

A Bit of History

A Bit of Theory

A Bit of Reality

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

$\left.\begin{array}{l}\text { Particle source: Hydrogen discharge tube } \\ \text { on } 400 \mathrm{kV} \text { level }\end{array}\right\} \begin{aligned} & \text { Accelerator: evacuated glas tube } \\ & \text { Target: Li-Foil on earth potential }\end{aligned}$
Technically: rectifier circuit, built of capacitors and diodes (Greinacher)
robust, simple, on-knob machines largely used in history as pre-accelerators for proton and ion beams
recently replaced by modern structures (RFQ)

Main limitation

Main limitation: electric discharge due to too high Voltage.

Maximum limit: I MV
Limit set by Paschen law:
the breaking Voltage between two parallel electrodes depends only on the pressure of the gas between the electrodes and their distance
 too dense, long mean average path of High pressure: dense electrons gas, large Voltage needed for gas ionisation
2.) Electrostatic Machines:

(Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12$... 28 MV using high pressure gas to suppress discharge (SF_{6})

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The ,,Tandem principle": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the

Example for such a „steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

The Principle of the "Steam Engine":
Mechanical Transport of Charge via a rotating chain or belt

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times

 to the particle beamschematic Layout:

Energy gained after n acceleration gaps

$$
E_{n}=n * q * U_{0} * \sin \psi_{s}
$$

\boldsymbol{n} number of gaps between the drift tubes \boldsymbol{q} charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
$\boldsymbol{\Psi}_{S}$ synchronous phase of the particle

[^0]
Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF
U_{0}

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions

Beam energies

1.) reminder of some relativistic formula

$$
\begin{array}{ll}
\text { rest energy } & E_{0}=m_{0} c^{2} \\
\text { total energy } & E=\gamma * E_{0}=\gamma * m_{0} c^{2} \quad \text { momentum } \quad E^{2}=c^{2} p^{2}+m_{0}{ }^{2} c^{4} \\
\text { kinetic energy } & E_{k i n}=E_{\text {total }}-m_{0} c^{2}
\end{array}
$$

GSI: Unilac, typical Energie $\approx 20 \mathrm{MeV}$ per
Nukleon, $\beta \approx 0.04$... 0.6,
Protons/Ions, $v=110 \mathrm{MHz}$

Energy Gain per „Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} \boldsymbol{F}} \boldsymbol{t}
$$

Application: until today THE standard proton /ion pre-accelerator CERN Linac 4 is being built at the moment

4.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: Bend a Linac on a Spiral Application of a constant magnetic field keep $B=$ const, $R F=$ const
\rightarrow Lorentzforce

$$
\vec{F}=q *(\vec{v} \times \vec{B})=q * v * B
$$

increasing momentum \rightarrow Spiral Trajectory
revolution frequency

$$
\omega_{z}=\frac{q}{m} * B_{z}
$$

the cyclotron (rf-) frequency
is independent of the momentum

Cyclotron:

! ω is constant for a given $q \& B$
$!!B^{*} R=p / q$ large momentum \rightarrow huge magnet
!!!! $\omega \sim 1 / m \neq$ const works properly only for non relativistic particles

Application:
Work horses for medium energy protons
Proton / Ion Acceleration up to $\approx 60 \mathrm{MeV}$ (proton energy) nuclear physics
radio isotope production, proton / ion therapy

Beam Energy

... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

CERN Accelerators
kin. Energy
γ

Linac 2	60 MeV	1.06
PS	26 GeV	27
SPS	450 GeV	480
LHC	7 TeV	7460

remember: proton mass $=938 \mathrm{MeV}$

Cyclotron:
modern trends: Problem: $m \neq$ const.
\rightarrow non relativistic machine

$$
\omega_{z}=\frac{\left.e^{*} I B\right)_{z}}{\gamma^{*}{ }_{I n n \|_{0}}}
$$

5.) The Betatron: Wideroe 1928/ Kerst 1940

...apply the transformer principle to an electron beam: no RF system needed, changing magnetic B field

Idea: a time varying magnetic field induces a voltage that will accelerate the particles

Farady induction law

$$
\oint \vec{E} d \vec{s}=-\int_{A} \dot{B} d f=-\dot{\Phi}
$$

$$
\begin{aligned}
& \frac{m v^{2}}{r}=e^{*} v^{*} B \\
& \rightarrow \quad p=e^{*} B^{*} r
\end{aligned}
$$

schematic design

magnetic flux through this orbit area

$$
\Phi=\int B d f=\pi r^{2} * B_{a}
$$

induced electric field

$$
\begin{array}{cl}
\begin{array}{l}
\oint \vec{E} \\
\end{array} s=\vec{E} * 2 \pi r=-\dot{\Phi} \Rightarrow & \vec{E}=\frac{-\pi r^{2} * \dot{B}_{a}}{2 \pi r}=-\frac{1}{2} \dot{B}_{a} r \\
\text { force acting on the particle: } & \dot{p}=-|\vec{E}| e=\frac{1}{2} \dot{B}_{a} r
\end{array}
$$

The increasing momentum of the particle has to be accompanied by a rising magnetic guide field:

$$
\dot{p}=e^{*} \dot{B}_{g} r \quad B_{g}=\frac{1}{2} B_{a}
$$

robust, compact machines, Energy $\leq 300 . . .500 \mathrm{MeV}$,
limit: Synchrotron radiation

6.) Synchrotrons / Storage Rings / Colliders:

Wideroe 1943, McMillan, Veksler 1944,

Idea: define a circular orbit of the particles, keep the beam there during acceleration, put magnets at this orbit to guide and focus

Advanced Photon Source, Berkley

7.) Electron Storage Rings

Production of Synchrotron Light

$$
\begin{array}{ll}
P_{s}=\frac{e^{2} c}{6 \pi \varepsilon_{0}} * \frac{1}{\left(m_{0} c^{2}\right)^{4}} \frac{E^{4}}{R^{4}} & \text { Radiation Power } \\
\Delta E=\frac{e^{2}}{3 \varepsilon_{0}\left(m_{0} c^{2}\right)^{4}} \frac{E^{4}}{R} & \text { Energy Loss per turn } \\
\omega_{c}=\frac{3 c \gamma^{3}}{2 R} & \begin{array}{l}
\text { „typical Frequency" } \\
\text { of emitted light }
\end{array}
\end{array}
$$

Application of Synchrotron Light Analysis at Atoms \& Molecules

The electromagnetic Spectrum:

having a closer look at the sun ...

Light:

$$
\begin{array}{r}
\lambda \approx 400 \mathrm{~nm} \ldots 800 \mathrm{~nm} \\
\text { 1 Oktave }
\end{array}
$$

The electromagnetic spectrum

Structure of a Ribosom
Ribosomen are responsible for the protein production in living cells.
The structure of these Ribosom molecules can be analysed using brilliant synchrotron light from electron storage rings
(Quelle: Max-Planck-Arbeitsgruppen für Strukturelle Molekularbiologie)

Angiographie

x-ray method applicable for the imaging of coronar heart arteria

8.) Synchrotrons as Collider Rings (1960 ...):

Beam energies

1.) reminder of some relativistic formula

total energy $\quad E^{2}=p^{2} c^{2}+m_{0}{ }^{2} c^{4}$
$\longrightarrow \quad c p=\sqrt{E^{2}-m_{0}^{2} c^{4}}=\sqrt{\left(\gamma m_{0} c^{2}\right)^{2}-\left(m_{0} c^{2}\right)^{2}}=\sqrt{\gamma^{2}-1} m_{0} c^{2}$
$\longrightarrow \quad c p=\gamma \beta * m_{0} c^{2}$
2.) energy balance of colliding particles
rest energy of a particle $\quad E_{0}{ }^{2}=\left(m_{0} c^{2}\right)^{2}=E^{2}-p^{2} c^{2}$
in exactly the same way we define a center of mass energy of a system of particles:

$$
E_{c m}^{2}=\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} c p_{i}\right)^{2}
$$

two colliding particles

$$
\begin{aligned}
& E_{c m}^{2}=\left(\gamma_{1} m_{1}+\gamma_{2} m_{2}\right)^{2} c^{4}-\left(c p_{1}+c p_{2}\right)^{2} \\
& E_{c m}^{2}=\left(\gamma_{1} m_{1}+\gamma_{2} m_{2}\right)^{2} c^{4}-\left(\gamma_{1} \beta_{1} m_{1}+\gamma_{2} \beta_{2} m_{2}\right)^{2} c^{4}
\end{aligned}
$$

Example 1): proton beam on fixed proton

$$
\begin{aligned}
& m_{1}=m_{1}=m_{p}
\end{aligned} \begin{aligned}
& \gamma_{2}=1 \\
& \beta_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& E_{c m}^{2}=\left(\gamma_{1}+1\right)^{2} m_{p}^{2} c^{4}-\left(\gamma_{1}^{2}-1\right) * m_{p}^{2} c^{4} \\
& E_{c m}^{2}=2\left(\gamma_{1}-1\right)^{*} m_{p}^{2} c^{4}
\end{aligned}
$$

$$
E_{c m}=\sqrt{2\left(\gamma_{1}-1\right)} * m_{p} c^{2}
$$

Descovery of the Quarks: electron beam on fixed proton / neutron target

* store both counter rotating particle beams in the same magnet lattice
* no conservation of quantum numbers required

$$
E_{c m}^{2}=\left(\gamma_{1} m_{1}+\gamma_{2} m_{2}\right)^{2} c^{4}-\left(c p_{1}-c p_{2}\right)^{2}
$$

1979 PETRA Collider at DESY
discovery of the gluon

Colliders: * working at highest energies ("cm")

* store the particles for long time in an accelerator
* bring two beams into collision
* particle density !!
* preparation / technical design / field qualities are extreme

Structure of Matter

9.) Storage Rings for Structure Analysis

synchrotron light: nm

electron scattering: \AA... $10^{-18 m}$
de Broglie:

$$
\lambda=\frac{h}{p}=\frac{c h}{E} \quad E \approx p c
$$

10.) Storage Rings to Explain the Universe Precision Measurements of the Standard Model, Search for Higgs, Supersymmetry, Dark Matter Physics beyond the Standard Model

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about $v \approx c$

$$
L=10^{10}-10^{11} \mathrm{~km}
$$

... several times Sun - Pluto and back \&
intensity ($\mathbf{1 0}^{11}$)

\rightarrow guide the particles on a well defined orbit (,,design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q^{*}(*+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:)

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{VS}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{M V}{m}} \\
\text { equivalent el. field } \ldots \rho \quad E
\end{gathered}
$$

technical limit for el. field: $>$

$$
E \leq 1 \frac{M V}{m}
$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

$$
\begin{array}{ll}
\text { Lorentz force } & \boldsymbol{F}_{L}=\boldsymbol{e} v \boldsymbol{B} \\
\text { centrifugal force } & \boldsymbol{F}_{\text {centr }}=\frac{\gamma \boldsymbol{m}_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{2}}{\rho}=\boldsymbol{e}\right\rangle \boldsymbol{B}
\end{array}
$$

$$
\begin{aligned}
& \frac{\boldsymbol{p}}{\boldsymbol{e}}=\boldsymbol{B} \rho \\
& \boldsymbol{B} \rho=\text { "beam rigidity" }
\end{aligned}
$$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit
homogeneous field created by two flat pole shoes

$$
B=\frac{\mu_{0} n I}{h}
$$

Normalise magnetic field to momentum:
convenient units:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\}
$$

$$
\begin{aligned}
\frac{1}{\rho} & =\boldsymbol{e} \frac{8.3 \mathrm{~V} / \boldsymbol{m}^{2}}{7000 * 10^{9} \boldsymbol{e V} / \mathrm{c}}=\frac{8.3 \mathrm{~s} * 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \mathrm{~m}^{2}} \\
\frac{1}{\rho} & =0.333 \frac{8.3}{7000} 1 / \boldsymbol{m}
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.53 \mathrm{~km} \quad \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx 66 \%
\end{aligned}
$$

rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$

The Problem:

LHC Design Magnet current: $I=11850$ A
and the machine is 27 km long !!!
Ohm's law: $\quad U=R^{*} I, \quad P=R^{*} I^{2}$

Problem:

reduce ohmic losses to the absolute minimum

The Solution: super conductivity

Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911

LHC 1.9 K cryo plant

Superfluid helium:
 1.9 K cryo system

Phase diagramm of Helium

thermal conductivity of fl. Helium in supra fluid state

LHC: The -1232- Main Dipole Magnets

required field quality: $\Delta B / B=10^{-4}$

$6 \mu \mathrm{~m}$ Ni-Ti filament
2.) Focusing Properties - Transverse Beam Optics

$$
\overline{F(t)}=\underbrace{q(\overline{E(t)}}_{\mathrm{F}_{\mathrm{E}}}+\overline{v(t)} \underbrace{\otimes \overline{B(t)}}_{\mathrm{F}_{\mathrm{B}}})
$$

Linear Accelerator

Circular Accelerator

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional
to the elongation x :

$$
m * \frac{d^{2} x}{d t^{2}}=-c * x
$$

general solution: free harmonic oszillation

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad
\qquad the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=g \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(\boldsymbol{T} / \boldsymbol{m})}{p(\boldsymbol{G e} V / c)}
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \boldsymbol{T} / \boldsymbol{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{X}}+\frac{\partial \overrightarrow{\mathrm{E}} / \mathrm{t}}{\partial \mathrm{t}}=0 \quad \Rightarrow \quad \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}=g
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!}\right) / x^{3}+\ldots
$$

only terms linear in x, y taken into account
dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR

The Equation of Motion:

*

Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)
$*$
Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
\boldsymbol{k} \leftrightarrow-\boldsymbol{k} \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|}) & \frac{1}{\sqrt{\mid \boldsymbol{K}} \mid} \sin (\sqrt{|\boldsymbol{K}|} l \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|}) & \cos (\sqrt{|\boldsymbol{K}|})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
\boldsymbol{x}^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {def oc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
x(s)=x_{0}^{\prime} * s
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices
$M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} \ldots . .}$.

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator, ,
typical values in a strong foc. machine:

5.) Orbit \& Tune:

Tune: number of oscillations per turn
64.31
59.32

Relevant for beam stability:

non integer part

LHC revolution frequency: 11.3 kHz
$0.31 * 11.3=3.5 \mathbf{k H z}$

LHC Operation: Beam Commissioning

First turn steering "by sector:"
aOne beam at the time \square Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

... or a third one or ... $1 \mathbf{1 0}^{10}$ turns

II.) The Ideal World:

Particle Trajectories, Beams \& Bunches

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$
restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function

we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

6.) The Beta Function

„it is convenient to see"
... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) \quad \begin{aligned}
& \varepsilon, \Phi=\text { integration constants } \\
& \text { determined by initial conditions }
\end{aligned}
$$

$\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!
$\Psi(s)=$,phase advance" of the oscillation between point „0" and „s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \cdot \int \frac{d s}{\beta(s)}
$$

6.) The Beta Function

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

β determines the beam size (... the envelope of all particle trajectories at a given position " s " in the storage ring.

It reflects the periodicity of the magnet structure.

7.) Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!!

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each linear accelerator element according to matrix formalism
plot x, x^{\prime} as a function of "s"

... and now the ellipse:
note for each turn x, x^{\prime} at a given position ", s_{1} " and plot in the phase space diagram

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

$$
\text { Particle Distribution: } \quad \rho(x)=\frac{N \cdot e}{\sqrt{2 \pi} \sigma_{x}} \cdot e^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}^{2}}}
$$

particle at distance 1σ from centre
$\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

LHC: $\quad \beta=180 m$

$$
\varepsilon=5 * 10^{-10} \mathrm{mrad}
$$

$$
\sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5 * 10^{-10} m * 180 \mathrm{~m}}=0.3 \mathrm{~mm}
$$

aperture requirements: $r_{0}=12 * \sigma$

III.) The ,not so ideal" World
 Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder:
Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

$$
\begin{array}{lll}
x^{\prime \prime}+K x=0 & K=1 / \rho^{2}-k & \text {... hor. plane: } \\
& K=k & \ldots \text { vert. Plane: }
\end{array}
$$

Solution of Trajectory Equations

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=\boldsymbol{M} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{d r i f t}=\left(\begin{array}{ll}
1 & \boldsymbol{l} \\
0 & 1
\end{array}\right)
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

$$
\boldsymbol{M}_{\text {def oc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|\boldsymbol{K}|} l) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sinh (\sqrt{|\boldsymbol{K}|} l) \\
\sqrt{|\boldsymbol{K}|} \sinh (\sqrt{|\boldsymbol{K}|} l) & \cosh (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

$$
M_{t o t a l}=M_{Q F} * M_{D} * M_{B} * M_{D} * M_{Q D} * M_{D} * \quad \ldots
$$

8.) Lattice Design: „... how to build a storage ring"

Geometry of the ring: $\quad B^{*} \rho=p / e$

$$
\begin{aligned}
& p=\text { momentum of the particle, } \\
& \rho=\text { curvature radius }
\end{aligned}
$$

$$
\text { B } \rho=\text { beam rigidity }
$$

Circular Orbit: bending angle of one dipole

$$
\alpha=\frac{d s}{\rho} \approx \frac{d l}{\rho}=\frac{B d l}{B \rho}
$$

The angle run out in one revolution must be 2π, so for a full circle

$$
\alpha=\frac{\int B d l}{B \rho}=2 \pi
$$

$$
\int B d l=2 \pi \frac{p}{q}
$$

... defines the integrated dipole field around the machine.

7000 GeV Proton storage ring dipole magnets $\mathrm{N}=1232$
$l=15 \mathrm{~m}$
$\mathrm{q}=+1 \mathrm{e}$

$$
\int B d l \approx N l B=2 \pi p / e
$$

$$
\boldsymbol{B} \approx \frac{2 \pi 700010^{9} \boldsymbol{e} V}{123215 \boldsymbol{m} 310^{8} \frac{\boldsymbol{m}}{\boldsymbol{s}} \boldsymbol{e}=8.3 \text { Tesla }}
$$

LHC: Lattice Design
 the ARC 90° FoDo in both planes

MQ: main quadrupole
equipped with additional corrector coils

MB: main dipole

 MQ: main quadrupoleMQT: Trim quadrupole
MQS: Skew trim quadrupole
MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole
Orbit corrector dipoles
MCS: Spool piece sextupole
MCDO: Spool piece 8 / 10 pole
BPM: Beam position monitor + diagnostics

Magnets for the LHC, total budget, every magnet has a role in the optics design

Name	Quantity	Purpose
MB	1232	Main dipoles
MQ	400	Main lattice quadrupoles
MSCB	376	Combined chromaticity/ closed orbit correctors
MCS	2464	Dipole spool sextupole for persistent currents at injection
MCDO	1232	Dipole spool octupole/decapole for persistent currents
MO	336	Landau octupole for instability control
MQT	256	Trim quad for lattice correction
MCB	266	Orbit correction dipoles
MQM	100	Dispersion suppressor quadrupoles
MQY	20	Enlarged aperture quadrupoles

In total 6628 cold magnets ...

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in (Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu=45^{\circ}$,
\rightarrow calculate the twiss parameters for a periodic solution

9.) Insertions

β-Function in a Drift:

$$
\beta(\ell)=\beta_{0}+\frac{\ell^{2}}{\beta_{0}}
$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice.
-> here we get the largest beam dimension.
-> keep las small as possible

7 sigma beam size inside a mini beta quadrupole
... clearly there is an

... unfortunately ... in general

 high energy detectors that are installed in that drift spaces

The Mini- β Insertion:

$$
R=L^{*} \Sigma_{\text {react }}
$$

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator: .. the luminosity

$$
L=\frac{1}{4 \pi e^{2} f_{0} \mathrm{~b}} * \frac{I_{1} * I_{2}}{\sigma_{x}^{*} * \sigma_{y}^{*}}
$$

10.) Luminosity

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\beta_{x, y}=0.55 \mathrm{~m} & \boldsymbol{f}_{0}=11.245 \mathrm{kHz} \\
\varepsilon_{x, y}=5 * 10^{-10} \mathrm{radm} & n_{b}=2808 \\
\sigma_{x, y}=17 \mu \mathrm{~m} & \boldsymbol{L}=\frac{1}{4 \pi e^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{\boldsymbol{p} 2}}{\sigma_{x} \sigma_{y}}
\end{array}
$$

$$
\boldsymbol{I}_{p}=584 \boldsymbol{m} \boldsymbol{A}
$$

$$
\boldsymbol{L}=1.0 * 10^{34} \mathrm{1} / \mathrm{cm}^{2} \mathrm{~s}
$$

Mini- β Insertions: Betafunctions

A mini- β insertion is always a kind of special symmetric drift space.
\rightarrow greetings from Liouville
the smaller the beam size the larger the bam divergence

Mini- β Insertions: some guide lines

* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure
parameters to be optimised \& matched to the periodic solution:

$$
\begin{array}{ll}
\alpha_{x}, \beta_{x} & D_{x}, D_{x}^{\prime} \\
\alpha_{y}, \beta_{y} & Q_{x}, Q_{y}^{\prime}
\end{array}
$$

8 individually powered quad magnets are needed to match the insertion (... at least)

The LHC Insertions

mini β optics

Acceleration: Energy Gain

... we have to start again from the basics

Lorentz force

$$
\begin{aligned}
& \vec{F}=q^{*}(\vec{E}+\vec{v} \times \vec{B}) \\
& \vec{F}=\frac{d \vec{p}}{d t}=e \vec{E} \quad \begin{array}{l}
\text { in long. direction the } \\
\text { B-field creates no force }
\end{array} \\
& \text { acc. force is given by the electr. Field }
\end{aligned}
$$

In relativistic dynamics, energy and momentum satisfy the relation:

$$
E^{2}=E_{0}^{2}+p^{2} c^{2} \quad\left(E=E_{0}+W\right)
$$

Hence:

$$
d E=\int F d s=v d p
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=e E_{z} d s \quad \Rightarrow \quad W=e \int E_{z} d s=e V
$$

11.) Electrostatic Machines

(Tandem -) van de Graaff Accelerator

creating high voltages by mechanical transport of charges

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The „Tandem principle": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H^{-}) and stripping the electrons in the centre of the

12.) Linear Accelerator 1928, Wideroe

Energy Gain per "Gap":

$$
W=q U_{0} \sin \omega_{R F} t
$$

drift tube
structure at a
proton linac
(GSI Unilac)

Cyclotron:

exact equation for revolution frequency:

$$
\omega_{z}=\frac{v}{R}=\frac{q}{\gamma * m} * B_{z}
$$

1.) if $v \ll c \Rightarrow \gamma \cong 1$
2.) γ increases with the energy
\Rightarrow no exact synchronism
"synchronisation" with the accele lingth

$$
B=\text { constant }
$$

$$
\gamma \omega_{R F}=\text { constant }
$$

$\omega_{\text {RF }}$ decreases with time

$$
\omega_{s}(t)=\omega_{r f}(t)=\frac{q}{\gamma(t) * m_{0}} * B
$$

keep the synchronisation condition by varying the rffrequency

The Synchrotron (Mac Millan, Veksler, 1945)

The synchrotron: Ring Accelerator of const. R where the increase in momentum (i.e. B-field) is automatically synchronised with the correct synchronous phase of the particle in the rf cavities

$$
\begin{aligned}
& \omega_{R F}=h \omega_{r} \quad \longrightarrow \text { RF synchronism } \\
& \rho=\text { cte } \quad R=\text { cte } \rightarrow \text { Constant orbit } \\
& B \rho=P / e \Rightarrow B \\
& \rightarrow \text { Variable magnetic field }
\end{aligned}
$$

13.) The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring and adjust the phase (the timing) between particle and RFVoltage in the right way: "Synchronisation"

N. Biancacci

14.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" below transition

ideal particle •
particle with $\Delta p / p>0$
particle with $\Delta p / p<0$ • slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a"bunch"
oscillation frequency: $f_{s}=f_{\text {ree }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \approx$ some Hz
... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

... some when the particles do not get faster anymore
.... but heavier !
kinetic energy of a proton

15.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" above transition

ideal particle
particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter

Focussing effect in the longitudinal direction
keeping the particles close together ... forming a "bunch"
... and how do we accelerate now ??? with the dipole magnets!

The RF system: IR4

Nb on Cu cavities@4.5K (=LEP2)
Beam pipe diam. $=300 \mathrm{~mm}$

Bunch length (4б)	ns	1.06
Energy spread (2б)	10^{-3}	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron frequency	Hz	23.0

RF Buckets \& long. dynamics in phase space

LHC Commissioning: RF

RF off

RF on, phase optimisation

a proton bunch: focused longitudinal by the RF field

> RF on, phase adjusted, beam captured

IV.) Are there Any Problems ???
sure there are

Liouville during Acceleration

$$
\varepsilon=\gamma(s) \boldsymbol{x}^{2}(\boldsymbol{s})+2 \alpha(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s}) \boldsymbol{x}^{\prime}(\boldsymbol{s})+\beta(\boldsymbol{s}) \boldsymbol{x}^{\prime 2}(\boldsymbol{s})
$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.

$$
\text { But so sorry ... } \varepsilon \neq \text { const! }
$$

Classical Mechanics:
phase space $=$ diagram of the two canonical variables
position \& momentum
\boldsymbol{x}

$$
p_{x}
$$

$$
p_{j}=\frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L=T-V=\text { kin. Energy- pot. Energy }
$$

According to Hamiltonian mechanics:
phase space diagram relates the variables q and p

$$
\begin{aligned}
& q=\text { position }=x \\
& p=m o m e n t u m=\gamma \boldsymbol{m} v=m c \gamma \beta_{x}
\end{aligned}
$$

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad ; \quad \beta_{x}=\frac{\dot{x}}{c}
$$

Liouvilles Theorem: $\quad \int p d q=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
\begin{gathered}
x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\boldsymbol{\beta}_{x}}{\beta} \quad \text { where } \boldsymbol{\beta}_{x}=\boldsymbol{v}_{x} / \boldsymbol{c} \\
\int p d q=m c \int \gamma \beta_{x} d x \\
\int p d q=m c \gamma \beta \underbrace{\int x^{\prime} d x}_{\varepsilon} \quad \Rightarrow \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma}
\end{gathered}
$$

the beam emittance shrinks during acceleration $\varepsilon \sim 1 / \gamma$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.

$$
\sigma=\sqrt{\varepsilon \beta}
$$

2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

LHC injection optics at 450 GeV

Example: HERA proton ring

injection energy: 40 GeV
flat top energy: 920 GeV
$\gamma=43$
$\gamma=980$
emittance $\varepsilon(40 \mathrm{GeV})=1.2 * 10^{-7}$

$$
\varepsilon(920 \mathrm{GeV})=5.1 * 10^{-9}
$$

7σ beam envelope at $E=40 \mathrm{GeV}$

RF Acceleration-Problem:
 panta rhei !!!
 (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example)

$$
\begin{array}{ll}
\sin \left(90^{\circ}\right)=1 \\
\sin \left(84^{\circ}\right)=0.994 & \frac{\Delta \boldsymbol{U}}{\boldsymbol{U}}=6.0 \quad 10^{-3}
\end{array}
$$

Bunch length of Electrons $\approx 1 \mathrm{~cm}$

$$
\left.\begin{array}{l}
v=400 \mathrm{MHz} \\
c=\lambda \boldsymbol{v}
\end{array}\right\} \lambda=75 \mathrm{~cm}
$$

typical momentum spread of an electron bunch:

$$
\frac{\Delta p}{p} \approx 1.0 \quad 10^{-3}
$$

Dispersive and Chromatic Effects: $\Delta p / p \neq 0$

Are there any Problems???
font colors due to
Sure there are !!! pedagogical reasons

17.) Dispersion and Chromaticity:
 Magnet Errors for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet

$$
\alpha=\frac{\int B d l}{p / e}
$$

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

focusing lens

$$
k=\frac{g}{p / e}
$$

to high energy to low energy ideal energy

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\left(\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{0}+\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\binom{\boldsymbol{D}}{\boldsymbol{D}^{\prime}}_{0}
$$

or expressed as 3×3 matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Example

$$
\begin{aligned}
& x_{\beta}=1 \ldots 2 \mathrm{~mm} \\
& D(s) \approx 1 \ldots 2 \mathrm{~m} \\
& \Delta p / p \approx 1 \cdot 10^{-3}
\end{aligned}
$$

Amplitude of Orbit oscillation

 contribution due to Dispersion \approx beam size \rightarrow Dispersion must vanish at the collision pointCalculate D, D': ... takes a couple of sunny Sunday evenings !

26.) Chromaticity:

A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
focusing lens

$$
k=\frac{g}{p / e}
$$

to high energy to low energy
ideal energy
... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta \boldsymbol{Q}=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} k_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta Q=Q^{\prime} * \frac{\Delta p}{p}
$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q^{\prime} is a number indicating the size of the tune spot in the working diagram,
Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\begin{aligned}
& Q^{\prime}=250 \\
& \Delta p / p=+\angle 0.2 * 10^{-3} \\
& \Delta Q=0.256 \ldots 0.36
\end{aligned}
$$

\rightarrow Some particles get very close to resonances and are lost
in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity ($Q^{\prime} \approx 20$)

Ideal situation: cromaticity well corrected, ($Q^{\prime} \approx 1$)

Correction of Q^{\prime} :

Need: additional quadrupole strength for each momentum deviation $\Delta p / p$
1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

... using the dispersion function

2.) apply a magnetic field that rises quadratically with \boldsymbol{x} (sextupole field)

$$
\left.\begin{array}{l}
B_{x}=\tilde{g} x z \\
B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x
$$

linear rising , gradient":

Correction of Q':

k_{1} normalised quadrupole strength k_{2} normalised sextupole strength

Sextupole Magnets:

$$
\begin{aligned}
& k_{1}(\operatorname{sex} t)=\frac{\tilde{g} x}{p / e}=k_{2} * x \\
& k_{1}(\operatorname{sext})=k_{2} * D * \frac{\Delta p}{p}
\end{aligned}
$$

corrected chromaticity
considering a single cell:

$$
\begin{aligned}
& \boldsymbol{Q}_{\text {cell_s }}^{\prime}=-\frac{1}{4 \pi}\left\{-\boldsymbol{k}_{q f} \breve{\beta}_{y} l_{q f}+\boldsymbol{k}_{q d} \hat{\beta}_{y} l_{q d}\right\}+\frac{1}{4 \pi} \sum_{F \text { sext }} \boldsymbol{k}_{2}^{F} l_{\text {sext }} \boldsymbol{D}_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { seet }} \boldsymbol{k}_{2}^{D} l_{\text {sext }} \boldsymbol{D}_{x}^{D} \beta_{x}^{D}
\end{aligned}
$$

Some Golden Rules to Avoid Trouble

I.) Golden Rule number one:

do not focus the beam !

Problem: Resonances

$$
\begin{aligned}
& x_{c o}(s)=\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\psi_{s 1}-\psi_{s}-\pi Q\right) d s}{2 \sin \pi Q} \\
& n \boldsymbol{e}=\text { integer } \quad Q=1 \rightarrow 0
\end{aligned}
$$

$$
\text { Assume: } \text { Tune = integer }
$$

Integer tunes lead to a resonant increase
Qualitatively spoken: of the closed orbit amplitude in presence of the smallest dipole field error.

$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive
II.) Golden Rule number two: Never accelerate charged particles !

Transport line with quadrupoles
$x^{\prime \prime}+K(s) x=0$

Transport line with quadrupoles and space charge

$$
\begin{aligned}
& x^{\prime \prime}+\left(\mathrm{K}(\mathrm{~s})+\mathrm{K}_{\mathrm{SC}}(\mathrm{~s})\right) \mathrm{x}=0 \\
& \mathrm{x}^{\prime \prime}+(\mathrm{K}(\mathrm{~s})-\underbrace{\frac{2 \mathrm{r}_{0} \mathrm{I}}{2 \beta^{3} \gamma^{3} \mathrm{c}}}_{K_{S C}}) \mathrm{x}=0
\end{aligned}
$$

Golden Rule number two:

Tune Shift due to Space Charge Effect Problem at low energies
v / c

III.) Golden Rule number three:

Never Collide the Beams!

the colliding bunches influence each other
\rightarrow change the focusing properties of the ring !!

most simple case:
linear beam beam tune shift

$$
\Delta Q_{x}=\frac{\beta_{x}^{*} * r_{p} * N_{p}}{2 \pi \gamma_{p}\left(\sigma_{x}+\sigma_{y}\right)^{*} \sigma_{x}}
$$

and again the resonances !!!

LHC logbook: Sat 9-June "Late-Shift"

18:18h injection for physics clean injection!

IV.) Golden Rule Number 4: Never use Magnets

Clearly there is another problem ...
... if it were easy everybody could do it

Again: the phase space ellipse for each turn write down - at a given position "s" in the ring - the single partilce amplitude x and the angle $x^{\prime} \ldots$ and plot it. $\binom{x}{x^{\prime}}_{s 1}=M_{\text {turn }} *\binom{x}{x^{\prime}}_{s 0}$

A beam of 4 particles

- each having a slightly different emittance:

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. \rightarrow no equatiuons; instead: Computer simulation "particle tracking "

Effect of a strong (!!!) Sextupole ...
\rightarrow Catastrophy!

Golden Rule XXL: COURAGE

and with a lot of effort from Bachelor / Master / Diploma / PhD and Summer-Students the machine is running !!!

thank'x for your help and have a lot of fun

Bibliography:

1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: $5^{\text {th }}$ general acc. phys. course CERN 94-01
4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm. Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
6.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands: The Physics of $e+e$-Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

LHC Main Parameters

Momentum at collision	$7 \mathrm{Te} / \mathrm{c}$
Dipole field for 7 TeV	8.33 T
Luminosity	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Protons per bunch	1.15×10^{11}
Number of bunches/beam	2808
Nominal bunch spacing	25 ns
Normalized emittance	$3.75 \mu \mathrm{~m}$
rms beam size (7TeV, arc)	$300 \mu \mathrm{~m}$
beam pipe diameter	56 mm

Magnet Currents

Nummer	Gruppe	Name	aktiv	Sollwerte File1 [A]	Sollwer [A
1	HPDIPOL	BPA1	True	4138.993	5646
2	HPMAINW	QZ51 WL	True	235.462	326.
3	HPMAINW	QR52 WR	True	258.724	377.
4	HPMAINW	QC53 W/	True	237.933	327.
5	HPMAINW	QB28 WL	True	625.429	849.
6	HPMAINW	QR54 WR	True	291.486	405.
7	HPMAINW	QR24 WR	True	139.139	185.
8	HPMAINW	QR50 W/	True	305.348	419.
9	HPMAINW	QC22 WR	True	75.816	302.0
10	HPMAINW	QR57 WL	True	260.769	354.8
11	HPMAINW	QR56 WR	True	190.123	263.7
12	HPMAINW	QC20 WR	True	91.056	-13.5
13	HPMAINW	QP58 WR	True	-5.517	19.:
14	HPMAINW	QP59 W/	True	-10.401	-11.
15	HPMAINW	QP60 WR	True	73.600	98.'
16	HPMAINW	QP61 WL	True	69.504	$90 .!$
17	HPMAINW	QP62 WR	True	40.163	58.1
18	HPMAINW	QP63WL	True	47.489	63.1
19	HPMAINW	QP64 WR	True	-47700	-71.

remember: $\Delta B / B \approx 10-4$

LHC Operation: Magnet Preparation Cycle \& Ramp

8 independent sectors, hysteresis effects, saturation \& remanence in nc and sc magnets, synchronisation of the power converters, magnet model to describe the transfer functions of every element

LHC dipoles (1232 of them)

LHC: Basic Layout of the Machine multipole corrector magnets

2, 6, 8, 10, 12 pol
skew \& trim quad, chroma 6pol landau 8 pole

LHC Operation: Pre-Accelerators and Injection

BOOSTER $(1.4 \mathrm{GeV}) \rightarrow \mathrm{PS}(26 \mathrm{GeV}) \rightarrow \mathrm{SPS}(450 \mathrm{GeV}) \rightarrow \mathrm{LHC}$ BOOSTER (4 rings)

Two injections from BOOSTER to PS

$$
\begin{aligned}
& \mathrm{h}=7 \text { (6 buckets filled }+ \\
& 1 \text { empty) } \\
& \text { court. R. Alemany }
\end{aligned}
$$

LHC Injection: Preparing the Bunch Trains

Beam Injection

Bunch Splitting in the PS

$$
\begin{array}{ll}
N_{p} \approx 1.5 * 10^{13} \text { protons per bunch, } & E_{i n j}=50 \mathrm{MeV} \\
& \beta=0.31 \\
& \gamma=1.05
\end{array}
$$

Injection mechanism: the transfer lines

13/01/2010

Injection schemes:

Standard Proton Beam ... single turn Injection
Electron Beam "off axis" Injection
Ion Beam
"multi turn" injection

Single Turn Injection

Example: LHC, HERA-P

Transferlines \& Injection: Errors \& Tolerances

* quadrupole strengths --> "beta beat" $\Delta \beta / \beta$
* alignment of magnets --> orbit distortion in transferline \& storage ring * septum \& kicker pulses --> orbit distortion \& emittance dilution in storage ring

Example: Error in position Δa :

$$
\varepsilon_{\text {new }}=\varepsilon_{0} *\left(1+\frac{\Delta a^{2}}{2}\right)
$$

$$
\Delta a=0.5 \sigma
$$

$$
\rightarrow \varepsilon_{\text {new }}=1.125 * \varepsilon_{0}
$$

Kicker "plateau" at the end of the PS - SPS transferline measured via injection - oscillations

LHC Injection: Again ... high accuracy required

Filamentation

Injection errors (position or angle) dilute the beam emittance

Non-linear effects (e.g. magnetic field multipoles) introduce distort the harmonic oscillation and lead to ampl dependent effects into parti

Over many tu oscillation is t increase.

LHC Injection: remember the phase space

LHC First Turn Steering

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{\text {Bend }} * M_{D^{*}} \text {. }
$$

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in theory
nice harmonic oscillation

in reality: effect of many localised orbit distortions
-> correct

LHC Operation: Beam Commissioning

First turn steering "by sector:"
aOne beam at the time \square Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

LHC Operation: the First Turn

Beam 1 on OTR screen 1st and 2nd turn

Correct x, x^{\prime},
y, y^{\prime}
to obtain the Closed Orbit

LHC Commissioning: RF

RF off

RF on, phase optimisation

a proton bunch: focused longitudinal by the RF field

> RF on, phase adjusted, beam captured

Orbit \& Tune:

Tune: number of oscillations per turn 64.31
59.32

Relevant for beam stability:

non integer part
LHC revolution frequency: 11.3 kHz

LHC Operation: Aperture Scans
Apply closed orbit bumps until losses indicate the aperture limit
... what about the beam size?

LHC Operation: the First Beam

Measurement of β :

$\Delta \beta\left(s_{0}\right)=\frac{\beta_{0}}{2 \sin 2 \pi \boldsymbol{Q}} \int_{s 1}^{s l+l} \beta\left(s_{1}\right) \Delta K \cos \left(2\left|\psi_{s 1}-\psi_{s 0}\right|-2 \pi Q\right) d s$

$$
\Delta \beta / \beta=50 \%
$$

LHCB2, 90 turns (12/09/08 12:38:16)

LHC Operation: the First Beam

Dispersion Measurement

Luminosity optimization

$$
L=\frac{N_{1} N_{2} f_{r e v} N_{b}}{2 \pi \sqrt{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \sqrt{\sigma_{1 y}^{2}+\sigma_{2 y}^{2}}} F \cdot W
$$

$N_{i}=$ number of protons/bunch $\mathrm{Nb}=$ number of bunches
$f_{r e v}=$ revolution frequency
$\sigma i x=$ beam size along x for beam i
Giy = beam size along y for beam i
F is a pure crossing angle (Φ) contribution:

W is a pure beam offset contribution.
... can be avoided by careful tuning

$$
\boldsymbol{W}=\boldsymbol{e}^{-\frac{\left(d_{2}-d_{1}\right)^{2}}{2\left(\sigma_{x 1}^{2}+\sigma_{x 2}^{2}\right)}}
$$

LHC Operation:

Machine Protection \& Safety

Energy Stored in the Beam of different Storage Rings

LHC Operation:

Machine Protection \& Safety

Energy stored in magnet system	10
Energy stored in one main dipole circuit	1.1
GJ	
Energy stored in one beam	362
MJ	

LHC Aperture and Collimation

LHC Operation:

Machine Protection \& Safety

... Komponenten des Machine Protection Systems:

beam loss monitors
QPS
permit server
orbit control
power supply control collimators
online on beam check of all (?)
hardware components
a fast dump
the gaussian beam profile

LHC Operation: Machine Protection \& Safety

What will happen in

 case of Hardware FailurePhase space deformation in case of failure of RQ4.LR7 (A. Gómez)

Short Summary of the studies: quench in sc. arc dipoles: $\tau_{\text {loss }}=20-30 \mathrm{~ms}$

BLM system reacts in time, QPS is not fast enough
quench in sc. arc quadrupoles: $\tau_{\text {loss }}=200 \mathrm{~ms}$
BLM \& QPS react in time
failure of $n c$. quadrupoles: $\tau_{\text {det }}=\mathbf{~} \mathbf{m s}$
$\tau_{\text {damage }}=6.4 \mathrm{~ms} \quad \rightarrow$ FMCM installed
failure of nc. dipole:
$\tau_{\text {damage }}=6.4 \mathrm{~ms}$
$\tau_{\text {damage }}=2 \mathrm{~ms}$$\rightarrow$ FMCM installed

Energy stored in the magnets: 10 GJ

Quench Protection System
Schematics of the QPS in the main dipoles of a sector

court. R. Alemany

Energy stored in the magnets:

quench

If not fast and safe ...

LHC Operation:

Dump System

LHC Operation: Machine Protection \& Safety

LHC Operation where are we?

Luminosity Efficiency:
 time spent in collisions / overall time

Access - No beam: 6.24\% Machine setup : 24.89\%
Beam in : $12.59 \% \quad$ Ramp + squeeze : 6.85%
Stable beams: 49.42%

LHC Operation

where are we ?
Momentum at collision
LHC Design
LHC 2012
$7 \mathrm{TeV} / \mathrm{c}$
3.5 TeV

Dipole field
8.33 T
$4.16 T$
Protons per bunch
1.15×10^{11}
1.5×10^{11}
Number of bunches/beam
2808
1380
Nominal bunch spacing
25 ns
50 ns
Normalized emittance
$3.75 \mu \mathrm{~m}$
$2.2 \mu \mathrm{~m}$
Absolute Emittance
5×10^{-10}
6.7×10^{-10}
Beta Function
0.5 m
0.6 m
rms beam size (IP)
$16 \mu m$
$18 \mu m$
Luminosity
1.0×10^{34}
6.7×10^{33}

sche scha

[^0]: * acceleration of the proton in the first gap
 * voltage has to be "flipped" to get the right sign in the second gap \rightarrow RF voltage
 \rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage

