

A Bit of History

A Bit of Theory

A Bit of Reality

1.) Electrostatic Machines: The Cockcroft-Walton Generator

- **1928:** Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam
- 1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube
on 400 kV levelAccelerator: evacuated glas tubeTarget:Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

robust, simple, on-knob machines largely used in history as pre-accelerators for proton and ion beams recently replaced by modern structures (RFQ)

Main limitation

Main limitation: electric discharge due to too high Voltage. Maximum limit: I MV

Limit set by Paschen law: the breaking Voltage between two parallel electrodes depends only on the pressure of the gas between the electrodes and their distance

Low pressure: gas not too dense, long mean average path of High pressure: dense electrons

gas, large Voltage needed for gas ionisation

2.) Electrostatic Machines: (Tandem -) van de Graaff Accelerator (1930 ...)

Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ? *The "Tandem principle": Apply the accelerating voltage twice … … by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure*

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

... and how it looks inside

"Vivitron" Strassbourg

60 tons of SF₆ to suppress discharges

Accelerating structure and vacuum beam pipe

The Principle of the "Steam Engine": Mechanical Transport of Charge via a rotating chain or belt

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

n number of gaps between the drift tubes **q** charge of the particle U_0 Peak voltage of the RF System Ψ_S synchronous phase of the particle

* acceleration of the proton in the first gap

* voltage has to be "flipped" to get the right sign in the second gap → RF voltage → shield the particle in drift tubes during the negative half wave of the RF voltage

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Time span of the negative half wave:

Length of the Drift Tube:

Kinetic Energy of the Particles

$$\tau_{RF}/2$$

$$\downarrow_{i} = v_{i} * \frac{\tau_{rf}}{2}$$

$$E_{i} = \frac{1}{2}mv^{2}$$

$$V_{i} = \sqrt{2E_{i}/m}$$

$$l_{i} = \frac{1}{v_{rf}} * \sqrt{\frac{i * q * U_{0} * \sin\psi_{s}}{2m}}$$

valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions

Example: DESY Accelerating structure of the Proton Linac

 $E_{total} = 988 M eV$ $m_{\theta}c^{2} = 938 M eV$

 $p = 310 \, M \, eV \, / \, c$ $E_{kin} = 50 \, M \, eV$

Beam energies

1.) reminder of some relativistic formula

 $E_{\theta} = m_{\theta}c^2$

kinetic energy $E_{kin} = E_{total} - m_{\theta}c^2$

rest energy

total energy

$$E = \gamma * E_0 = \gamma * m_0 c^2$$

momentum

$$E^2 = c^2 p^2 + m_0^2 c^4$$

GSI: Unilac, typical Energie ≈ 20 MeV per Nukleon, $\beta \approx 0.04$... 0.6, Protons/Ions, v = 110 MHz **Energy Gain per "Gap":**

$$\boldsymbol{W} = \boldsymbol{q} \boldsymbol{U}_0 \sin \omega_{\boldsymbol{RF}} \boldsymbol{t}$$

Application: until today THE standard proton / ion pre-accelerator CERN Linac 4 is being built at the moment

4.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: Bend a Linac on a Spiral Application of a constant magnetic field keep B = const, RF = const

→ Lorentzforce

circular orbit

$$\vec{F} = q^* (\vec{v} \times \vec{B}) = q^* v^* B$$

$$(\vec{B}) = q * v * B$$

$$q^*v^*B = \frac{m^*v^2}{R} \implies B^*R = p/q$$

increasing radius for
increasing momentum
→ Spiral Trajectory

revolution frequency

$$\omega_z = \frac{q}{m} * B_z$$

the cyclotron (rf-) frequency is independent of the momentum

Cyclotron:

! *w* is constant for a given q & B

 $\begin{array}{ll} \textit{!! } B^*R = p/q \\ \textit{large momentum } \rightarrow \textit{huge magnet} \end{array}$

!!!! $\omega \sim 1/m \neq const$ works properly only for *non relativistic particles*

PSI Zurich

Application: Work horses for medium energy protons Proton / Ion Acceleration up to ≈ 60 MeV (proton energy) nuclear physics radio isotope production, proton / ion therapy

Beam Energy

... so sorry, here we need help from Albert:

$$\gamma = \frac{E_{total}}{mc^{2}} = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \qquad \frac{v}{c} = \sqrt{1 - \frac{mc^{2}}{E^{2}}}$$

CERN Accelerators		
	kin. Energy	γ
Linac 2	60 MeV	1.06
PS	26 GeV	27
SPS	450 GeV	480
LHC	7 TeV	7460

remember: proton mass = 938 MeV

modern trends: Problem: m ≠ const. → non relativistic machine

e*B_z $\omega_z =$ γ * *וחחו*0

5.) The Betatron: Wideroe 1928/Kerst 1940

...apply the transformer principle to an electron beam: no RF system needed, changing magnetic B field

Idea: a time varying magnetic field induces a voltage that will accelerate the particles

Farady induction law

$$\oint \vec{E}d\vec{s} = -\int_{A} Bdf = -\Phi$$

circular orbit

$$\frac{mv^2}{r} = e^*v^*B$$

$$\rightarrow p = e^*B^*r$$

schematic design

magnetic flux through this orbit area

$$\Phi = \int B df = \pi r^2 * B_a$$

induced electric field

$$\oint \vec{E}ds = \vec{E} * 2\pi r = -\dot{\Phi} \implies \vec{E} = \frac{-\pi r^2 * B_a}{2\pi r} = -\frac{1}{2}\dot{B}_a r$$

force acting on the particle:

$$\dot{p} = -\left|\vec{E}\right|e = \frac{1}{2}\dot{B}_a r$$

The increasing momentum of the particle has to be accompanied by a rising magnetic guide field:

$$p = e^* B_g r$$

$$B_g = \frac{1}{2}B_a$$

robust, compact machines, Energy ≤ 300...500 MeV, limit: Synchrotron radiation 6.) Synchrotrons / Storage Rings / Colliders:

Wideroe 1943, McMillan, Veksler 1944, Courant, Livingston, Snyder 1952

Idea: define a circular orbit of the particles, keep the beam there during acceleration, put magnets at this orbit to guide and focus

Advanced Photon Source, Berkley

7.) Electron Storage Rings Production of Synchrotron Light

$$P_s = \frac{e^2 c}{6\pi\varepsilon_0} * \frac{1}{\left(m_0 c^2\right)^4} \frac{E^4}{R^4}$$

Radiation Power

$$\Delta E = \frac{e^2}{3\varepsilon_0 (m_0 c^2)^4} \frac{E^4}{R}$$
$$\omega_c = \frac{3c\gamma^3}{2R}$$

Energy Loss per turn

"typical Frequency" of emitted light

Application of Synchrotron Light Analysis at Atoms & Molecules

The electromagnetic Spectrum:

having a closer look at the sun ...

Light: λ ≈ 400 nm ... 800 nm 1 Oktave

Analysis of Cell structures

Structure of a Ribosom

Ribosomen are responsible for the protein production in living cells. The structure of these Ribosom molecules can be analysed using brilliant synchrotron light from electron storage rings (Quelle: Max-Planck-Arbeitsgruppen für Strukturelle Molekularbiologie)

Structure of the ribosome, the "protein factory" in living cells

Angiographie

x-ray method applicable for the imaging of coronar heart arteria

8.) Synchrotrons as Collider Rings (1960 ...):

Beam energies

1.) reminder of some relativistic formula

total energy
$$E^2 = p^2 c^2 + m_0^2 c^4$$

 $\longrightarrow cp = \sqrt{E^2 - m_0^2 c^4} = \sqrt{(\gamma m_0 c^2)^2 - (m_0 c^2)^2} = \sqrt{\gamma^2 - 1} m_0 c^2$
 $\longrightarrow cp = \gamma \beta * m_0 c^2$

2.) energy balance of colliding particles

rest energy of a particle
$$E_0^2 = (m_0 c^2)^2 = E^2 - p^2 c^2$$

in exactly the same way we define a center of mass energy of a system of particles:

$$E_{cm}^{2} = \left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} cp_{i}\right)^{2}$$

two colliding particles

$$E_{cm}^{2} = (\gamma_{1}m_{1} + \gamma_{2}m_{2})^{2}c^{4} - (cp_{1} + cp_{2})^{2}$$
$$E_{cm}^{2} = (\gamma_{1}m_{1} + \gamma_{2}m_{2})^{2}c^{4} - (\gamma_{1}\beta_{1}m_{1} + \gamma_{2}\beta_{2}m_{2})^{2}c^{4}$$

$$E_{cm}^{2} = (\gamma_{1} + 1)^{2} m_{p}^{2} c^{4} - (\gamma_{1} \beta_{1} m_{1})^{2} c^{4}$$

remember: $\beta\gamma$

$$\beta \gamma = \sqrt{\gamma^2 - 1}$$

$$E_{cm}^{2} = (\gamma_{1} + 1)^{2} m_{p}^{2} c^{4} - (\gamma_{1}^{2} - 1)^{*} m_{p}^{2} c^{4}$$

$$E_{cm}^{2} = 2(\gamma_{1} - 1) * m_{p}^{2} c^{4}$$

$$E_{cm} = \sqrt{2(\gamma_1 - 1)} * m_p c^2$$

Descovery of the Quarks: electron beam on fixed proton / neutron target

Example 2 : particle anti-particle collider

e + / e, p / \overline{p} , m + / m-

* store both counter rotating particle beams in the same magnet lattice * no conservation of quantum numbers required

$$E_{cm}^{2} = (\gamma_{1}m_{1} + \gamma_{2}m_{2})^{2}c^{4} - (cp_{1} + cp_{2})^{2}$$
$$E_{cm} = 2\gamma mc^{2}$$

1979 PETRA Collider at DESY discovery of the gluon

Structure of Matter

9.) Storage Rings for Structure Analysis

synchrotron light: nm electron scattering: Å ... 10 ^{-18 m}

de Broglie:

$$\lambda = \frac{h}{p} = \frac{ch}{E} \qquad \qquad E \approx pc$$

10.) Storage Rings to Explain the Universe Precision Measurements of the Standard Model, Search for Higgs, Supersymmetry, Dark Matter Physics beyond the Standard Model

PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams

Introduction to Accelerator Physics Beam Dynamics for "Summer Students" Bernhard Holzer, CERN-LHC The Ideal World I.) Magnetic Fields and Particle Trajectories

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} - 10^{11} \text{ km}$

... several times Sun - Pluto and back 🌶

intensity (10¹¹)

- → guide the particles on a well defined orbit ("design orbit")
- → focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

", ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q^* (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines: $v \approx c \approx 3^* 10^8 \frac{m}{s}$

Example:♪

$$B = 1T \implies F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent el. field ... > E

technical limit for el. field:♪

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 n I}{h}$$

Normalise magnetic field to momentum:

convenient units:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

$$B = \left[T\right] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]$$

Example LHC:

$$B = 8.3T$$

$$p = 7000 \frac{GeV}{c}$$

$$\left. \frac{1}{\rho} = e \frac{\frac{8.3 Vs}{m^2}}{7000*10^9 eV_c} = \frac{8.3 s*3*10^8 m}{7000*10^9 m^2}$$

$$\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi\rho = 17.6 \text{ km}$$
$$\approx 66\%$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

The Problem:

LHC Design Magnet current: I=11850 A

and the machine is 27 km long !!!

Ohm's law: U = R * I, $P = R * I^2$

Problem: reduce ohmic losses to the absolute minimum Georg Simon Ohm

Born

17 March 1789 Erlangen, Germany

The Solution: super conductivity

Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911

LHC 1.9 K cryo plant

LHC: The -1232- Main Dipole Magnets

required field quality: $\Delta B/B=10^{-4}$

6 μm Ni-Ti filament

2.) Focusing Properties - Transverse Beam Optics

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

 $m^* \frac{d^2 x}{dt^2} = -c^* x$

general solution: free harmonic oszillation

 $x(t) = A * \cos(\omega t + \varphi)$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q^* v^* B(x)$$

Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit required: linear increasing Lorentz force linear increasing magnetic field

normalised quadrupole field:

simple rule:

$$f = 0.3 \frac{g(T/m)}{p(GeV/c)}$$

$$B_{y} = g x \qquad B_{x} = g y$$

LHC main quadrupole magnet

 $g \approx 25 \dots 220 T / m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} + \frac{\partial \vec{E}}{\partial t} = 0$$

$$\Rightarrow \qquad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B^*\rho = p/q$)

Dipole Magnet

Quadrupole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

$$k := \frac{g}{p \, / \, q}$$

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^2 + \frac{1}{3!}m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

* Equation for the horizontal motion:

$$x'' + x \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x'= angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \iff -k$ quadrupole field changes sign

$$y'' - k \ y = 0$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$\boldsymbol{x}'' + \boldsymbol{K} \boldsymbol{x} = \boldsymbol{0}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos\left(\sqrt{|K|}l\right) & \frac{1}{\sqrt{|K|}}\sin\left(\sqrt{|K|}l\right) \\ -\sqrt{|K|}\sin\left(\sqrt{|K|}l\right) & \cos\left(\sqrt{|K|}l\right) \end{pmatrix}$$

Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{def oc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent "… the particle motion in x & y is uncoupled"

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

5.) Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz

0.31*11.3 = 3.5 kHz

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 10^{10} turns

II.) The Ideal World: Particle Trajectories, Beams & Bunches

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force \neq const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

6.) The Beta Function

"it is convenient to see"

... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$$

 $\varepsilon, \Phi = integration constants$ determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

 $\beta(s+L) = \beta(s)$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

 $\Psi(s) = ,, phase advance"$ of the oscillation between point ,, 0" and ,, s" in the lattice. For one complete revolution: number of oscillations per turn ,, Tune"

6.) The Beta Function

Amplitude of a particle trajectory:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)$$

Maximum size of a particle amplitude

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \quad \checkmark$$

β determines the beam size (... the envelope of all particle trajectories at a given position "s" in the storage ring.

It reflects the periodicity of the magnet structure.

7.) Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) * x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2$$

 ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
 Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

... and now the ellipse:

note for each turn x, x' at a given position $_{,s_1}$ " and plot in the phase space diagram

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

single particle trajectories, $N \approx 10^{11}$ per bunch

Gauß Particle Distribution:

 $\rho(\mathbf{x}) = \frac{N \cdot \mathbf{e}}{\sqrt{2\pi}\sigma_{\mathbf{x}}} \cdot \mathbf{e}^{-\frac{1}{2}\frac{\mathbf{x}^{2}}{\sigma_{\mathbf{x}}^{2}}}$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

LHC:
$$\beta = 180 m$$

 $\varepsilon = 5 * 10^{-10} m rad$

$$\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5 * 10^{-10} m * 180 m} = 0.3 mm$$

aperture requirements: $r_0 = 12 * \sigma$

III.) The "not so ideal" World Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder:

Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

Solution of Trajectory Equations

$$x'' + K x = 0$$
 $K = 1/\rho^2 - k$... hor. plane:
 $K = k$... vert. Plane:

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s1} = \mathbf{M} * \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}_{s0}$$

 $M_{total} = M_{QF} * M_{D} * M_{B} * M_{D} * M_{QD} * M_{D} * \dots$

8.) Lattice Design: "... how to build a storage ring"

Geometry of the ring: $B * \rho = p / e$

p = momentum of the particle, $\rho = curvature radius$

 $B\rho = beam \ rigidity$

Circular Orbit: bending angle of one dipole

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}$$

The angle run out in one revolution must be 2π , so for a full circle

$$\alpha = \frac{\int Bdl}{B\rho} = 2\pi$$

$$\int Bdl = 2\pi \frac{p}{q}$$

... defines the integrated dipole field around the machine.

7000 GeV Proton storage ring dipole magnets N = 1232l = 15 mq = +1 e

 $\int B \, dl \approx N \, l \, B = 2\pi \, p / e$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m} \ 3 \ 10^8 \frac{m}{s} \ e = \frac{8.3 \ Tesla}{1232 \ 15 \ m}$$

LHC: Lattice Design the ARC 90° FoDo in both planes

MQ: main quadrupole

equipped with additional corrector coils

MB: main dipole MQ: main quadrupole MQT: Trim quadrupole MQS: Skew trim quadrupole MO: Lattice octupole (Landau damping) MSCB: Skew sextupole Orbit corrector dipoles MCS: Spool piece sextupole MCDO: Spool piece 8 / 10 pole BPM: Beam position monitor + diagnostics

Name	Quantity	Purpose
MB	1232	Main dipoles
MQ	400	Main lattice quadrupoles
MSCB	376	Combined chromaticity/ closed orbit correctors
MCS	2464	Dipole spool sextupole for persistent currents at injection
MCDO	1232	Dipole spool octupole/decapole for persistent currents
МО	336	Landau octupole for instability control
MQT	256	Trim quad for lattice correction
MCB	266	Orbit correction dipoles
MQM	100	Dispersion suppressor quadrupoles
MQY	20	Enlarged aperture quadrupoles
In total 6628 cold magnets		

Magnets for the LHC, total budget, every magnet has a role in the optics design

FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in .

(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$,

 \rightarrow calculate the twiss parameters for a periodic solution

9.) Insertions

β-Function in a Drift:

$$\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0}$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

7 sigma beam size inside a mini beta quadrupole

... clearly there is an

... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...

The Mini-β Insertion:

$$R = L * \Sigma_{react}$$

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

$$L = \frac{1}{4\pi e^2 f_0 b} * \frac{I_1 * I_2}{\sigma_x^* * \sigma_y^*}$$

Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 m \qquad f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5*10^{-10} \, rad \, m \qquad n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m \qquad L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}$$

 $I_{p} = 584 \, mA$

$$L = 1.0 * 10^{34} / cm^2 s$$

Mini-β *Insertions*: *Betafunctions*

A mini- β insertion is always a kind of special symmetric drift space. \rightarrow greetings from Liouville

Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

The LHC Insertions

Acceleration: Energy Gain

... we have to start again from the basics

Lorentz, force

in long. direction the B-field creates no force

v || *B*

acc. force is given by the electr. Field

In relativistic dynamics, energy and momentum satisfy the relation:

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \qquad (E = E_{0} + W)$$
$$dE = \int F ds = v dp$$

Hence:

and the kinetic energy gained from the field along the z path is:

$$dW = dE = eE_z ds \implies W = e\int E_z ds = eV$$

11.) Electrostatic Machines

(Tandem -) van de Graaff Accelerator

Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ?

Electro Static Accelerator: 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

12.) Linear Accelerator 1928, Wideroe

$$\omega_s(t) = \omega_{rf}(t) = \frac{q}{\gamma(t) * m_0} * B$$

keep the synchronisation condition by varying the rf frequency

 ω_{RF} decreases with time

The Synchrotron (Mac Millan, Veksler, 1945)

13.) The Acceleration

Where is the acceleration?

Install an RF accelerating structure in the ring and adjust the phase (the timing) between particle and RF-Voltage in the right way: "Synchronisation"

500 MHz cavities in an electron storage ring

B. Salvant N. Biancacci

14.) The Acceleration for △p/p≠0 "Phase Focusing" below transition

... so sorry, here we need help from Albert:

.... but heavier !

kinetic energy of a proton

15.) The Acceleration for Δp/p≠0 "Phase Focusing" above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (4 σ)	ns	1.06
Energy spread (2σ)	<i>10</i> -3	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	<i>16</i>
Energy gain/turn	keV	485
Synchrotron	Hz	23.0
frequency		

RF Buckets & long. dynamics in phase space

IV.) Are there Any Problems ???

sure there are

Liouville during Acceleration

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.

$$\begin{array}{c}
-\alpha \sqrt{\frac{\varepsilon}{\gamma}} \\
\sqrt{\varepsilon\gamma} \\
-\alpha \sqrt{\frac{\varepsilon}{\beta}} \\
-\alpha \sqrt{\frac{\varepsilon}{\beta}} \\
\sqrt{\varepsilon\beta} \\
x
\end{array}$$

-

But so sorry ... $\varepsilon \neq const !$

Classical Mechanics:

phase space = diagram of the two canonical variables
position & momentum

 $x \qquad p_x$

$$p_j = \frac{\partial L}{\partial \dot{q}_j}$$
; $L = T - V = kin. Energy - pot. Energy$

According to Hamiltonian mechanics: phase space diagram relates the variables q and p

> q = position = x $p = momentum = \gamma mv = mc\gamma\beta_x$

Liouvilles Theorem: $\int p \, dq = const$

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$x' = \frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds} = \frac{\beta_x}{\beta}$$
 where $\beta_x = v_x/c$

$$\int p \, dq = mc \int \gamma \beta_x \, dx$$

$$\int p \, dq = mc \gamma \beta \int x' \, dx$$

$$\Rightarrow \quad \varepsilon = \int x' \, dx \propto \frac{1}{\beta \gamma}$$
the beam emittance shrinks during acceleration $\varepsilon \sim 1/\gamma$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1/2}$ in both planes.

 $\sigma = \sqrt{\varepsilon\beta}$

- 2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
- 3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

LHC injection optics at 450 GeV

Example: HERA proton ring

injection energy: 40 GeV $\gamma = 43$ flat top energy: 920 GeV $\gamma = 980$

emittance ε (40GeV) = 1.2 * 10⁻⁷ ε (920GeV) = 5.1 * 10⁻⁹

7 σ beam envelope at $E = 40 \ GeV$

... and at $E = 920 \ GeV$

RF Acceleration-Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example)

Bunch length of Electrons ≈ 1 cm

 $\frac{\Delta p}{p} \approx 1.0 \ 10^{-3}$

typical momentum spread of an electron bunch:

Dispersive and Chromatic Effects: $\Delta p/p \neq 0$

Are there any Problems ??? Sure there are !!!

font colors due to pedagogical reasons

17.) Dispersion and Chromaticity: Magnet Errors for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Example

$$x_{\beta} = 1 \dots 2 mm$$

$$D(s) \approx 1 \dots 2 m$$

$$\Delta p / p \approx 1 \cdot 10^{-3}$$

Ν

Amplitude of Orbit oscillation contribution due to Dispersion \approx beam size \rightarrow Dispersion must vanish at the collision point

Calculate D, D': ... takes a couple of sunny Sunday evenings !

26.) Chromaticity: A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$\Delta \boldsymbol{Q} = -\frac{1}{4\pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} \boldsymbol{k}_0 \boldsymbol{\beta}(\boldsymbol{s}) \boldsymbol{ds}$$

definition of chromaticity:

$$\Delta Q = Q' * \frac{\Delta p}{p}$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

 $Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$

k = quadrupole strength $\beta = beta function indicates the beam size ... and even more the sensitivity of the beam to external fields$

Example: LHC

 $\begin{array}{l}
Q' = 250 \\
\Delta p/p = +/- 0.2 *10^{-3} \\
\Delta Q = 0.256 \dots 0.36
\end{array}$

→Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity (Q' ≈ 20)

Ideal situation: cromaticity well corrected, ($Q' \approx 1$)

Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p/p$

1.) sort the particles acording to their momentum

... using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$B_{x} = \tilde{g}xz$$

$$B_{z} = \frac{1}{2}\tilde{g}(x^{2} - z^{2})$$

$$\frac{\partial B_{x}}{\partial z} = \frac{\partial B_{z}}{\partial x} = \tilde{g}x$$
linear rising "gradient":

Correction of Q':

Sextupole Magnets:

senjoch Z Spulen

k₁ normalised quadrupole strength k₂ normalised sextupole strength

$$k_1(sext) = \frac{\widetilde{g} x}{p/e} = k_2 * x$$
$$k_1(sext) = k_2 * D * \frac{\Delta p}{p}$$

corrected chromaticity

considering a single cell:

$$Q'_{cell_x} = -\frac{1}{4\pi} \left\{ k_{qf} \hat{\beta}_{x} l_{qf} - k_{qd} \tilde{\beta}_{x} l_{qd} \right\} + \frac{1}{4\pi} \sum_{Fsext} k_{2}^{F} l_{sext} D_{x}^{F} \beta_{x}^{F} - \frac{1}{4\pi} \sum_{Dsext} k_{2}^{D} l_{sext} D_{x}^{D} \beta_{x}^{D} \right\}$$
$$Q'_{cell_y} = -\frac{1}{4\pi} \left\{ -k_{qf} \tilde{\beta}_{y} l_{qf} + k_{qd} \hat{\beta}_{y} l_{qd} \right\} + \frac{1}{4\pi} \sum_{Fsext} k_{2}^{F} l_{sext} D_{x}^{F} \beta_{x}^{F} - \frac{1}{4\pi} \sum_{Dsext} k_{2}^{D} l_{sext} D_{x}^{D} \beta_{x}^{D} \right\}$$

Some Golden Rules to Avoid Trouble

I.) Golden Rule number one: do not focus the beam !

Problem: Resonances

e beam :

$$x_{co}(s) = \frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s1}} \sqrt{\beta_{s1}} * \cos(\psi_{s1} - \psi_s - \pi Q) ds}{2 \sin \pi Q}$$
Assume: Tune = integer $Q = 1 \rightarrow 0$

Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error.

Qualitatively spoken:

Tune and Resonances

 $m * Q_x + n * Q_y + l * Q_s = integer$

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

II.) Golden Rule number two: Never accelerate charged particles !

Transport line with quadrupoles

Transport line with quadrupoles and space charge

$$\mathbf{x}'' + \mathbf{K}(\mathbf{s})\mathbf{x} = \mathbf{0}$$

$$x'' + (K(s) + K_{SC}(s))x = 0$$

$$\mathbf{x}'' + \left(\mathbf{K}(\mathbf{s}) - \underbrace{\frac{2\mathbf{r}_0 \mathbf{I}}{\mathbf{e}a^2 \beta^3 \gamma^3 \mathbf{c}}}_{\mathbf{K}_{SC}}\right) \mathbf{x} = 0$$

Golden Rule number two:

Never accelerate charged particles !

Tune Shift due to Space Charge Effect Problem at low energies

... at low speed the particles repel each other

III.) Golden Rule number three:

Never Collide the Beams !

most simple case: linear beam beam tune shift

$$\Delta Q_x = \frac{\beta_x^* * r_p * N_p}{2\pi \gamma_p (\sigma_x + \sigma_y) * \sigma_x}$$

and again the resonances !!!

LHC logbook: Sat 9-June "Late-Shift"

18:18h injection for physics clean injection !

Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down - at a given position "s" in the ring - the single partile amplitude x $\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s1}$ and the angle $x' \dots$ and plot it. $\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s1}$

A beam of 4 particles – each having a slightly different emittance:

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. → no equatiuons; instead: Computer simulation " particle tracking"

Golden Rule XXL: COURAGE

and with a lot of effort from Bachelor / Master / Diploma / PhD and Summer-Students the machine is running !!!

thank'x for your help and have a lot of fun

Bibliography:

1.) Edmund Wilson:	Introd.	to Par	rticle	Accelerators
	Oxford	Press,	2001	

2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992

- 3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
- 4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
- 5.) Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
- 6.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962

7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

- 8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

V.) Accelerator Operation

Bernhard Holzer CERN-LHC

IP5

Magnet Currents

LHC Operation: Magnet Preparation Cycle & Ramp

8 independent sectors, hysteresis effects, saturation & remanence in nc and sc magnets, synchronisation of the power converters, magnet model to describe the transfer functions of every element

LHC dipoles (1232 of them)

LHC: Basic Layout of the Machine multipole corrector magnets

2, 6, 8, 10, 12 pol skew & trim quad, chroma 6pol landau 8 pole

LHC Operation: Pre-Accelerators and Injection

BOOSTER (1.4 GeV) → PS (26 GeV) → SPS (450 GeV) → LHC

LHC Injection: Preparing the Bunch Trains

Beam Injection

in the PS

$$N_p \approx 1.5 * 10^{13}$$
 protons per bunch, $E_{inj} = 50 \text{ MeV}$
 $\beta = 0.31$
 $\gamma = 1.05$

Injection mechanism: the transfer lines

13/01/2010

court. R. Alemany

Injection schemes:

Single Turn Injection

Example: LHC, HERA-P

Transferlines & Injection: Errors & Tolerances

* quadrupole strengths \rightarrow "beta beat" $\Delta \beta / \beta$

* alignment of magnets --> orbit distortion in transferline & storage ring

* septum & kicker pulses --> orbit distortion & emittance dilution in storage ring

Kicker "plateau" at the end of the PS - SPS transferline measured via injection - oscillations

Example: Error in position Δa :

$$\varepsilon_{new} = \varepsilon_0 * (1 + \frac{\Delta a^2}{2})$$

 $\Delta a = 0.5 \sigma$

$$\rightarrow \varepsilon_{new} = 1.125 * \varepsilon_0$$

LHC Injection: remember the phase space

LHC First Turn Steering

LHC Operation: the First Turn

Beam 1 on OTR screen 1st and 2nd turn

Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

Relevant for beam stability: *non integer part*

LHC revolution frequency: 11.3 kHz

0.31*11.3 = 3.5 kHz

LHC Operation: Aperture Scans

herap : hp1920e- : 11 May 200 17:11:58

Apply closed orbit bumps until losses indicate the aperture limit ... what about the beam size ?

8 6 . 0.05 9 5 고쎄 4 8 2 3 2 -340 -330 -320 -310 -300 -290 -280 Position /m 3 bump to create 0.05 local orbit distortion 13100 13200 13300 13400 13500 13600 20 Hor Orbit [mm] 10 Hor Aper Scan LHC Sector 7-8 -20 3.5 4.5 5.0 5.5 3.0 4.06.0 Longitudinal Position [km]

LHC Operation: the First Beam

Measurement of β :

$$\Delta\beta(s_0) = \frac{\beta_0}{2\sin 2\pi Q} \int_{s_1}^{s_1+l} \beta(s_1) \Delta K \cos\left(2|\psi_{s_1} - \psi_{s_0}| - 2\pi Q\right) ds$$

 $\Delta\beta/\beta = 50 \%$

LHC Operation: the First Beam

Luminosity optimization

$$L = \frac{N_1 N_2 f_{rev} N_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} F \cdot W$$

 N_i = number of protons/bunch N_b = number of bunches f_{rev} = revolution frequency σ_{ix} = beam size along x for beam i σ_{iy} = beam size along y for beam i

F is a pure **crossing angle (Φ) contribution**:

W is a pure beam offset contribution.

... can be avoided by careful tuning

$$W = e^{-\frac{(d_2 - d_1)^2}{2(\sigma_{x_1}^2 + \sigma_{x_2}^2)}}$$

LHC Operation: Machine Protection & Safety

LHC Operation:

Machine Protection & Safety

Energy stored in magnet system	10	GJ
Energy stored in one main dipole circuit	1.1	GJ
Energy stored in one beam	362	MJ

Enough to melt 500 kg of copper

LHC Aperture and Collimation

LHC Operation:

Machine Protection & Safety

... Komponenten des Machine Protection Systems :

beam loss monitors QPS permit server orbit control power supply control collimators online on beam check of all (?) hardware components a fast dump the gaussian beam profile

LHC Operation: Machine Protection & Safety

What will happen in case of Hardware Failure

Phase space deformation in case of failure of RQ4.LR7 (A. Gómez)

Short Summary of the studies:

quench in sc. arc dipoles: $\tau_{loss} = 20 - 30 \text{ ms}$ BLM system reacts in time, QPS is not fast enough

quench in sc. arc quadrupoles: $\tau_{loss} = 200 \text{ ms}$ BLM & QPS react in time

Energy stored in the magnets: 10 GJ Quench Protection System

Schematics of the QPS in the main dipoles of a sector

court. R. Alemany
Energy stored in the magnets: quench

LHC Operation:

LHC Operation: Machine Protection & Safety

... no comment

LHC Operation where are we?

Luminosity Efficiency: time spent in collisions / overall time

Access – No beam : 6.24% <mark>Access –</mark> Nachine setup : 24.89% Beam in : 12.59% <mark>Ramp + squeeze : 6.85% Stable beams: 49.42%</mark>

LHC Design	<i>LHC 2012</i>
7 TeV/c	3.5 TeV
8.33 T	4.16 T
1.15 × 10 ¹¹	1.5 × 10 ¹¹
2808	1380
25 ns	50 ns
3.75 µm	2.2 µm
5 × 10 ⁻¹⁰	6.7 × 10 ⁻¹⁰
0.5 m	0.6 m
16 µm	18 µm
<i>1.0</i> × <i>10</i> ³⁴	6.7 × 10 ³³
	LHC Design 7 TeV /c 8.33 T 1.15 × 10 ¹¹ 2808 25 ns 3.75 µm 5 × 10 ⁻¹⁰ 0.5 m 16 µm 1.0 × 10 ³⁴

sche scha