the beambeam phenomena with other dynamical effects
 - Interplay with machine impedance
 - Crab cavity, noise, offset, etc.
 - Support new ideas

HL-LHC Performance Estimates

'Stretched' Baseline Parameters following 2nd HL-LHC-LIU:

Parameter	nominal
N	1.15E+11
n _b	2808
beam current [A]	0.58
x-ing angle [µrad]	300
beam separation	
[σ]	9.9
β* [m]	0.55
ε _n [μ m]	3.75
ε _L [eVs]	2.51
energy spread	1.20E-04
bunch length [m]	7.50E-02
IBS horizontal [h]	80 -> 106
IBS longitudinal [h]	61 -> 60
Piwinski parameter	0.68
geom. reduction	0.83
beam-beam / IP	3.10E-03
Peak Luminosity	1 1034
Virtual Luminosity	1.2 1034

25ns	50ns		
	2.2E+11	3.5E+11	
	2808	1404	
	1.12	0.89	
	590	590	
	12.5	11.4	
	0.15	0.15	
	2.5	3.0	
	2.51	2.51	
	1.20E-04	1.20E-04	
	7.50E-02	7.50E-02	
	18.5	17.2	
	20.4	16.1	
	3.12	2.85	
	0.305	0.331	
	3.3E-03	4.7E-03	
	7.4 10 ³⁴	8.5 10 ³⁴	
	24 10 ³⁴	26 10 ³⁴	

6.2	10 ¹⁴ and 4.9	1014
	p/beam	

→ sufficient room for leveling (with Crab Cavities)

Virtual luminosity (25ns) of L = 7.4 / 0.305 10³⁴ cm⁻² s⁻¹

= 24 10^{34} cm⁻² s⁻¹ ('k' = 5)

Virtual luminosity (50ns) of L = 8.5 / 0.331 10³⁴ cm⁻² s⁻¹

= 26 10^{34} cm⁻² s⁻¹ ('k' = 10)

(Leveled to 5 10^{34} cm⁻² s⁻¹ and 2.5 10^{34} cm⁻² s⁻¹)

19 ->

Events / crossing (peak & leveled L) 28 207

Mark & HL-LHC General Meeting 13-14 November 2012

76 140

Oliver Brüning BE-ABP CERN

140

High Luminosity LHC

HL-LHC Base Beam-Beam Parameters

- $N_p = 2.2 \times 10^{11}$, $\mathcal{E} = 2.5 \ \mu \text{m}$
- θ =590 μ rad = const
- $\beta^* = 15$ cm = const

- ξ = 0.01 (3 IPs)
- $A/\sigma = 12.5$
- Level with crab only

Frequency Map Analysis

Lifetrac: full HL-LHC lattice (element-by-element, sextupoles) + beam-beam (head-on & long-range), 2¹¹ turns

Frequency Map Analysis of HL-LHC options

β*=15cm θ=590μrad Δp/p=1.1e-4

β*=15cm θ=590μrad Δp/p=2.2e-4

From FMA to Dynamical Aperture

Linear HL-LHC lattice (no sextupoles) + beam-beam (head-on & long-range) DA based on 10^6 tracking turns, FMA – 2^{13} turns

D.Shatilov, A.Valishev

From FMA to Dynamical Aperture

Linear HL-LHC lattice (no sextupoles) + beam-beam (head-on & long-range) DA based on 10^6 tracking turns, FMA – 2^{13} turns

D.Shatilov, A.Valishev

From FMA to Dynamical Aperture

Linear HL-LHC lattice (no sextupoles) + beam-beam (head-on & long-range) DA based on 10^6 tracking turns, FMA – 2^{13} turns

D.Shatilov, A.Valishev

)13

DA Studies Sixtrack vs. Lifetrac

HL-LHC lattice without magnetic errors (only chroma sextupoles) DA based on 10^6 tracking turns. $N_p=2\times10^{11}$, $\varepsilon=2.5\mu m$

S.White, A.Valishev

DA Studies Sixtrack vs. Lifetrac

21 Mar. 20

DA Studies – Intensity Scan

HL-LHC lattice without magnetic errors (only chroma sextupoles)

DA based on 10^6 tracking turns. β^* =0.15m, θ =590 μ rad, ε =2.5 μ m

D.Banfi, A.Valishev

Conclusion for Baseline

- Weak-strong studies predict the scenario OK
- Work in progress:
 - Effect of multipole errors
 - Multiparticle tracking

Evolving HL-LHC Baseline DRAFT by S.Fartoukh for CM20

	LHC nominal	HL-LHC 25 ns
# Bunches	2808	2808
p/bunch [10 ¹¹]	1.15 (0.58A)	2.2 (1.11 A)
γε _{x,y} [μm]	3.75	2.5
ε_{L} [eV.s]	2.5	2.5
σ_{z} [cm]	7.5	7.5
$\sigma_{\delta p/p}$ [10 ⁻³]	0.1	0.1
β* [cm]	55	15 (→ 10)
X-angle [μrad]	300 (10.0 σ)	590 (→ 720) (12.5 σ)
Lumi loss factor	0.83	0.31
Peak lumi [10 ³⁴] (with full Piwinsky angle)	1.0	7.4
Virtual lumi [10 ³⁴] (w/o Piwinsky angle)	1.2	21.9
T _{leveling} [h] @ 5E34	n/a	9.0
#Pile up @5E34	25	140

Main HL-LHC beam & optics parameters

Time evolution of main parameters

(assuming no emittance growth)

 \rightarrow Only the β^* profile will actually depend on the details of the leveling technique (bb limit, if any?)

Evolving HL-LHC Baseline DRAFT by S.Fartoukh for CM20

 \rightarrow β^* leveling seems to be the main option but leading a **b-b tune** shift of up to ΔQ_{bb} =0.033 for 3 experiments (IR1, IR5 & IR8)

Parameters	Leveling with cc.	Leveling with β^*	
# bunches	2808		
bunch charge [10 ¹¹]	2.2		
emittance [μm]	2.5		
r.m.s. bunch length [cm]	7.5		
full X-angle [μrad]	590		
initial β^* [cm]	15	72	
cc. initial voltage [MV]	- 6.6 ("anti-crabbing")	12.5 ("full crabbing")	
initial Piwinsky angle	4.76	0	
initial lumi loss factor	0.21	1.0	
levelled lumi [10 ³⁴ cm ⁻² s ⁻¹]	5.0		
initial luminous region [cm]	1.1	5.3	
initial bb tune shift for 3 IRs (IR1, IR5 & IR8)	0.016 (0.011+2×0.0025)	0.033 (3×0.011)	

HL-LHC new Beam-Beam Parameters

- $N_p = 2.2 \times 10^{11}$, $\mathcal{E} = 2.5 \ \mu \text{m}$
- θ =590 μ rad = const
- $\beta^* = 72 \rightarrow 15$ cm
 - $A/\sigma = 26 \rightarrow 12.5$

- ξ = 0.033 (3 IPs) initially, 0.014 at the end of fill
- Level with β^*

DA for Beginning of Fill

BB tune shift of ξ = 0.033 is ok even with A/ σ = 12.5!

with full crab on, no imperfections though

HL-LHC lattice without magnetic errors (only chroma sextupoles) DA based on 10^6 tracking turns. β^* =0.15m, θ =590 μ rad, ε =2.5 μ m

Can X-Angle (Crab Voltage) be reduced?

 θ =480 μ rad (Crab Voltage 10 MV) corresponds to A/ σ = 10 at end of fill with Np=0.95x10¹¹ ξ =0.014 – OK, IF emittance growth is contained!

HL-LHC lattice without magnetic errors (only chroma sextupoles) DA based on 10^6 tracking turns. $\beta^*=0.15$ m, $\theta=480~\mu$ rad, $\varepsilon=2.5~\mu$ m

Summary of DA for full crab ON

- Large margin at beginning of fill – easy to reduce x-angle
- 15% margin at end of fill with θ =480 μ rad should allow some emittance growth
- What happens at intermediate steps?

Will the New Option Work with 50ns?

 β *=1.5m θ =590 μ rad corresponds to A/ σ = 35 with Np=3.5x10¹¹ ε =3 μ m ξ =0.043? (0.03) – preliminary OK!

HL-LHC lattice without magnetic errors (only chroma sextupoles) DA based on 10⁶ tracking turns.

In actual simulation: $\beta^*=0.15$ m, $\theta=590$ x3 μ rad

Study Topics

- Investigate the options for HL-LHC
 - Choice of basic options β^* , crossing scheme
 - Luminosity leveling techniques
 - Imperfections, mitigation of beam-beam
- Develop self-consistent simulations of the beam-beam phenomena with other dynamical effects
 - Interplay with machine impedance
 - Crab cavity, noise, offset, etc.
- Help understand the experimental data from LHC as it becomes available
 - Also use RHIC for beam-beam experiments
- Support new ideas

Circular Modes and Flat Beams for LHC

- A special type of coupled beam optics can convert planar betatron modes into circular modes
- For circular modes, the Space Charge tune shift is determined by the maximal emittance, being independent of the minimal one
- After acceleration, the beam can be transferred into the planar state, becoming flat – gain in luminosity
- With flat beams, leveling can be done with β^* in the crossing plane no need for crab cavity

Luminosity Scenario with Flat Beams

	LHC nominal	HL-LHC 25 ns	HL-LHC Flat
# Bunches	2808	2808	2808
p/bunch [10 ¹¹]	1.15 (0.58A)	2.2 (1.11 A)	2.2 (1.11 A)
ε_{L} [eV.s]	2.5	2.5	2.5
σ_{z} [cm]	7.5	7.5	7.5
$\sigma_{\delta p/p}$ [10 ⁻³]	0.1	0.1	0.1
$\gamma \epsilon_{x,y}$ [μm]	3.75	2.5	4.0, 0.4
β* [cm] (baseline)	55	15	55, 15
X-angle [μrad]	285	590 (12.5 σ)	318 (10 σ)
Lumi loss factor	0.84	0.30	0.85
Peak lumi [10 ³⁴]	1.0	7.4	19.7
Virtual lumi [10 ³⁴]	1.2	24.0	23.6
Leveling		Crab cavity	β x=11m down

A.Burov, A.Valishev

DA with Flat Beams

 $\xi y = 0.03$, $\xi x = 0.02$, L=1.8x10³⁵ – OK, although in a very

simplified model!

Model HL-LHC lattice without nonlinearities. DA based on 10⁶ tracking turns.

Summary

- Baseline HL-LHC scenario has been studied
 - No bb-imposed limitations so far
 - Good agreement between two codes
 - To do: effect of imperfections, multiparticle
- New scenario challenging in terms of bb
 - Preliminary results very encouraging ξ =0.033 can be sustained
 - Crossing angle = CC voltage can be reduced ~20%
 assuming zero emittance growth
 - Flat beams first look promising no CC needed?

Asknowledgments

Many thanks to D.Banfi, X.Buffat, A.Burov,
 S.Fartoukh, W.Herr, B.Muratori, S.Paret,
 T.Pieloni, J.Qiang, F.Schmidt, D.Shatilov,
 R.Tomas, S.White, F.Zimmermann...

fnal.gov cern.ch