ICFA Beam-Beam Workshop CERN 2013

Analytical and Numerical Tools for Beam–Beam Studies

Mathias Vogt (DESY-MFL)

- Intro
- Weak-Strong Beam-Beam (WSBB)
- A little bit on WSBB codes
- Strong-Strong Beam-Beam (SSBB)
- A little bit on SSBB codes

... not necessarily in that strict order!

Beam Beam Models (Basics)

Immanent symmetry: "beam" ↔ "other beam" ⇒ "other beam" =: "beam*"

We don't need the ★ to indicate IP-properties: "at-the-IP" is the default for beam-beam-stuff!!

- $\{z_i\}_{i=1,\ldots,6} \rightarrow$ $\rightarrow x, (a := p_x/p_0), y, (b := p_y/p_0), \tau, \delta$
- Indep. var. $\theta := 2\pi s/C$
- Hamiltonian:

$$H = H_0 + \sum_{i=1}^{N_{\rm IP}} a_{2\pi} (\theta - \theta_i) H_i^{\rm bb}$$

• $a_{2\pi}(\theta) = a_{2\pi}(\theta + 2\pi) =$ $\begin{cases} \delta_{2\pi}(\theta) & : \sigma_{\tau} \ll \beta_{x,y} \\ \text{loc. hump around 0} & : \text{otherwise} \end{cases} \bullet H_i^{\text{bb}} \text{ can be weak-strong (beam* fixed from turn-to-turn)}$

- $\bullet \ a_{2\pi} \to \delta_{2\pi} \Rightarrow$ $H_i^{\mathrm{bb}} \to U_i^{\mathrm{bb}}$ (kick-potential)
- extended $a_{2\pi}$: $H_i^{\text{bb}} = T^{\text{free-space}} + U_i^{\text{bb}}$ ← beam–waist → Hourglass–Effect

- Phase space: $\vec{z} \in \mathbb{R}^{2n}$, n = 1, 2, 3 include long. phase space $(\tau, \delta) \Rightarrow$ potential crossing angle
 - ... and more fun with beam-waists!
 - Note of course : **Hamiltonian***: $H^{\star} = H_0^{\star} + \sum_{i=1}^{N_{\rm IP}} a_{2\pi}^{\star} (\theta - \theta_i) H_i^{\rm bb \star}$
 - H_i^{bb} can be **head-on** or **long-range** (a.k.a. "parasitic")

 - H_i^{bb} can be **strong**—**strong** (beam* **changes** from turn-to-turn due to beam)
 - Some collision schemes (RHIC, Tevatron, LHC!) need to consider more than 1 bunch per beam!

Beam Beam Models ("Time" – Continuous)

For the moment : only one short bunch per beam and head-on w/o crossing angle, only one IP.

- Phase space densities : $\Psi(\vec{z}, \theta) \& \Psi^{\star}(\vec{z}, \theta)$
- SSBB (the real thing!): dependence of H (H^*) on Ψ^* (Ψ): $H[\Psi^*] = H_0 + U^{\mathrm{ss}}[\Psi^*]$ $H^*[\Psi] = H_0^* + U^{\mathrm{ss}*}[\Psi]$
- $\bullet \ \mathsf{via} \ \rho(\vec{q}\,,\theta) := \int \Psi(\vec{q}\,,\vec{p}\,,\theta) \, d^n p \\ \& \ \rho^{\star}(\vec{q}\,,\theta) := \int \Psi^{\star}(\vec{q}\,,\vec{p}\,,\theta) \, d^n p$
- $U^{\rm ss}[\Psi^{\star}](\vec{q}) \propto \int G(\vec{q} \vec{q}') \rho^{\star}(\vec{q}') d^n q'$, G: Green's function
- \Rightarrow Evolution of trajectories $\vec{z}(\theta)$, $\vec{z}^*(\theta)$ needs **up to date** densities Ψ , Ψ^* (both!) : (\underline{J} : symplectic structure)

$$\frac{d}{d\theta}\vec{z} = \underline{J}\,\partial_{\vec{z}}\,H[\Psi^{\star}](\vec{z},\theta)$$
$$\frac{d}{d\theta}\vec{z}^{\star} = \underline{J}\,\partial_{\vec{z}}\,H^{\star}[\Psi](\vec{z}^{\star},\theta)$$

 \rightarrow so, why not skip the trajectories ?!

$$\begin{aligned} \partial_t \Psi &= \{ H[\Psi^{\star}], \Psi \} &\equiv (\partial_{\vec{z}} \Psi)^{\mathrm{T}} \underline{J} \left(\partial_{\vec{z}} H[\Psi^{\star}] \right) \\ \partial_t \Psi^{\star} &= \{ H[\Psi], \Psi^{\star} \} &\equiv (\partial_{\vec{z}} \Psi^{\star})^{\mathrm{T}} \underline{J} \left(\partial_{\vec{z}} H[\Psi] \right) \end{aligned}$$

- → SSBB coupled Vlasov–Poisson eq's
- → coupled system of 2 non-linear 1-st order PIDEs
- → Can treat coherent (and incoherent) motion and **collective** interactions
- WSBB : Ψ^{\star} given & fixed \forall turns \rightarrow study only $\vec{z}(\theta)$ (and/or $\Psi(\vec{z},\theta)$) $\rightarrow U^{\mathrm{ws}}(q) \equiv U^{\mathrm{ss}}[\Psi^{\star}_{\mathrm{fixed}}](q)$
- $ullet \ rac{d}{d heta} ec{z} = \underline{J} \, \partial_{ec{z}} H^{\mathrm{ws}}(ec{z}\,, heta) \qquad \leftarrow \mathsf{Can.} \; \mathsf{eq's}$
- $\partial_t \Psi = \{H^{ws}, \Psi\}$ \leftarrow Liouville eq. \rightarrow linear 1-st order PDE
- → Can **NOT** treat collective effects.

Beam Beam Models ("Time"-Discrete WSBB)

• WSBB:

- $\frac{d}{d\theta}\vec{z} = \underline{J}\,\partial_{\vec{z}}H(\vec{z}\,,\theta)$ \leftarrow Hamiltonian Vectorfield
- $\Rightarrow \vec{z}(\theta_i) \mapsto \vec{z}(\theta_f) \equiv \vec{M}_{\theta_f,\theta_i}(\vec{z}(\theta_i)) \\ \leftarrow \textbf{Symplectic Flow} \\ \underline{M}(\vec{z}_0) := \partial \vec{M}_{\theta_f,\theta_i}(\vec{z}_0) \in \textbf{Sp}(2n) \forall \vec{z}_0 \in \mathbb{R}^{2n} \\ \vec{M}_{\theta,\theta} = \vec{\mathrm{Id}} \text{ (identity)}$
- $\Rightarrow \begin{tabular}{ll} \b$
- ← this is why **Liouville eq.** holds!
- ightarrow Meth. o. Characteristics / P.F.-Meth. $\Psi(\vec{z}\,, \pmb{\theta})$ at point \vec{z} and "time" $\pmb{\theta}$ is given by $\Psi(\vec{M}\,_{\pmb{\theta}, \pmb{\theta}_0}^{-1}(\vec{z}\,), \pmb{\theta}_0)$ at an earlier "time" $\pmb{\theta}_0$ and the **backward tracked** point $\vec{M}\,_{\pmb{\theta}, \pmb{\theta}_0}^{-1}(\vec{z}\,) \equiv \vec{M}\,_{\pmb{\theta}_0, \pmb{\theta}}(\vec{z}\,)$

- ightarrow linear(!) Perron-Frobenius Operator $\mathcal{M}: \Psi \mapsto \Psi \circ \vec{M}^{-1}$
- Discrete "time" maps : restrict θ to discrete set $\{\theta_j\}_{j=1,\dots}$ $\vec{z}_j := \vec{z}(\theta_j), \ \Psi_j(\vec{z}) := \Psi(\vec{z},\theta_j)$ $\vec{M}_{f,i}(\vec{z}) := \vec{M}_{\theta_f,\theta_i}(\vec{z})$ and forget about $\theta \in \mathbb{R}$...
- OneTurnMap (OTM, monodromy map) $\vec{T}_{j}(\vec{z}) := \vec{M}_{\theta_{j}+2\pi,\theta_{j}}(\vec{z})$
- Since $\mathbf{Sp}(2n)$ is connected, all symplectic \mathcal{C}^1 maps are connected to $\vec{\mathrm{Id}}$ (identity) and thus can all be a flow.
- \Rightarrow extra freedom : use effective maps from θ_i to θ_f w/o caring what happens in-between!

Beam Beam Models ("Time"-Discrete SSBB)

• from WSBB:

$$\begin{split} &\Psi_{\boldsymbol{f}}(\vec{z}\,) = \left(\mathcal{M}_{\boldsymbol{f},i}\Psi_{i}\right)(\vec{z}\,) \\ &= \left(\Psi_{i} \circ \vec{M}\,_{\boldsymbol{f},i}^{-1}\right)(\vec{z}\,) = \Psi_{i}(\vec{M}\,_{i,\boldsymbol{f}}(\vec{z}\,)) \end{split}$$

- SSBB:
- For every given decent ψ ($\in \mathcal{L}^1$ & normalized) $\underline{J}\partial_{\vec{z}}H[\psi]$ is a perfectly Hamiltonian V.F. and defines the perfectly Symplectic Flow $\vec{M}[\psi]$
- ⇒ Thus (at least) the following model is perfectly well defined:
- BB-Kick & Lattice (One IP) :

 $ec{L}$ represents the lattice w/o collective effects

$$\Rightarrow \ \vec{T} \, [\Psi^{ullet}]^{-1} = \vec{K} \, [\Psi^{ullet}]^{-1} \circ \vec{L}^{\,-1} \ ({
m inv. \ OTM})$$

$$\Rightarrow \mathcal{T}[\Psi^{\star}] : \Psi \mapsto \Psi \circ \vec{T} [\Psi^{\star}]^{-1}$$
 (P.F.)

 \Rightarrow Evolution from n-th turn to (n+1)-st:

$$\Psi_{n+1}(\vec{z}) = \Psi_n \left(\vec{K} \left[\Psi_n^* \right]^{-1} \left(\vec{L}^{-1}(\vec{z}) \right) \right)$$

$$\Psi_{n+1}^*(\vec{z}) = \Psi_n^* \left(\vec{K} \left[\Psi_n \right]^{-1} \left(\vec{L}^{-1}(\vec{z}) \right) \right)$$

- Extension to more IPs straight forward!
- Example : HERA with "hadronic leptons" \rightarrow needs only one bunch per beam 2×2 arcs: $\vec{L}_e{}^W$, $\vec{L}_e{}^E$, $\vec{L}_p{}^W$, $\vec{L}_p{}^E$ 2×2 bb-kicks: $\vec{K}_e[\Psi^{p,N}]$, $\vec{K}_e[\Psi^{p,S}]$, $\vec{K}_p[\Psi^{e,N}]$, $\vec{K}_p[\Psi^{e,S}]$

"Time" – Discrete SSBB: HERA – Example

• 2×2 arcs: \vec{L}_e^W , \vec{L}_e^E , \vec{L}_p^W , \vec{L}_p^E

- $(e^{\pm}, p) \times (West, East)$
- 2×2 bb-kicks: $\vec{K}_e[\Psi^{p,N}]$, $\vec{K}_e[\Psi^{p,S}]$, $\vec{K}_p[\Psi^{e,N}]$, $\vec{K}_p[\Psi^{e,S}]$ $(e^{\pm}, p) \times (\text{North, South})$

- Evolution of Ψ^e and Ψ^p over 2n half turns:
- 1:N \rightarrow S: $\Psi_n^{e,S} = \Psi_n^{e,N} \circ \vec{K}_e^{-1} [\Psi_n^{p,N}] \circ \vec{L}_e^{O^{-1}}$
- 2:S \rightarrow N: $\Psi_{n+1}^{e,N} = \Psi_n^{e,S} \circ \vec{K}_e^{-1} [\Psi_n^{p,S}] \circ \vec{L}_e^{W^{-1}}$
 - ⇒ No fundamental difference between 2 IPs and 1 IP
 - ⇒ Just more intricate dependence on the lattice parameters
 - There's more complicated examples: RHIC, Tevatron, LHC!!!
 - Also: approximate extended BB waists with $(kick \rightarrow drift \rightarrow)^k, k > 1$.

$$\Psi_n^{p,S} = \Psi_n^{p,N} \circ \vec{K}_p^{-1} [\Psi_n^{e,N}] \circ \vec{L}_p^{W^{-1}}$$

$$\Psi_{n+1}^{p,N} = \Psi_n^{p,S} \circ \vec{K}_p^{-1} [\Psi_n^{e,S}] \circ \vec{L}_p^{O^{-1}}$$

The Rigid Bunch Model (RBM)

- ... just for completeness: the Rigid Bunch Model (RBM):
 - Quick and dirty: only centroid motion
 - However, well suited for first multi (=N) bunch & multi (=M) IP analysis :
 - One "macro particle" \vec{z}_i per bunch_i and WS-like interaction potential for crossing of i-th and j-th bunch at l-th IP $U_l(\vec{q}_i \vec{q}_j)$
 - Further simplification : linearization, no long. & uncoupled, kick \rightarrow study (x,a) and (y,b) plane separately
- \Rightarrow e.g. $\vec{K}_l[\vec{z}^{\star}](\vec{z}) = \begin{pmatrix} 1 & 0 \\ -\kappa_l & 1 \end{pmatrix} \vec{z} + \begin{pmatrix} 0 \\ +\kappa_l & q^{\star} \end{pmatrix}$ and vice versa $(\vec{z} \leftrightarrow \vec{z}^{\star})$
 - Now glue together: bunches $\vec{Z} := \vec{z}_1 \oplus \vec{z}_2 \oplus \ldots \oplus \vec{z}_N$, sections of lattice $\underline{M}_l := \underline{L}_l^1 \oplus \underline{L}_l^2 \oplus \ldots \oplus \underline{L}_l^N$ and join with IPs \underline{K}_l (bunch-to-bunch coupling)
- \rightarrow linear stability analysis of $2N \times 2N$ OTM $\underline{T} := \underline{K_1 M_1 \dots K_M M_M}$

The Absolutely Most Famous Results from Linear WSBB :-)

• unperturbed linear OTM seen from IP ($\alpha = 0$):

$$\bullet \ \underline{T}_0 := \left(\begin{array}{cc} \cos(2\pi Q_0) & \beta_0 \sin(2\pi Q_0) \\ -\sin(2\pi Q_0)/\beta_0 & \cos(2\pi Q_0) \end{array} \right)$$

- ullet insert linear (focusing) WSBB kick $\underline{K} := \left(egin{array}{cc} 1 & 0 \\ -\kappa & 1 \end{array}
 ight)$ before IP
- with κ from $\kappa_{x,y} = \frac{2N^{\star}r_p}{\gamma} (\sigma^{\star}_{x,y}(\sigma^{\star}_x + \sigma^{\star}_y))^{-1}$

$$\Rightarrow \underline{T} := \underline{T}_0 \underline{K} = \begin{pmatrix} \cos(2\pi Q_0) - \beta_0 \sin(2\pi Q_0)\kappa & \beta_0 \sin(2\pi Q_0) \\ -\sin(2\pi Q_0)/\beta_0 - \cos(2\pi Q_0)\kappa & \cos(2\pi Q_0) \end{pmatrix}$$

$$\Rightarrow \cos(2\pi Q) = \frac{1}{2}\operatorname{trace}\underline{T} = \cos(2\pi Q_0) - \frac{\beta_0 \kappa}{2}\cos(2\pi Q_0)$$

- \Rightarrow Perturbed tune $Q = Q_0 + \frac{\beta_0 \kappa}{4\pi} + O(\kappa^2)$
- Linear Beam–Beam Tuneshift Parameter $\xi:=rac{eta_0\kappa}{4\pi}$

Famous Results from WSBB

- Purely transverse motion, head-on
- Round Gaussian Beam:

$$\begin{split} \rho(r) &= \frac{1}{2\pi\sigma_r^2} \exp\left(-\frac{r^2}{2\sigma_r^2}\right) \\ &\to \operatorname{kick} \Delta r' \propto 1/r \left(1 - \exp\left(-\frac{r^2}{2\sigma_r^2}\right)\right) \end{split}$$

• Elliptic Gaussian Beam:

$$\rho(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right)$$

$$\rightarrow \textbf{Bassetti-Erskine!} \rightarrow \text{contains complex error function} \rightarrow \text{numerically slow}$$

- $\leftarrow \mbox{ both however have}$ U(x,y) = U(-x,y) = U(x,-y)
- \Rightarrow Only resonances $2k_xQ_x+2k_yQ_y=k_0$ are driven by H–O collisions w/o crossing angle
 - Long-range drives also odd reson.
 - Crossing angle \rightarrow sidebands $k_x Q_x + k_y Q_y + k_s Q_s = k_0, k_x + k_y + k_s = 2k$

- Canonical Averaging \rightarrow Tune Footprint $\vec{Q}(\vec{J})$
- ightarrow neat feature: detuning ightarrow 0 at infinite amplitudes
- Phase space close to h.o. resonances might be subject to action diffusion
- \rightarrow driven by beam beam + (any of: orbit jitter, multipoles, external noise, \emptyset ,...)
- → The full machinery of the canonical incoherent resonance analysis needed!
- → recent paper by T.Sen (PRSTAB, 15 101001 (2012)) on "Anomalous beam diffusion near beam-beam synchrobetatron resonances"

WSBB Tracking

- In principle every "single particle" tracking code may implement beam—beam lenses.
- However, while Round Gaussian Beams are relatively cheap, the complex error function needed for Elliptic Gaussian Beams is a major pain!
- Long beam waists can effectively be approximated by kick-drift expansions
- Crossing angle can be treated by Lorentz-boosting into the rest system of the lens (and back)
- Fairly complete 6d description is in: Leunissen, Schmidt, Ripken, PRSTAB 3 124002 (2000)
- BB-compensation (H-O & L-R) : electron lenses & electric wires
- Typical codes are, to my recognition, MAD, sixtrack, BBsim, Lifetrack, PTC
- Leptons : include damping and stoch. excitation

Famous Results from SSBB

- SSBB coupled Vlasov-Poisson eq's =
 coupled system of 2 non-linear 1-st order partial
 integro-differential equations ⇒ solving them
 analytically is quite some challenge.
- Standard procedure(s): **Linearization about equilibrium.** \rightarrow Which equilibrium? \rightarrow **averaging** \rightarrow equilibria $\Psi_{\rm eq}(\vec{J})$ of the averaged system give quasi-equilibria of the exact system. $\{\overline{H}[\Psi_{\rm eq}{}^{\star}], \Psi_{\rm eq}\} = 0$
- $\begin{array}{l} \bullet \ \, \text{Linearize around} \ \, \Psi_{\mathrm{eq}}(\vec{J}) : \\ \Psi_n(\vec{z}) = \Psi_{\mathrm{eq}}(\vec{J}) + \Phi_n(\vec{z}) \Rightarrow \\ \partial_t \Phi_n = \{ \overline{H}[\Psi_{\mathrm{eq}}{}^{\star}], \Phi_n \} + \{ \overline{H}[\Phi^{\star}{}_n], \Psi_{\mathrm{eq}} \} \\ \partial_t \Phi^{\star}{}_n = \{ \overline{H}[\Psi_{\mathrm{eq}}], \Phi^{\star}{}_n \} + \{ \overline{H}[\Phi_n], \Psi_{\mathrm{eq}}{}^{\star} \} \end{array}$
- Decouple by introducing Eigenmodes for 2 and/or more bunches

- $\Rightarrow \partial_t f_n = \{ \overline{H}[F_{\text{eq}}], f_n \} + \{ \overline{H}[f_n], F_{\text{eq}} \}$
- Laplace in t and Fourier in angles $\vec{\varphi}$ (or similar)
- → Fredholm type integral equation for the harmonics
- There's a multitude of slightly different
 Linearized Averaged Vlasov Models: see e.g. Chao, Yokoya/Koiso,
 Alexahin, Ellison/Sobol/Vogt, . . .
- \rightarrow Theory and observation suggest:

For moderate BB parameter, civilized equilibria (not unique!) the plain collective beam-beam modes are at best neutrally stable.

I.a.w.: they don't grow unless externally driven.

SSBB Tracking

- ullet when people want all at the same time... high resolution for Ψ , for $U[\Psi]$, maybe in 6d with beam-beam waists and crossing angles, including multi-bunch and multi-IP schemes and lattice non-linearities and for many turns and all that in little time
- ... then things become a little tough! However if one puts up with only parts of that,
- 1. There's some **Perron–Frobenius codes** that evolve Ψ_n , Ψ^*_n on a grid : (Bob Warnock's code(s), Andrey Sobol's code, and my BBPF, and probably more...)
- 2. There's many Macro-Particle codes that evolve ensembles of particles: (Ji Quiang's massive parallel code BeamBeam3D, Kazuhito Ohmi's code, Werner Herr et al., Y.-H. Cai's code, my BBDeMo,...)
- Every code needs an adapted, fast & accurate Poisson solver!
- Relation Perron–Frobenius \leftrightarrow Macro–Particle Tracking: given $\Psi_f(\vec{z}) = \Psi_i(\vec{M}^{-1}(\vec{z}))$, compute expectation values = integrals : $E_f[g] := \int g(\vec{z}) \, \Psi_f(\vec{z}) \, d^{2n}z = \int g(\vec{z}) \, \Psi_i(\vec{M}^{-1}(\vec{z})) \, d^{2n}z = \int g(\vec{M}(\vec{z})) \, \Psi_i(\vec{z}) \, d^{2n}z$
- Leptons: try operator splitting: Perron–Frobenious for Vlasov and finite–difference for Fokker–Planck (→ R.L.Wanock, M.–P.Zorzano)

Summary

- The growing hunger of the experiments for Luminosity assures beam beam theory & simulation will be hot topics as long as colliders are built/operated!
- ← BB can drive resonances and action diffusion and thus severely degrade beam- & luminosity–lifetime, and background conditions at the experiments.
- ← It can however, also help provide (incoherent) tune spread and Landau damping.
- ← Coherent, collectively driven beam—beam modes have been predicted by theory and simulation and have been observed in real machines.
- It appears however, that in many cases they are not by-themselves unstable, i.e. growing.
- Instead they often tend to be either Landau damped or neutrally stable.
- Collective BB-modes are an active interesting field.
- Progress in parallel computing will strongly enhance the simulations in the strong-strong regime.