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ICFA Beam–Beam Workshop CERN 2013

Analytical and Numerical Tools for Beam–Beam Studies

Mathias Vogt (DESY–MFL)

• Intro

• Weak–Strong Beam–Beam (WSBB)

• A little bit on WSBB codes

• Strong–Strong Beam–Beam (SSBB)

• A little bit on SSBB codes

. . . not necessarily in that strict order!

FLASH
Free−Electron Laser

in Hamburg
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Beam Beam Models (Basics)

Immanent symmetry: “beam” ↔ “other beam”⇒ “other beam” =: “beam⋆”

We don’t need the ⋆ to indicate IP–properties: “at-the-IP” is the default for beam–beam–stuff!!

• Phase space: ~z ∈ R
2n, n = 1, 2, 3

{zi}i=1,...,6 →

→ x, (a := px/p0), y, (b := py/p0), τ, δ

• Indep. var. θ := 2πs/C

• Hamiltonian:

H = H0 +
∑NIP

i=1 a2π(θ − θi)H
bb
i

• a2π(θ) = a2π(θ + 2π) =
{

δ2π(θ) : στ ≪ βx,y

loc. hump around 0 : otherwise

• a2π → δ2π ⇒

Hbb
i → Ubb

i (kick–potential)

• extended a2π : H
bb
i = T free−space+Ubb

i

← beam–waist

→ Hourglass–Effect

• include long. phase space (τ, δ) ⇒

potential crossing angle

. . . and more fun with beam–waists!

• Note of course : Hamiltonian⋆:

H⋆ = H0
⋆ +

∑NIP

i=1 a2π
⋆(θ − θi)Hbb⋆

i

• Hbb
i can be head–on or long–range

(a.k.a. “parasitic” )

• Hbb
i can be weak–strong (beam⋆ fixed

from turn-to-turn)

• Hbb
i can be strong–strong (beam⋆

changes from turn-to-turn due to beam)

• Some collision schemes (RHIC, Teva-

tron, LHC!) need to consider more

than 1 bunch per beam!
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Beam Beam Models (“Time”–Continuous)

For the moment : only one short bunch per beam and head–on w/o crossing angle, only one IP.

• Phase space densities :

Ψ(~z , θ) & Ψ⋆(~z , θ)

• SSBB (the real thing!) :

dependence of H (H⋆) on Ψ⋆ (Ψ) :

H[Ψ⋆] = H0 + U ss[Ψ⋆]

H⋆[Ψ] = H0
⋆ + U ss⋆[Ψ]

• via ρ(~q , θ) :=
∫

Ψ(~q , ~p , θ) dnp

& ρ⋆(~q , θ) :=
∫

Ψ⋆(~q , ~p , θ) dnp

• U ss[Ψ⋆](~q ) ∝
∫

G(~q − ~q ′)ρ⋆(~q ′)dnq′,

G : Green’s function

⇒ Evolution of trajectories ~z (θ), ~z ⋆(θ)

needs up to date densities Ψ, Ψ⋆

(both!) : (J : symplectic structure)

d
dθ
~z =J ∂~zH[Ψ⋆](~z , θ)

d
dθ
~z ⋆=J ∂~zH

⋆[Ψ](~z ⋆, θ)

→ so, why not skip the trajectories ?!

∂tΨ ={H[Ψ⋆],Ψ} ≡ (∂~zΨ)TJ (∂~zH[Ψ⋆])

∂tΨ
⋆={H[Ψ],Ψ⋆} ≡ (∂~zΨ

⋆)TJ (∂~zH[Ψ])

→ SSBB coupled Vlasov–Poisson eq’s

→ coupled system of 2 non–linear

1-st order PIDEs

→ Can treat coherent (and incoherent) mo-

tion and collective interactions

• WSBB : Ψ⋆ given & fixed ∀ turns

→ study only ~z (θ) (and/or Ψ(~z , θ))

→ Uws(q) ≡ U ss[Ψ⋆
fixed](q)

• d
dθ
~z = J ∂~zH

ws(~z , θ) ← Can. eq’s

• ∂tΨ = {Hws,Ψ} ← Liouville eq.

→ linear 1-st order PDE

→ Can NOT treat collective effects.
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Beam Beam Models (“Time”–Discrete WSBB )

• WSBB :

• d
dθ
~z = J ∂~zH(~z , θ)

← Hamiltonian Vectorfield

⇒ ~z (θi) 7→ ~z (θf) ≡ ~M θf ,θi(~z (θi))

← Symplectic Flow

M(~z 0) := ∂ ~M θf ,θi(~z 0) ∈ Sp(2n)∀~z 0 ∈ R
2n

~M θ,θ = ~Id (identity)

⇒ Measure Preserving Flow :

µΨ(A) = µΨ( ~M (A)) ∀A ∈ B
2n

i.a.w.: Ψ = const. along trajectories

← this is why Liouville eq. holds!

→ Meth. o. Characteristics / P.F.–Meth.

Ψ(~z , θ) at point ~z and “time” θ is given

by Ψ( ~M −1
θ,θ0

(~z ), θ0) at an earlier “time”

θ0 and the backward tracked point
~M −1

θ,θ0
(~z ) ≡ ~M θ0,θ(~z )

→ linear(!) Perron–Frobenius Operator

M : Ψ 7→ Ψ ◦ ~M −1

• Discrete “time” maps :

restrict θ to discrete set {θj}j=1,...

~z j := ~z (θj), Ψj(~z ) := Ψ(~z , θj)

~M f,i(~z ) := ~M θf ,θi(~z )

and forget about θ ∈ R . . .

• OneTurnMap (OTM, monodromy map)

~T j(~z ) := ~M θj+2π,θj(~z )

• Since Sp(2n) is connected, all sym-

plectic C1 maps are connected to ~Id

(identity) and thus can all be a flow.

⇒ extra freedom : use effective maps

from θi to θf w/o caring what hap-

pens in–between!
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Beam Beam Models (“Time”–Discrete SSBB)

• from WSBB:

Ψf (~z ) = (Mf,iΨi) (~z )

=
(

Ψi ◦ ~M
−1
f,i

)

(~z ) = Ψi( ~M i,f (~z ))

• SSBB :

• For every given decent ψ (∈ L1 & normal-

ized) J∂~zH[ψ] is a perfectly Hamil-

tonian V.F. and defines the perfectly

Symplectic Flow ~M [ψ]

⇒ Thus (at least) the following model is

perfectly well defined:

• BB–Kick & Lattice (One IP) :

• ~T [Ψ⋆] := ~L ◦ ~K [Ψ⋆]

~K [Ψ⋆] :=

(

~q

~p

)

7→

(

~q

~p − ∂~qU [ρ⋆](~q )

)

~L represents the lattice w/o collective effects

⇒ ~T [Ψ⋆]−1 = ~K [Ψ⋆]−1 ◦ ~L−1 (inv. OTM)

⇒ T [Ψ⋆] : Ψ 7→ Ψ ◦ ~T [Ψ⋆]−1 (P.F.)

⇒ Evolution from n-th turn to (n+1)-st :

Ψn+1(~z ) =Ψn

(

~K [Ψ⋆
n]

−1

(

~L−1(~z )
))

Ψ⋆
n+1(~z )=Ψ⋆

n

(

~K [Ψn]
−1
(

~L−1(~z )
))

• Extension to more IPs straight forward!

• Example : HERA with “hadronic leptons”

→ needs only one bunch per beam

2× 2 arcs: ~L e
W , ~L e

E, ~L p
W , ~L p

E

2× 2 bb–kicks:
~K e[Ψ

p,N ], ~K e[Ψ
p,S ], ~K p[Ψ

e,N ], ~K p[Ψ
e,S ]
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“Time”–Discrete SSBB : HERA–Example

• 2× 2 arcs: ~L e
W , ~L e

E, ~L p
W , ~L p

E (e±, p)×(West, East)

• 2× 2 bb–kicks: ~K e[Ψ
p,N ], ~K e[Ψ

p,S ], ~K p[Ψ
e,N ], ~K p[Ψ

e,S ] (e±, p)×(North, South)

• Evolution of Ψe and Ψp over 2n half turns:

1:N→S: Ψe,S
n = Ψe,N

n ◦ ~K e
−1[Ψp,N

n ] ◦ ~L e
O
−1

Ψp,S
n = Ψp,N

n ◦ ~K p
−1[Ψe,N

n ] ◦ ~L p
W

−1

2:S→N: Ψe,N
n+1 = Ψe,S

n ◦ ~K e
−1[Ψp,S

n ] ◦ ~L e
W

−1
Ψp,N

n+1 = Ψp,S
n ◦ ~K p

−1[Ψe,S
n ] ◦ ~L p

O
−1

⇒ No fundamental difference between

2 IPs and 1 IP

⇒ Just more intricate dependence on

the lattice parameters

• There’s more complicated examples:

RHIC, Tevatron, LHC!!!

• Also: approximate extended BB

waists with (kick→drift→)k, k > 1.

Mp
E

eK p[Ψ ]N K [Ψ ]ep

N

pK [Ψ ]e
S

e [Ψ ]pK
S

Me
W Me

E

p
WM

W E

N

S
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The Rigid Bunch Model (RBM)

. . . just for completeness: the Rigid Bunch Model (RBM) :

• Quick and dirty: only centroid motion

• However, well suited for first multi (= N) bunch & multi (=M) IP analysis :

• One “macro particle” ~z i per bunchi and WS–like interaction potential for crossing

of i–th and j–th bunch at l-th IP Ul(~q i − ~q j)

• Further simplification : linearization, no long. & uncoupled, kick

→ study (x, a) and (y, b) plane separately

⇒ e.g. ~K l[~z
⋆](~z ) =

(

1 0

−κl 1

)

~z +

(

0

+κl q
⋆

)

and vice versa (~z ↔ ~z ⋆)

• Now glue together: bunches ~Z := ~z 1 ⊕ ~z 2 ⊕ . . .⊕ ~z N , sections of lattice

M l := L1
l ⊕ L

2
l ⊕ . . .⊕ Ll

N and join with IPs K l (bunch-to-bunch coupling)

→ linear stability analysis of 2N × 2N OTM T := K1M1 . . . KMMM
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The Absolutely Most Famous Results from Linear WSBB :-)

• unperturbed linear OTM seen from IP (α = 0):

• T 0 :=

(

cos(2πQ0) β0 sin(2πQ0)

− sin(2πQ0)/β0 cos(2πQ0)

)

• insert linear (focusing) WSBB kick K :=

(

1 0

−κ 1

)

before IP

• with κ from κx,y =
2N⋆rp

γ
(σ⋆

x,y(σ
⋆
x + σ⋆

y))
−1

⇒ T := T 0K =

(

cos(2πQ0)− β0 sin(2πQ0)κ β0 sin(2πQ0)

− sin(2πQ0)/β0 − cos(2πQ0)κ cos(2πQ0)

)

⇒ cos(2πQ) = 1
2
traceT = cos(2πQ0)−

β0κ

2
cos(2πQ0)

⇒ Perturbed tune Q = Q0 +
β0κ

4π
+O(κ2)

• Linear Beam–Beam Tuneshift Parameter ξ := β0κ

4π



BeamBeam–2013 : CERN 19.03.2013/ M.Vogt DESY-MFL : Analytic & Simulation Tools 9

Famous Results from WSBB

• Purely transverse motion, head–on

• Round Gaussian Beam:

ρ(r) = 1
2πσ2

r
exp

(

− r2

2σ2
r

)

→ kick ∆r′ ∝ 1/r
(

1− exp
(

− r2

2σ2
r

))

• Elliptic Gaussian Beam:

ρ(x, y) = 1
2πσxσy

exp
(

− x2

2σ2
x
− y2

2σ2
y

)

→ Bassetti–Erskine! →contains com-

plex error function → numerically slow

← both however have

U(x, y) = U(−x, y) = U(x,−y)

⇒ Only resonances 2kxQx + 2kyQy = k0
are driven by H–O collisions w/o cross-

ing angle

• Long–range drives also odd reson.

• Crossing angle→ sidebands

kxQx+kyQy+ksQs = k0, kx+ky+ks = 2k

• Canonical Averaging

→ Tune Footprint ~Q ( ~J )

→ neat feature: detuning →0 at infinite ampli-

tudes

• Phase space close to h.o. resonances

might be subject to action diffusion

→ driven by beam beam + (any of: orbit

jitter, multipoles, external noise, ∅,. . . )

→ The full machinery of the canonical in-

coherent resonance analysis needed !

→ recent paper by T.Sen (PRSTAB, 15 101001

(2012)) on “Anomalous beam diffusion near

beam-beam synchrobetatron resonances”
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WSBB Tracking

• In principle every “single particle” tracking code may implement beam–beam lenses.

• However, while Round Gaussian Beams are relatively cheap, the complex error

function needed for Elliptic Gaussian Beams is a major pain!

• Long beam waists can effectively be approximated by kick–drift expansions

• Crossing angle can be treated by Lorentz–boosting into the rest system of the lens

(and back)

• Fairly complete 6d description is in: Leunissen, Schmidt, Ripken, PRSTAB 3 124002 (2000)

• BB–compensation (H–O & L–R) : electron lenses & electric wires

• Typical codes are, to my recognition, MAD, sixtrack, BBsim, Lifetrack, PTC

• Leptons : include damping and stoch. excitation
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Famous Results from SSBB

• SSBB coupled Vlasov–Poisson eq’s =

coupled system of 2 non–linear 1-st order partial

integro–differential equations ⇒ solving them

analytically is quite some challenge.

• Standard procedure(s):

Linearization about equilibrium.

→ Which equilibrium? → averaging

→ equilibria Ψeq( ~J ) of the averaged sys-

tem give quasi–equilibria of the exact

system. {H[Ψeq
⋆],Ψeq} = 0

• Linearize around Ψeq( ~J ) :

Ψn(~z ) = Ψeq( ~J ) + Φn(~z ) ⇒

∂tΦn = {H[Ψeq
⋆],Φn}+{H[Φ⋆

n],Ψeq}

∂tΦ
⋆
n={H[Ψeq],Φ

⋆
n}+{H[Φn],Ψeq

⋆}

• Decouple by introducing Eigenmodes

for 2 and/or more bunches

⇒ ∂tfn = {H[Feq], fn}+{H[fn], Feq}

• Laplace in t and Fourier in angles ~ϕ (or

similar)

→ Fredholm type integral equation

for the harmonics

• There’s a multitude of slightly different

Linearized Averaged Vlasov Mod-

els: see e.g. Chao, Yokoya/Koiso,

Alexahin, Ellison/Sobol/Vogt, . . .

→ Theory and observation suggest:

For moderate BB parameter,

civilized equilibria (not unique!)

the plain collective beam–beam

modes are at best neutrally sta-

ble.

I.a.w.: they don’t grow unless exter-

nally driven.
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SSBB Tracking

• when people want all at the same time. . .

high resolution for Ψ, for U [Ψ], maybe in 6d with beam–beam waists and crossing

angles, including multi–bunch and multi–IP schemes and lattice non–linearities and

for many turns and all that in little time

. . . then things become a little tough ! However if one puts up with only parts of that,

1. There’s some Perron–Frobenius codes that evolve Ψn, Ψ
⋆
n on a grid :

(Bob Warnock’s code(s), Andrey Sobol’s code, and my BBPF, and probably

more. . . )

2. There’s many Macro–Particle codes that evolve ensembles of particles :

(Ji Quiang’s massive parallel code BeamBeam3D, Kazuhito Ohmi’s code, Werner

Herr et al., Y.-H. Cai’s code, my BBDeMo,. . . )

• Every code needs an adapted, fast & accurate Poisson solver!

• Relation Perron–Frobenius ↔ Macro–Particle Tracking:

given Ψf (~z ) = Ψi( ~M
−1(~z )), compute expectation values = integrals :

Ef [g] :=
∫

g(~z )Ψf(~z ) d
2nz=

∫

g(~z )Ψi( ~M
−1(~z )) d2nz=

∫

g( ~M (~z )) Ψi(~z ) d
2nz

• Leptons : try operator splitting : Perron–Frobenious for Vlasov and

finite–difference for Fokker–Planck (→ R.L.Wanock, M.–P.Zorzano)
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Summary

• The growing hunger of the experiments for Luminosity assures beam beam theory

& simulation will be hot topics as long as colliders are built/operated!

← BB can drive resonances and action diffusion and thus severely degrade beam- &

luminosity–lifetime, and background conditions at the experiments.

← It can however, also help provide (incoherent) tune spread and Landau damping.

← Coherent, collectively driven beam–beam modes have been predicted by theory and

simulation and have been observed in real machines.

• It appears however, that in many cases they are not by-themselves unstable, i.e.

growing.

• Instead they often tend to be either Landau damped or neutrally stable.

• Collective BB–modes are an active interesting field.

• Progress in parallel computing will strongly enhance the simulations in the

strong–strong regime.


