
SQL & ADVANCED SQL 
Marcin Blaszczyk (CERN IT-DB) 

marcin.blaszczyk@cern.ch 



 Goal of  this tutorial: 

 Present the overview of  basic SQL capabilities 

 Explain several selected advanced SQL features 

 

 Outline 

 Introduction 

 SQL basics 

 Joins & Complex queries 

 Analytical functions & Set operators 

 Other DB objects (Sequences, Synonyms, DBlinks, Views & Mviews)  

 Indexes & IOTs  

 Partitioning 

 Undo & Flashback technologies 

 

AGENDA 

Oracle Tutorials 5th of  May 2012 



 Objective: be able to perform the basic operation of  the 

RDBMS data model 

 create, modify the layout of  a table 

 remove a table from the user schema 

 insert data into the table 

 retrieve and manipulate data from one or more tables 

 update/ delete data in a table 

 + 

 Some more advanced modifications 

SQL LANGUAGE 

Oracle Tutorials 5th of  May 2012 



 Structured Query Language   

 Programing language 

 Designed to mange data in relational databases 

 

 DDL Data Definition Language 

 Creating, replacing, altering, and dropping objects 

 Example: DROP TABLE [TABLE]; 

 DML Data Modification Language 

 Inserting, updating, and deleting rows in a table 

 Example: DELETE FROM [TABLE]; 

 DCL Data Control Language 

 Controlling access to the database and its objects 

 Example: GRANT SELECT ON [TABLE] TO [USER]; 

SQL LANGUAGE (2) 

Oracle Tutorials 5th of  May 2012 



STATEMENT DESCRIPTION 

SELECT Data Retrieval 

INSERT 
UPDATE 
DELETE 

Data Manipulation Language (DML) 

CREATE 
ALTER 
DROP 

RENAME 
TRUNCATE 

Data Definition Language (DDL) 

GRANT 
REVOKE 

Data Control Language (DCL) 

COMMIT 
ROLLBACK 

Transaction Control 

Oracle Tutorials 

SQL LANGUAGE(3) 

5th of  May 2012 



 A transaction is a sequence of  SQL Statements that Oracle treats 
as a single unit of  work 

 A transaction must be commited or rolled back: 

COMMIT; - makes permanent the database changes you made during the 
transaction. 

ROLLBACK; - ends the current transaction and undoes any changes 
made since the transaction began. 

 Check COMMIT settings in your Client Tool (eg 
AUTOCOMMIT, EXITCOMMIT  in SQL*Plus)  

 UNDO tablespace:  

 circular buffer  

 records all actions of  transactions 

 used when rolling back a transaction 

Oracle Tutorials 

TRANSACTION & UNDO 

5th of  May 2012 



STATEMENT DESCRIPTION 

SELECT Data Retrieval 

INSERT 
UPDATE 
DELETE 

Data Manipulation Language (DML) 

CREATE 
ALTER 
DROP 

RENAME 
TRUNCATE 

Data Definition Language (DDL) 

GRANT 
REVOKE 

Data Control Language (DCL) 

COMMIT 
ROLLBACK 

Transaction Control 

Oracle Tutorials 

SQL LANGUAGE(3) 

5th of  May 2012 



 Collection of  logical structures of  data 

 called schema objects 

 tables, views, indexes, synonyms, sequences, packages, triggers, 

links, … 

 Owned by a database user  

 same name of  the user 

 Schema objects can be created and manipulated with SQL 

   SELECT * FROM USER_OBJECTS | USER_TABLES (…) 

 SELECT user DROM dual; 

 SHOW USER; (in SQL*Plus) 

 

DATABASE SCHEMA (USER) 

Oracle Tutorials 5th of  May 2012 



 Define the table layout: 

 table identifier 

 column identifiers and data types 

 column constraints,  

 default values 

 integrity constraints 

 relational constraints 

 

CREATE A TABLE 

Oracle Tutorials 

CREATE TABLE employees ( 

 employee_id NUMBER(6) NOT NULL, 

 first_name VARCHAR2(20), 

 last_name VARCHAR2(25), 

 hire_date DATE DEFAULT SYSDATE, 

 department_id NUMBER(4), 

 salary NUMBER(8,2) CHECK (salary > 0)); 

SQL> describe employees 

Name              Null?    Type 

 ----------------- -------- ------------ 

 EMPLOYEE_ID       NOT NULL NUMBER(6) 

 FIRST_NAME                 VARCHAR2(20) 

 LAST_NAME                  VARCHAR2(25) 

 HIRE_DATE                  DATE 

 DEPARTMENT_ID              NUMBER(4) 

 SALARY                     NUMBER(8,2) 

5th of  May 2012 



 Each value has a datatype  

 defines the domain of  values that each column can contain 

 when you create a table, you must specify a datatype for each 

of  its columns 

 ANSI defines a common set 

 Oracle has its set of  built-in types  

 User-defined types 

 

DATATYPES 

Oracle Tutorials 

ANSI data type Oracle 

 integer NUMBER(38) 

smallint NUMBER(38) 

numeric(p,s) NUMBER(p,s) 

 varchar(n)  VARCHAR2(n) 

char(n) CHAR(n)  

 float  NUMBER 

 real  NUMBER 

5th of  May 2012 



SELECT [ALL | DISTINCT] column1[,column2] 

FROM table1[,table2] 

[WHERE "conditions"] 

[GROUP BY "column-list"] 

[HAVING "conditions] 

[ORDER BY "column-list" [ASC | DESC] ] 

 

 

Oracle Tutorials 

SELECT STATEMENT 

SELECT d.department_name, 

       sum(e.salary)as DEPT_AL 

FROM departments d, employees e 

WHERE d.department_id = e.department_id 

GROUP BY d.department_name 

HAVING SUM(e.salary) > 10000 

ORDER BY department_name; 

DEPARTMENT_NAME        DEPT_SAL 

-------------------- ---------- 

Accounting                20300 

Executive                 58000 

Finance                   51600 

IT                        28800 

Marketing                 19000 

Purchasing                24900 

Sales                    304500 

Shipping                 156400 

5th of  May 2012 



 Insert some data  

INSERT INTO table1 values(value-list) ; 

INSERT INTO table1(column-list) values(value-list); 

INSERT INTO table1(column-list)     
  SELECT values(value-list); 

COMMIT; 

 Update 

UPDATE table1 SET column = value; 

COMMIT; 

 Delete 

DELETE FROM table1; 

COMMIT; 

 

 

INSERT, UPDATE, DELETE (DML) 

Oracle Tutorials 5th of  May 2012 



 Modify the name: 

ALTER TABLE employees RENAME TO newemployees; 

 Modify the layout: 

ALTER TABLE employees ADD (salary NUMBER(7)); 

ALTER TABLE employees RENAME COLUMN id TO emp_id;  

ALTER TABLE employees DROP(hiredate);  

 But also: 

 Add/modify/drop constraints 

 Enable/Disable constraints 

 Modify more advanced properties… 

 

ALTER TABLE (DDL) 

Oracle Tutorials 5th of  May 2012 



 NOT NULL / CHECK 

ALTER TABLE employees MODIFY last_name NOT NULL; 

ALTER TABLE employees MODIFY salary CHECK (salary > 1000); 

 PRIMARY KEY 

ALTER TABLE employees ADD PRIMARY KEY(emp_id); 

 FOREIGN KEY 

ALTER TABLE employees ADD FOREIGN KEY(dept_id) REFERENCES 
departments(department_id); 

 Constraints errors: 

 ORA-02290: check constraint (owner.constraintname) violated – DURING 
INSERT  

 ORA-02291: integrity constraint (owner.constraintname) violated - parent key 
not found – DURING INSERT 

 ORA-02292:violated integrity constraint (owner.constraintname)- child record 
found – DURING DELETE  

CONSTRAINTS (DDL) 

Oracle Tutorials 5th of  May 2012 



 special value that means 

 unavailable 

 unassigned 

 unknown 

 inapplicable 

 not equivalent to  

 zero  

 blank space 

 

SELECT * FROM [TABLE] where id = 0; 

SELECT * FROM [TABLE] where id IS NULL; 
 

 Often used as default 

NULL VALUE 

Oracle Tutorials 5th of  May 2012 



 special one-row table present by default in all Oracle database 
installations 

 Accessible to all users 

 Examples of  use: 

 

SELECT SYSDATE FROM DUAL; 

SELECT USER FROM DUAL;  

-- equal to SHOW USER in SQL*Plus 

 

 Create really big table in one command - use dual; 

 

CREATE TABLE BIG_TABLE  

AS SELECT trunc(dbms_random.value(0,20)) RANDOM_INT  

FROM DUAL  

CONNECT BY LEVEL <= 100000; 

 

DUAL TABLE 

Oracle Tutorials 

SQL> describe dual; 

 

 Name              Null?    Type 

 ----------------- -------- ------------ 

 DUMMY                      VARCHAR2(1) 

5th of  May 2012 



 ? 

 What is the difference between: 

DELETE FROM employees; 

vs 

TRUNCATE TABLE employees; 

 

 DML vs DDL commands? 

 Is COMMIT essential? In which case? 

 Generate UNDO segments? 

  Which is more efficient? 

 

 

 

 

DELETE ALL ROWS FROM A TABLE 

Oracle Tutorials 5th of  May 2012 



EQUIJOIN 
Values in the two corresponding columns of  

the different tables must be equal 

NON-EQUIJOIN 

 

The relationship between the columns of  the 

different tables must be other than equal 

OUTERJOIN 

(LEFT, RIGHT, FULL) 

It returns also the rows that do not satisfy the 

join condition 

SELFJOIN Joining data in a table to itself 

TYPES OF JOINS 

Oracle Tutorials 5th of  May 2012 



EQUIJOIN 

Oracle Tutorials 

EMP_NAME EMP_DEPTNO 

KING 10 

BLAKE 30 

CLARK 10 

DEPT_NO DEPT_NAME 

10 ACCOUNTING 

30 SALES 

20 OPERATIONS 

EMP_NAME EMP_DEPTNO DEPT_NAME 

KING 10 ACCOUNTING 

BLAKE 30 SALES 

CLARK 10 ACCOUNTING 

5th of  May 2012 

SQL> SELECT e.emp_name, e.emp_deptno, d.dept_name   

 FROM emp e, dept d  

 WHERE e.emp_deptno = d.deptno  

 ORDER BY emp_name; 



OUTERJOIN 

Oracle Tutorials 

EMP_NAME EMP_DEPTNO 

KING 10 

BLAKE NULL 

CLARK 10 

MARTIN 20 

TURNER 10 

JONES NULL 

DEPT_NO DEPT_NAME 

10 ACCOUNTING 

30 SALES 

20 OPERATIONS 

EMP_NAME EMP_DEPTNO DEPT_NAME 

KING 10 ACCOUNTING 

BLAKE NULL NULL 

CLARK 10 ACCOUNTING 

MARTIN 20 OPERATIONS 

TURNER 10 ACCOUNTING 

JONES NULL NULL 

5th of  May 2012 

SQL> SELECT e.emp_name, e.emp_deptno, d.dept_name   

 FROM emp e, dept d  

 WHERE e.emp_deptno = d.deptno(+)  

 ORDER BY emp_name; 



 Equijoins:  

 ANSI syntax 

 SELECT e.name, d.name FROM employees e 

  INNER JOIN departments d ON e.dept_id=d.dept_id; 

 Oracle 

 SELECT e.name, d.name FROM employees e, departments d 

 WHERE e.dept_id=d.dept_id; 

 Outerjoins 

 ANSI syntax (LEFT, RIGHT, FULL) 

 SELECT e.name, d.name FROM employees e 

 RIGHT OUTER JOIN departments d ON e.dept_id=d.dept_id; 

 Oracle 

 SELECT e.name, d.name FROM employees e, departments d  

 WHERE e.dept_id(+)=d.dept_id; 

 

JOINS SYNTAX ANSI VS ORACLE 

Oracle Tutorials 5th of  May 2012 



Types Question  

SUBQUERIES 
Who works in the same department as 

Clark? 

Correlated SUBQUERIES 
Who are the employees that receive more 

than the average salary of  their 

department? 

Inline Views 
What are the employees salary and the 

minimum salary in their department? 

Top-N QUERIES 
What are the 5 most well paid 

employees? 

Hierarchical QUERIES 
 What is the hierarchy of  management in 

my enterprise? 

ADVANCED SQL QUERIES 

Oracle Tutorials 5th of  May 2012 



 A subquery is a query within a query and it is used to answer 

multiple-part questions.  

 Oracle fully supports them in the sense that: 

 You can create subqueries within your SQL statements 

 A subquery can reside in the WHERE clause, the FROM 

clause or the SELECT clause. 

     

 

Subquery              Inline view     Nested subquery 
 

 

 SELECT ... FROM  ...  WHERE ...   

SUBQUERIES (1/5) 

Oracle Tutorials 5th of  May 2012 



SUBQUERIES (2/5)  

Oracle Tutorials 

 
 
A) Single-row (and single-column) 

 
   B) Multiple-row (and single-column) 
 
   C) Multiple-column 

 
 

 who works in the same department as Clark? 
 

SELECT … WHERE dep = (SELECT dep FROM … WHERE name = ‘CLARK’); 
  

 
 who works in the same department as Clark OR Blake? 

 
SELECT … WHERE dep IN (SELECT dep  
      FROM …  
      WHERE name =‘CLARK’ or name = ‘BLAKE’); 

 
 who works in the same department(s) AND under the same boss as Clark? 
  
SELECT … WHERE (dep, mgr) = (SELECT dep, mgr  
      FROM …  
      WHERE name = ‘CLARK’) 

 

 

Types  

5th of  May 2012 



 A correlated subquery is a subquery that is evaluated FOR 

EACH ROW produced by the parent query.  

 Which employees receive more than the average salary of  

their department? 

 

 

 

 In this case, the correlated subquery specifically computes, 

for each employee, the average salary for the employee’s 

department 

 

 

CORRELATED SUBQUERIES  

Oracle Tutorials 

SELECT e.emp_id, e.dept_id,  

 e.last_name, e.salary   

FROM employees e   

WHERE e.salary > (SELECT avg(i.salary)   

     FROM employees i   

     WHERE e.dept_id = i.dept_id) 

EMP_ID DEPT_ID LAST_NAME  SALARY 

------ ------- ---------- ------ 

   201      20 Hartstein   13000 

   114      30 Raphaely    11000 

   123      50 Vollman      6500 

   122      50 Kaufling     7900 

   120      50 Weiss        8000 

   121      50 Fripp        8200 

   103      60 Hunold       9000 

   147      80 Errazuriz   12000 

   146      80 Partners    13500 

   145      80 Russell     14000 

   100      90 King        24000 

   108     100 Greenberg   12000 

5th of  May 2012 



 An In-line view is a subquery in the FROM clause of  a SQL 

statement just as if  it was a table. It acts as a data source!  

 What are the employees salary and the MINIMAL salary in their 

department? 

 

INLINE VIEWS  

Oracle Tutorials 

SELECT e.emp_id a.dept_id, e.last_name,       

 e.salary, a.min_sal,  

FROM employees e, 

    (SELECT MIN(salary)min_sal, dept_id 

     FROM employees 

     GROUP BY dept_id) a 

WHERE e.dept_id = a.dept_id 

ORDER BY e.dept_id, e.salary DESC; 

EMP_ID DEPT_ID LAST_NAME   SALARY MIN_SAL 

------ ------- ----------- ------ ------- 

   200      10 Whalen        4400    4400 

   201      20 Hartstein    13000    6000 

   202      20 Fay           6000    6000 

   114      30 Raphaely     11000    2500 

   115      30 Khoo          3100    2500 

   116      30 Baida         2900    2500 

   117      30 Tobias        2800    2500 

   118      30 Himuro        2600    2500 

   119      30 Colmenares    2500    2500 

   203      40 Mavris        6500    6500 

   121      50 Fripp         8200    2100 

   120      50 Weiss         8000    2100 

   122      50 Kaufling      7900    2100 

   123      50 Vollman       6500    2100 

   124      50 Mourgos       5800    2100 

   184      50 Sarchand      4200    2100 

   185      50 Bull          4100    2100 

   192      50 Bell          4000    2100 

5th of  May 2012 



 We need to use “in-line view” together with the ROWNUM 
pseudocolumn 
 

 What are the top 5 most well paid employees? 
 

 

 

 What are the next 5 most well paid employees? 

 

 

TOP-N QUERIES  

Oracle Tutorials 

SELECT * FROM  

 (SELECT emp_id, last_name, salary  

  FROM employees  

  ORDER BY salary desc) 

WHERE rownum < 6 

EMP_ID LAST_NAME  SALARY 

------ ---------- ------ 

   100 King        24000 

   101 Kochhar     17000 

   102 De Haan     17000 

   145 Russell     14000 

   146 Partners    13500 

SELECT emp_id, last_name, salary FROM (

 SELECT emp_id,last_name, salary, 

 rownum as rnum  

 FROM employees   

 ORDER BY salary desc) 

WHERE rnum between 6 and 10; 

EMP_ID LAST_NAME  SALARY 

------ ---------- ------ 

   108 Greenberg   12000 

   109 Faviet       9000 

   106 Pataballa    4800 

   105 Austin       4800 

   107 Lorentz      4200 

5th of  May 2012 



 If  a table contains hierarchical data, then you can select rows in a 
hierarchical order using the hierarchical query clause  

 Syntax:  

 

 

 

 Pseudo-column LEVEL is the hierarchy level 

 

 

 

HIERARCHICAL QUERIES 

Oracle Tutorials 

SELECT … FROM … WHERE …  

     START WITH  <condition>    

Specifies the starting point of the hierarchy (tree)  

     CONNECT BY PRIOR child_row = parent_row (TOP-DOWN) 

         parent_row = child_row (BOTTOM-UP)    

relationship between parent row and child rows of the hierarchy 

SELECT empid, last_name, mgrid, LEVEL 

FROM employees 

WHERE LEVEL <= 3 

START WITH employee_id = 100 

CONNECT BY PRIOR  

employee_id = manager_id; 
EMPID LAST_NAME MGRID LEVEL 

----- --------- ----- ----- 

  100 King                1 

  101 Kochhar     100     2 

  200 Whalen      101     3 

  203 Mavris      101     3 

  204 Baer        101     3 

Mavris 

King 

Kochnar 

Whalen Baer 

5th of  May 2012 



 If  a table contains hierarchical data, then you can select rows in a 
hierarchical order using the hierarchical query clause  

 Syntax:  

 

 

 

 Pseudo-column LEVEL is the hierarchy level 

 

 

 

HIERARCHICAL QUERIES 

Oracle Tutorials 

SELECT … FROM … WHERE …  

     START WITH  <condition>    

Specifies the starting point of the hierarchy (tree)  

     CONNECT BY PRIOR child_row = parent_row (TOP-DOWN)  

        parent_row = child_row (BOTTOM-UP) 

relationship between parent row and child rows of the hierarchy 

SELECT empid, last_name, mgrid, LEVEL 

FROM employees 

START WITH employee_id = 204 

CONNECT BY PRIOR  

manager_id = employee_id; EMPID LAST_NAM MGR_ID  LEVEL 

----- -------- ------ ------ 

  204 Baer        101      1 

  101 Kochhar     100      2 

  100 King                 3 

Baer 

King 

Kochnar 

5th of  May 2012 



 General syntax of  analytical function: 

SELECT analytical-function(col-expr)  

OVER (window-spec) [AS col-alias]  

FROM [TABLE]; 

 Window specification syntax 

[PARTITION BY [expr list]] 

ORDER BY [sort spec] [range spec] 

 Example for range specification (for more check oracle docs) 

ROWS UNBOUNDED PRECEDING AND CURRENT ROW (default) 

ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 

RANGE BETWEEN 2 PRECEDING AND 2 FOLLOWING 

 

 

ANALYTICAL FUNCTIONS 

Oracle Tutorials 

EWWEQEWQEQ 

 

 

 

ASDASSDA 

CURRENT ROW 

WINDOW 

TABLE 

5th of  May 2012 



 Analytical functions applied to all window rows 

 Remember about ordering inside the window 

ORDERRED ANALYTICAL WINDOW 

Oracle Tutorials 

SQL>  select employee_id, last_name, manager_id, salary 

      sum(salary) over (order by  employee_id, last_name, salary)  

      as cumulative from employees; 

 

EMPLOYEE_ID LAST_NAME MANAGER_ID SALARY CUMULATIVE 

----------- --------- ---------- ------ ---------- 

        100 King                  24000      24000 

        101 Kochhar          100  17000      41000 

        102 De Haan          100  17000      58000 = 24000+17000+17000 

        103 Hunold           102   9000      67000 

        104 Ernst            103   6000      73000 

        105 Austin           103   4800      77800 

        106 Pataballa        103   4800      82600 

        107 Lorentz          103   4200      86800 

        108 Greenberg        101  12000      98800 

        109 Faviet           108   9000     107800 

        110 Chen             108   8200     116000 

5th of  May 2012 



RANGE SPECIFICATION (1/2) 

Oracle Tutorials 

 RANGE BETWEEN 2 PRECEDING AND 2 FOLLOWING 

 

 

 

 

 

 

 

 

SQL> select manager_id, last_name, salary, sum(salary) over (order by  

last_name, salary rows between 2 preceding and 1 following) as 

cumulative from employees; 

 

MANAGER_ID LAST_NAME SALARY CUMULATIVE 

---------- --------- ------ ---------- 

       103 Austin      4800      10800 

       103 Ernst       6000      22800 

       101 Greenberg  12000      31800 

       102 Hunold      9000      51000 = 6000 + 12000 + 9000 + 24000 

           King       24000      62000 

       100 Kochhar    17000      54200 

       103 Lorentz     4200      45200 

5th of  May 2012 



RANGE SPECIFICATION (2/2) 

Oracle Tutorials 

 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING 

 

 

 

 

 

 

 

 

SQL> select manager_id, last_name, salary, sum(salary) over (order by  

last_name, salary rows between current row and unbounded following) 

as cumulative from emp_part; 

 

MANAGER_ID LAST_NAME SALARY CUMULATIVE 

---------- --------- ------ ---------- 

       103 Austin      4800      77000 

       103 Ernst       6000      72200 

       101 Greenberg  12000      66200 

       102 Hunold      9000      54200 = 9000 + 24000 + 17000 + 4200 

           King       24000      45200 

       100 Kochhar    17000      21200 

       103 Lorentz     4200       4200 

5th of  May 2012 



 Analytical functions start again for each partition 

PARTITIONED ANALYTICAL WINDOW 

Oracle Tutorials 

SQL> break on manager_id 

SQL> SELECT manager_id, last_name, employee_id, salary,  

     sum(salary) over (PARTITION BY manager_id order by employee_id)  

     as cumulative  

     FROM employees order by manager_id, employee_id, last_name; 

 

MANAGER_ID LAST_NAME       EMPLOYEE_ID SALARY CUMULATIVE 

---------- --------------- ----------- ------ ---------- 

       100 Kochhar                 101  17000      17000 

           De Haan                 102  17000      34000 

           Raphaely                114  11000      45000 

           Weiss                   120   8000      53000 

       101 Greenberg               108  12000      12000 

           Whalen                  200   4400      16400 

           Mavris                  203   6500      22900 

           Baer                    204  10000      32900 

       102 Hunold                  103   9000       9000 

       103 Ernst                   104   6000       6000 

           Austin                  105   4800      10800 

           Pataballa               106   4800      15600 

5th of  May 2012 



 For analytic functions, you can use all of  the regular group 
functions 

 SUM 

 MAX  

 MIN  

 AVG  

 COUNT  

 Plus list of  additional analytical functions that can be used only for 
window queries. 

 LAG 

 LEAD 

 FIRST 

 LAST 

 FIRST VALUE 

 LAST VALUE 

 ROW_NUMBER 

 DENSE_RANK 

ANALYTIC FUNCTIONS 

Oracle Tutorials 5th of  May 2012 



 LAG function example 

ANALYTICAL FUNCTION EXAMPLE 

Oracle Tutorials 

SQL> select * from currency order by 1; 

 

DAY                  EURCHF 

-------------------- ------ 

01-JUN-2012 00:00:00  1.240 

02-JUN-2012 00:00:00  1.223 

03-JUN-2012 00:00:00  1.228 

04-JUN-2012 00:00:00  1.217 

05-JUN-2012 00:00:00  1.255 

06-JUN-2012 00:00:00  1.289 

07-JUN-2012 00:00:00  1.291 

08-JUN-2012 00:00:00  1.247 

09-JUN-2012 00:00:00  1.217 

10-JUN-2012 00:00:00  1.265 

SQL> select day, EURCHF,  

lag(EURCHF,1) over (order by day)  

as prev_eurchf from currency; 

 

DAY                  EURCHF    PREV_EURCHF 

-------------------- ------ -------------- 

01-JUN-2012 00:00:00  1.240 

02-JUN-2012 00:00:00  1.223          1.240 

03-JUN-2012 00:00:00  1.228          1.223 

04-JUN-2012 00:00:00  1.217          1.228 

05-JUN-2012 00:00:00  1.255          1.217 

06-JUN-2012 00:00:00  1.289          1.255 

07-JUN-2012 00:00:00  1.291          1.289 

08-JUN-2012 00:00:00  1.247          1.291 

09-JUN-2012 00:00:00  1.217          1.247 

10-JUN-2012 00:00:00  1.265          1.217 

SQL> select day, EURCHF, ((EURCHF - prev_eurchf) / prev_eurchf )*100 as pct_change from ( 

     select day, EURCHF, LAG(EURCHF,1) over (order by day) as prev_eurchf from currency); 

 

DAY                  EURCHF PCT_CHANGE 

-------------------- ------ ---------- 

01-JUN-2012 00:00:00  1.240 

02-JUN-2012 00:00:00  1.223      -1.37 

03-JUN-2012 00:00:00  1.228       0.41 

04-JUN-2012 00:00:00  1.217      -0.90 

05-JUN-2012 00:00:00  1.255       3.12 

06-JUN-2012 00:00:00  1.289       2.71 

07-JUN-2012 00:00:00  1.291       0.16 

08-JUN-2012 00:00:00  1.247      -3.41 

09-JUN-2012 00:00:00  1.217      -2.41 

10-JUN-2012 00:00:00  1.265       3.94 

-1.37 

0.41 

-0.9 

3.12 2.71 

0.16 

-3.41 
-2.41 

3.94 

-4

-2

0

2

4

6

5th of  May 2012 



 Combine multiple queries  

 Union without duplicates 

SELECT name, email FROM employees  

UNION 

SELECT name, email FROM visitors; 

 Union with the duplicates 

SELECT cit_id FROM employees  

UNION ALL 

SELECT cit_id FROM visitors; 

 Intersect 

SELECT  name FROM employees  

INTERSECT 

SELECT  name FROM visitors; 

 Minus 

SELECT  name FROM employees  

MINUS 

SELECT  name FROM visitors; 

 

SET OPERATORS 

Oracle Tutorials 5th of  May 2012 



 A database object that generates (in/de)creasing unique 
integer numbers  

 Very efficient thanks to caching 
 Transaction safe 
 

 It is typically used to generate Primary Key values 
 

 

 No guarantee that ID will be continuous 

 rollback, use in >1 tables, concurrent sessions 
 Gaps less likely if  caching switched off   

 

 The use of  application-side generation of  numbers is not 
recommended. Highly prone to locks, errors. 

SEQUENCES 

Oracle Tutorials 

SQL> CREATE SEQUENCE seq_dept 

INCREMENT BY 10  

MAXVALUE 1000 

NOCACHE; 

SELECT seq_dept.NEXTVAL FROM DUAL;  

SELECT seq_dept.CURRVAL FROM DUAL;  

 

INSERT INTO dept VALUES  

(seq_dept.NEXTVAL,‘HR’,4);  

5th of  May 2012 



 object in the local database that allows you to access objects 
on a remote  database     

 

CREATE DATABASE LINK devdb  

CONNECT TO scott IDENTIFIED BY tiger USING ‘devdb’; 

 

 How to access to tables over a database link? 
   

 SELECT * FROM emp@devdb;  

 
 Solution: Use synonyms to hide the fact that a table is 

remote: 
 

   CREATE SYNONYM emp_syn for emp@devdb; 

   SELECT * FROM emp_syn; 

 

DATABASE LINKS & SYNONYMS 

Oracle Tutorials 5th of  May 2012 



 Special type of  table for storing temporary data 

 Volatile – no statistics are gathered  

 Session or transaction  

 ON COMMIT PRESERVE | DELETE ROWS 

  indexes, views can be created on temporary tables 

 

TEMPORARY TABLES 

Oracle Tutorials 

SQL> CREATE GLOBAL TEMPORARY TABLE temp_table_session (id number) ON COMMIT 

PRESERVE ROWS; 

SQL> CREATE GLOBAL TEMPORARY TABLE temp_table_transaction (id number) ON COMMIT 

DELETE ROWS; 

SQL> INSERT INTO temp_table_session values(2); 

SQL> INSERT INTO temp_table_transaction values(2); 

SQL> COMMIT; 

SQL> SELECT * FROM temp_table_session; 

 

            ID 

-------------- 

             2 

 

SQL> SELECT * FROM temp_table_transaction; 

 

no rows selected 

5th of  May 2012 



 It’s a stored SQL statement that defines a virtual table. It 
takes the output of  a query and makes it appear as a virtual 
table  

 Advantages: 

 To hide the complexity of  a query 

 Provide different representations of  same data  

 To ensure that exactly the same SQL is used throughout your application 

 To improve security by restricting access to data  

 Restrict the columns/rows which can be queried 

 Restrict the rows and columns that may be modified 

 To isolate and application from any future change to the base table 
definition 

 Users formulate their queries on the views (virtual tables)  

 

 Views are updatable! Use WITH READ ONLY to make 
view nonupdatable 

 

VIEWS 

Oracle Tutorials 5th of  May 2012 



 Data dictionary? Read-only set of  tables that provides 
information about the database 

 These predefined views provided by oracle are a source of  
valuable information for developers and dbusers 

DATA DICTIONARY VIEWS 

Oracle Tutorials 

user_ts_quotas user quotas per tablespace 

user_objects,  

user_tables,  

user_views, 

user_mviews 

user_indexes 

user_constraints 

objects created in the user’s schema 

user_sys_privs, 

user_role_privs, 

user_tab_privs 

system privileges 

roles granted to the user 

privileges granted on the user’s objects 

user_segments,  

user_extents 

storage of  the user’s objects 

 

session_privs all privileges available for current session 

5th of  May 2012 



 A database object that stores the result of  a query  

 A hybrid of  view and table 

 Advantages 

 Useful for summarizing,  pre-computing, replicating and 
distributing data 

 Faster access for expensive and complex joins 

 Transparent to end-users 

 Especially useful for heavy queries and big tables  

 Disadvantages 

 Storage costs of  maintaining the views  

 configuration for refresh 

 

MATERIALIZED VIEWS (1/2) 

Oracle Tutorials 5th of  May 2012 



 Syntax of  materialized views: 

 
CREATE MATERIALIZED VIEW mv  

BUILD IMMEDIATE | DEFFERED | ON PREBUILT TABLE  

REFRESH COMPLETE | FAST | FORCE  

     ON COMMIT | ON DEMAND | START WITH  

ENABLE QUERY REWRITE  

AS (SELECT… FROM tab1e); 

 
 The “query rewrite” feature – the ability of  database engine to 

silently rewrites the query and executes it against MV. 

 Controlled by following Oracle parameters: 

 QUERY_REWRITE_ENABLED  

 QUERY_REWRITE_INTEGRITY 

MATERIALIZED VIEWS (2/2) 

Oracle Tutorials 5th of  May 2012 



 Index with a balanced tree  

 When to use? 

1. OLTP systems 

2. High cardinality columns (primary key columns) 

3. Size: B-tree index will be signifficantly smaller than Bitmap index for high 

cardinality column. 

B-TREE INDEX 

Oracle Tutorials 

SELECT *  

FROM employee 

WHERE empid < 73  

CREATE INDEX 

i_employee_id ON 

employee (empid); 

5th of  May 2012 



 Index with a bitmap of  the column values 

 When to use? 

1. DSS systems (bitmap indexes can cause a serious locking problem in systems 

where data is frequently updated by many concurrent systems) 

2. Low cardinality columns (columns with few discrete values) 

3. Size: Bitmap index will be signifficantly smaller than B-tree index on low 

cardinality column 

 

 

BITMAP INDEX 

Oracle Tutorials 

SELECT * FROM employee 

WHERE sex=‘F’;  

CREATE BITMAP INDEX 

i_employee_sex ON 

employee (sex); 

5th of  May 2012 



 Composite index: Index over multiple columns in a table 

 When to use? 

 When WHERE clause uses more than one column 

 To increase selectivity joining columns of  low selectivity 

 

CREATE INDEX mgr_deptno_idx ON emp(mgr, deptno); 

 

 Function-based index: Is an index created on a function that 
involves columns in the table being indexed (b-tree or bitmap) 

 They speed up queries that evaluate those functions to select 
data because they pre-compute the result and stores it in an 
index 

 
CREATE INDEX emp_name_idx ON employee (UPPER(ename)); 

 

COMPOSITE & FUNCTION BASED IND 

Oracle Tutorials 5th of  May 2012 



 IOT stores all of  the table’s data in the B-tree index structure 

 

CREATE TABLE orders ( 

order_id NUMBER(10), 

     …, …, …  

CONSTRAINT pk_orders PRIMARY KEY 

(order_id)  

 ) 

ORGANIZATION INDEX; 

 

 Efficient when: 

 table is usually accessed by the primary key  

 Inefficient when:  

 there’s a heavy DML activity especially not primary key based 

 access to table’s data not via primary key is slower comparing to a cheap table  

INDEX ORGANIZED TABLES 

Oracle Tutorials 5th of  May 2012 



 Tables and indexes can be divided into smaller and more 
manageable physical pieces called partitions which are 
treated as a single logical unit 

Advantages: 

 Manageability: data management operations at the 
partition level (data load, index creation, 
backup/recovery, etc) 

 Performance: Improves query performance, possibility of  
concurrent maintenance operations on different partitions 
of the same table/index. 

 Partitioning can be implemented without requiring any 
modifications to your applications. 

 

ORACLE PARTITIONING 

Oracle Tutorials 5th of  May 2012 



 There are different criteria to split the data: 

 List: partition by lists of  predefined discrete values 

 Range: partition by predefined ranges of  continuous values 

 Hash: partition according to hashing algorithm applied by Oracle 

 Composite: e.g. range-partition by key1, hash-subpartition by key2 

 

PARTITIONING TYPES 

Oracle Tutorials 

CREATE TABLE SALES_2010  

( 

salesman_id  NUMBER(5),  

salesman_name VARCHAR2(30),  

region VARCHAR2(1), 

sales_amount NUMBER(10),  

sale_date   DATE 

) 

PARTITION BY RANGE(sale_date) ( 

PARTITION p_jan2010 VALUES LESS THAN(TO_DATE('01/01/2010','DD/MM/YYYY')), 

PARTITION p_feb2010 VALUES LESS THAN(TO_DATE('02/01/2010','DD/MM/YYYY')), 

PARTITION p_mar2010 VALUES LESS THAN(TO_DATE('03/01/2010','DD/MM/YYYY')), 

PARTITION p_apr2010 VALUES LESS THAN(TO_DATE('04/01/2010','DD/MM/YYYY')), 

(…) 

PARTITION p_aug2010 VALUES LESS THAN(TO_DATE('08/01/2010','DD/MM/YYYY')), 

PARTITION p_sep2010 VALUES LESS THAN(TO_DATE('09/01/2010','DD/MM/YYYY')), 

PARTITION p_oct2010 VALUES LESS THAN(TO_DATE('10/01/2010','DD/MM/YYYY')), 

PARTITION p_nov2010 VALUES LESS THAN(TO_DATE('11/01/2010','DD/MM/YYYY')), 

PARTITION p_dec2010 VALUES LESS THAN(TO_DATE('12/01/2010','DD/MM/YYYY')), 

PARTITION p_others VALUES LESS THAN (MAXVALUE)); 

5th of  May 2012 



 There are different criteria to split the data: 

 List: partition by lists of  predefined discrete values 

 Range: partition by predefined ranges of  continuous values 

 Hash: partition according to hashing algorithm applied by Oracle 

 Composite: e.g. range-partition by key1, hash-subpartition by key2 

 

PARTITIONING TYPES 

Oracle Tutorials 

CREATE TABLE SALES_REGIONS_2010  

( 

salesman_id  NUMBER(5),  

salesman_name VARCHAR2(30),  

region VARCHAR2(1), 

sales_amount NUMBER(10),  

sale_date   DATE 

) 

PARTITION BY RANGE(sale_date)  

SUBPARTITION BY LIST(region) 

SUBPARTITION TEMPLATE ( 

SUBPARTITION p_emea VALUES ('E'),  

SUBPARTITION p_asia VALUES ('A'),  

SUBPARTITION p_nala VALUES ('N')) ( 

PARTITION p_jan2010 VALUES LESS THAN(TO_DATE('01/01/2010','DD/MM/YYYY')), 

PARTITION p_feb2010 VALUES LESS THAN(TO_DATE('02/01/2010','DD/MM/YYYY')), 

PARTITION p_mar2010 VALUES LESS THAN(TO_DATE('03/01/2010','DD/MM/YYYY')), 

(…) 

PARTITION p_nov2010 VALUES LESS THAN(TO_DATE('11/01/2010','DD/MM/YYYY')), 

PARTITION p_dec2010 VALUES LESS THAN(TO_DATE('12/01/2010','DD/MM/YYYY')), 

PARTITION p_others VALUES LESS THAN (MAXVALUE)); 

5th of  May 2012 



 Table partitioned by date 

INSERT INTO table … VALUES(’MAR 2010’); 

 

 

 

SELECT * FROM table WHERE key = (’DEC 2010’); 

 

 

 

 

PARTITION PRUNNING 

Oracle Tutorials 

JAN2010 FEB2010 MAR2010 DEC2010 … 

JAN2010 FEB2010 MAR2010 DEC2010 … 

5th of  May 2012 



PARTITION WISE JOINS 

Oracle Tutorials 

 Without partitioning: global join (query time ~ N x N)  

 

 
 

 

 

 

 With partitioning: local joins (query time ~ N) 

 

SELECT … FROM tab1, tab2 WHERE tab1.key = tab2.key 

JAN2010 FEB2010 MAR2010 DEC2010 … 

JAN2010 FEB2010 MAR2010 DEC2010 … 

tab1 JAN2010 FEB2010 MAR2010 DEC2010 … 

JAN2010 FEB2010 MAR2010 DEC2010 … tab2 

tab1 

tab2 

join 

join 

5th of  May 2012 



 Local index: partitioned on the same key as table 
 

CREATE INDEX day_idx ON table (day) LOCAL; 

  
 Global index: not partitioned on the same key as table 

 

CREATE INDEX day_idx ON table (day) GLOBAL; 
 

 Combine the advantages of  partitioning and indexing: 
 Partitioning improves query performance by pruning 
 Local index improves performance on full scan of  partition 
 

 Bitmap indexes on partitioned tables are always local 
 The concept of  global index only applies to B*-tree indexes  

 

PARTITIONED INDEXES 

Oracle Tutorials 5th of  May 2012 



 For COMMITED data 

 Flashback technologies support recovery at all levels: 

 Row 

 Table 

 Transaction (this is not in the scope of  this tutorial) 

 Entire Database (this is not in the scope of  this tutorial) 

 We DO NOT GUARANTEE that past data will be always 
accessible (UNDO is a circular buffer) 

 SCN System Change Number - is an ever-increasing value 
that uniquely identifies a committed version of  the database. 
In simple words: “it’s an Oracle's clock - every time we commit, 
the clock increments.” – Tom Kyte 

Oracle Tutorials 

FLASHBACK TECHNOLOGIES 

5th of  May 2012 



 For error analysis 

 Flashback Query 

 Flashback Version query 

 Flashback Transaction query (not part of  this tutorial) 

 For error recovery 

 Flashback Transaction Backout (not part of  this tutorial) new 11g! 

 Flashback Table 

 Flashback Drop 

 Flashback Database (not part of  this tutorial) 

 

 

Oracle Tutorials 

FLASHBACK TECHS (2) 

5th of  May 2012 



 For analysis 

 To perform queries as of  a certain time  

SELECT * 

FROM <TABLE> 

AS OF TIMESTAMP | SCN; 

 

 

Oracle Tutorials 

FLASHBACK QUERY 

SQL> SELECT * FROM test; 

 

no rows selected 

 

SQL> SELECT * FROM test  

     AS OF SCN 6268302650456; 

 

            ID STR_VAL 

-------------- ---------- 

             1 one 

             2 two 

             3 three 

SQL> select 

DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER from dual; 

 

GET_SYSTEM_CHANGE_NUMBER 

------------------------ 

           6268302650456 

 

SQL> delete from test; 

 

3 rows deleted. 

 

SQL> commit; 

 

Commit complete. 

5th of  May 2012 



 For analysis 

 To retrieve all the versions of  the rows that exist between two points in 
time or two SCNs 

 Pseudocolumns: 

 VERSIONS_STARTTIME (start timestamp of  version) 

 VERSIONS_ENDTIME (end timestamp of  version) 

 VERSIONS_STARTSCN (start SCN of  version) 

 VERSIONS_ENDSCN (end SCN of  version) 

 VERSIONS_XID (transaction ID of  version) 

 VERSIONS_OPERATION (DML operation of  version) 

 The VERSIONS clause cannot span DDL commands 

SELECT versions_xid, versions_operation, salary  

FROM employees 

VERSIONS BEETWEN TIMESTAMP | SCN <t1> and <t2>; 

 

Oracle Tutorials 

FLASHBACK VERSION QUERY 

5th of  May 2012 



 For error correction 

 Flashback Table provides a way for users to easily and quickly 

recover from accidental modifications without a database 

administrator’s involvement 

FLASHBACK TABLE employees  

TO TIMESTAMP | SCN <t1>; 

Oracle Tutorials 

FLASHBACK TABLE 

5th of  May 2012 

SQL> SELECT * FROM test; 

 

no rows selected 

 

SQL> ALTER TABLE test ENABLE ROW MOVEMENT; 

 

Table altered. 

 

SQL> FLASHBACK ATBLE test TO SCN 6268302650456; 

 

Flashback complete. 

SQL> SELECT * FROM test  

      

            ID STR_VAL 

-------------- ---------- 

             1 one 

             2 two 

             3 three 

 

 

 

 



 For error correction 

 The RECYCLEBIN initialization parameter is used to 

control whether the Flashback Drop capability is turned ON 

or OFF. 

 It’s RECYCLEBIN is set to ON for CERN Physics 

databases 

FLASHBACK TABLE employees  

TO BEFORE DROP; 

 

Oracle Tutorials 

FLASHBACK DROP 

5th of  May 2012 

SQL> DROP TABLE test; 

 

Table dropped. 

 

SQL> FLASHBACK TABLE test TO BEFORE DROP; 

 

Flashback complete. 



FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

select * from test; 

(as of scn 6268303136698) 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 10 ten 

 11 eleven 

5th of  May 2012 



FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

select * from test; 

(as of scn 6268303136698) 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 10 ten 

 11 eleven 

select * from test as of scn 

6268303136686; 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 

 

5th of  May 2012 



FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

select * from test; 

(as of scn 6268303136698) 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 10 ten 

 11 eleven 

select * from test  

as of scn 6268303135869; 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  2 two 

  3 three 

 

select * from test as of scn 

6268303136686; 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 

 

5th of  May 2012 



FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

select * from test  

as of scn 6268303135869; 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  2 two 

  3 three 

 

create table test  

(id number(5), str_val varchar2(10)); 

 

insert into test values(1, 'one'); 

insert into test values(2, 'two'); 

insert into test values(3, 'three'); 

commit; 

5th of  May 2012 



FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

update test set id = 9, str_val = 'nine'  

where id =2; 

delete from test where id = 3; 

commit; 

select * from test as of scn 

6268303136686; 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 

 

5th of  May 2012 



 

FLASHBACK 

Oracle Tutorials 

select versions_xid, versions_operation, versions_startscn,        versions_endscn, id, str_val  

from test versions between  timestamp minvalue and maxvalue order by 

VERSIONS_STARTSCN; 

 

VERSIONS_XID     V VERSIONS_STARTSCN VERSIONS_ENDSCN  ID STR_VAL 

---------------- - ----------------- --------------- --- ---------- 

21001D00F8B50F00 I     6268303135869                   1 one 

21001D00F8B50F00 I     6268303135869   6268303136686   3 three 

21001D00F8B50F00 I     6268303135869   6268303136686   2 two 

23000600BAFB0D00 U     6268303136686                   9 nine 

23000600BAFB0D00 D     6268303136686                   3 three 

23000400B9FC0D00 I     6268303136698                  11 eleven 

23000400B9FC0D00 I     6268303136698                  10 ten 

insert into test values(10, 'ten'); 

insert into test values(11, 'eleven'); 

commit; 

select * from test; 

(as of scn 6268303136698) 

 

 ID STR_VAL 

--- ---------- 

  1 one 

  9 nine 

 10 ten 

 11 eleven 

5th of  May 2012 



 Oracle Documentation 

 http://www.oracle.com/pls/db112/homepage 

 SQL language reference 

 http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm 

 Mastering Oracle SQL and SQL*Plus, Lex De Haan 

 Oracle SQL Recipes, Allen Grant 

 Mastering Oracle SQL, Mishra Sanjay  

 Expert One on One Oracle, Thomas Kyte (more advanced 

topics than SQL) 

 

 

REFERENCES 

5th of  May 2012 Oracle Tutorials 

http://www.oracle.com/pls/db112/homepage
http://www.oracle.com/pls/db112/homepage
http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm
http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm
http://docs.oracle.com/cd/E11882_01/server.112/e26088/toc.htm


 

QUESTIONS? 
 

THANK YOU! 
 

Marcin.Blaszczyk@cern.ch 
 


